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Abstract. Recent years have seen the emergence of a number of AOP languages.
While these can mostly be characterized as logic-oriented languages that map sit-
uations to courses of action, they are based on a variety of concepts, resulting
in obvious differences in syntax and semantics. Less obviously, the development
tools and infrastructure - such as environment integration, reuse mechanisms, de-
bugging, and IDE integration - surrounding these languages also vary widely.
Two drawbacks of this diversity are: a perceived lack of transferability of knowl-
edge and expertise between languages; and a potential obscuring of the funda-
mental conceptual differences between languages. These drawbacks can impact
on both the languages’ uptake and comparability.

In this paper, we present a Common Language Framework that has emerged out
of ongoing work on AOP languages that have been deployed through Agent Fac-
tory. This framework consists of a set of pre-written components for building
agent interpreters, together with a set of tools that can be easily adapted to dif-
ferent AOP languages. Through this framework we have been able to rapidly
prototype a range of different AOP languages, one of which is presented as a case
study in this paper.

1 Introduction

The last 10 years has seen the emergence of a number of logic-based Agent-Oriented
Programming (AOP) languages, such as 3APL [5], Jason/AgentSpeak [2, 10], GOAL
[8], and AFAPL2 [3]. A common criticism of these languages is the associated learning
curve, which is often compounded by the lack of supporting tools that facilitate develop-
ment, deployment and debugging. While some languages do offer reasonable levels of
tool support, a secondary criticism is often that there is such cross-language diversity in
this tool support that it can be difficult to transfer experience between languages. For ex-
ample, a developer who learns to program Jason agents may not be able to easily apply
their experience to learn how to program in AFAPL2. This issue was demonstrated at a
recent Agent-Oriented Software Engineering course held in University College Dublin,
in which around 40 students (all professional software engineers with 5+ years industry
experience) enrolled in the Advanced Software Engineering Masters programme were
asked to develop agent systems using both Jason and AFAPL2. The main criticism
raised by the students arose not in understanding the different language concepts, but
in the diversity of the supporting machinery. For example, in AFAPL?2, students were
required to develop perceptors, actuators, modules, and platform services to link the



language to their environment, whilst in Jason, the students were required to develop
an Environment class that played a similar role. While such diversity reflects differing
approaches to building multi-agent systems, it also acts as a barrier to entry for the
wider software engineering community as it makes direct comparison and evaluation of
AOP languages more difficult. As an aside, informal feedback from the students indi-
cated no clear consensus as to which language was preferred, as some students preferred
AFAPL?2 whilst others preferred Jason.

With these criticisms in mind, recent work on the Agent Factory framework [4] has
focused on supporting heterogeneous logic-based agent architectures with the goal of
providing a common toolset that can be adapted to different agent models, ranging from
custom Java agents, through to reactive agent architectures and finally to high-level
agent programming languages. Whilst primarily these components have been designed
to support languages based on first-order logic. Non logic based languages can also be
developed using the framework, as long as the language is compatible with the FIPA
based Agent Factory Runtime Environment.

Specifically we have redeveloped the AFAPL?2 logic framework in order to make
it modular and extensible, this was required as it was previously limited to only first
order structures. Additionally we have decoupled language syntax and underlying logic
structure to allow the component be used in different languages easily. A new planing
mechanism has been developed based on the intention stack concept within AgentS-
peak(L). Furthermore we have reimagined the environment interface to allow aggrega-
tion of relates sensors and actions in the form of modules.

Agent Factory is by no means the only framework or platform that supports hetero-
geneous multi-agent architectures. Platforms such as JADE [1] provide essential run-
time infrastructure such as agent discovery, inter-agent communication, and fault toler-
ance; through Java APIs, these services are made available to both native Java agents
and high-level AOP language interpreters. Though such platforms often provide low-
level development tools for deployment and debugging, they typically offer no direct
support for high-level AOP languages.

Language-independent frameworks for high-level AOP languages have been the
subject of relatively little research. Dennis et al developed an extensible model checker
for Beliefs-Desires-Intentions (BDI) agent programs, by distilling the common features
of several AOP languages to create an intermediate language called Agent Infrastructure
Layer (AIL) [7], and an AIL verifier called Agent Java PathFinder [6]. In this approach,
the developer of a new AOP language X can obtain a model-checking tool for X by
simply implementing an X-to-AIL compiler; AIL makes no assumptions regarding the
source language’s interpreter cycle, and has clear semantics, making this task relatively
easy. We regard this work as complimentary to our own. Rather than modelling the
commonalities of existing languages, Agent Factory aims to provide greater flexibility,
in the form of tool and platform components that can be reused to quickly implement
and explore novel agent programming language features.

Section 2 presents the various sub-frameworks that make up the CLF. Following
this, section 3 describes the process of creating a language using the CLF, and section 4
describes the evaluation of the framework. Finally, section 5 presents some concluding
remarks.
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Fig. 1. Schematic of the Common Language Framework.

2 Multi-Language Support in Agent Factory

Agent Factory (AF) is an open-source framework for the development of agent-based
systems [4]. Since 2001, AF has been structured over a number of layers, with the
lower run-time environment layer providing FIPA-standards based support for agent
interoperability much in the same way as is done in other agent platforms, such as JADE
[1]. The upper levels of the AF framework then deliver support for the fabrication of
agents using the AFAPL2 agent programming language [3].

In order to facilitate ongoing work on Agent Factory and AFAPL2, we have at-
tempted to develop a range of sub-components that can be easily adapted and reused as
necessary. We believe that these components have reached a level of maturity that will
allow AOP language developers to utilise them to rapidly prototype new agent program-
ming languages. As is depicted in figure 1, these components are known collectively as
the Common Language Framework (CLF), and they are outlined below.

2.1 Infrastructure Support

The infrastructure components provided by the CLF are concerned with the internals
of the agent. They provide support for: representing and manipulating first-order logic;
plan representation and execution; and a standardised interface between the agent and
its environment.

Logic Framework: Agent Factory utilises a standard predicate logic language, similar
to those used in other systems such as GOAL[8] and Jason[2], which is based on the
one originally developed for AFAPL2 [3]. Two key interfaces are used to represent
well formed formulae within the language; IFormula and ITerm. Figure 2 shows the



constructs supported within the language in which operators implementing ITerm are
used to represent the arguments of predicate formulae and comparisons.

<<interface>> <<interface>>
ITerm IFormula

[ Addition |: [Multiplication]:[ Subtraction |:| Division | [IMPLIES | [Predicate]|
[Function | [ Variable | [ Modulo | [ IntegerTerm | [ Bracket | [Comparison]
[Cstlerm] | o

[ Head | [Merge] | StringTerm | [RealTerm] [LessThan] i [Inequality] [ Equality |
|GreaterThan] [ Contains |

Fig. 2. UML diagrams of IFormula and [Term.

Agent Factory provides support mechanisms designed to enable the easy creation
and conversion of these constructs through two interfaces: ILogicFactory and ILogicP-
resenter respectively. Default implementations are provided for both interfaces which
can process any of the logical operators shown in Fig. 2, assuming the input consists of
well formed formulae only.

Finally, support for reasoning with logic is provided via multiple logic reasoning
engines allowing queries over sets of well formed formulae or the generation of be-
liefs based on these formulae and a set of inference rules. Both of these systems im-
plement the the IQueryEngine interface and where neither is appropriate, additional
reasoning engines can be built. The IQueryEngine interface is designed to support mul-
tiple sources, such as the belief and goal bases of an agent; when a query is run the
IQueryEngine determines the applicable sources to check based on the underlying type
of logic object. Sources are specified by implementing the /Queryable interface.

In summary, the logic framework of Agent Factory implements the standard func-
tionality one would expect to see in a basic logic system and provides clearly defined
extension points that allow the logic to be modified for a specific language. However,
in many cases, we expect that such modifications will focus on specific formulae that
are based on the standard AFAPL2 logic syntax and will not require modification of
the reasoning engines or the re-implementation of the default logic engine and logic
presenter. In cases where languages do not employ our syntax, we have preferred to
adapt the language syntax rather that undertake more time-consuming modifications to
the framework.

Environment Interface: The interface between an agent and its environment is based
around two core components: sensors and actions. Generally speaking, sensors are the
components that are responsible for generating the agents model of its environment,
while actions are the components that cause some change to occur in the environment.
As such, the core focus of a sensor is belief generation and the core focus of an action
is to facilitate manipulation of the environment. The term action differs from other
systems where it is usually referred as actuator, this difference is due to the desire to



differentiate actions from perceptors, which are the equivalent concepts in the AFAPL2
logic system.

Experience in developing agent-based systems has shown that actions and sensors
alone are insufficient - there are many cases where actions and sensors must interact
through some shared data structure or API, for example: a graphical interface, a con-
nection to a remote system (e.g. controlling a robot via bluetooth), or something sim-
pler, such as a queue. While it is possible to model all of this through the FIPA notion
of a platform service, the approach is not appealing because platform services are typ-
ically shared resources, whereas these resources are more often private (to the agent).
As a result, we introduce a third component, known as a module. This component is an
aggregation of related sensors and actions that share a common data structure (the mod-
ule). Typically, the sensors and actions associated with the module are implemented as
inline classes, making the component self-contained, but this is not required, and the
implementation can just as easily be spread over multiple classes. Modules are named
so as to maintain a clear distinction between them and services, which are a runtime
environment concept.

By introducing the notions of actions, sensors and modules, we offer a simple model
for integrating with the environment that engenders reuse of components both across
applications and across languages. In particular, modules can be viewed as a form of
API that can be used by any CLF-based agent. Currently, module’s exist for: creating
and manipulating Stack and Queue data structures; and interacting with various pre-
existing platform services, including the FIPA Agent Management Service, and our EIS
and CARTAGO services. As hinted above, they can also be used to implement clients
to connect to remote systems or graphical interfaces for agent-user interaction.

Planning Support for planning comes in the form of an extensible set of plan opera-
tors and a plan executor that is based on the intention stack approach adopted in Jason
[2]. The default implementation includes: brackets, if-else statements, while loops, state
querying, plan expansion (foreach), assignment (assigning a value to a variable), failure
handling (try-recover), and durative actions. Each of these operators has an associated
class that implements the IPlanStep interface. The key method of this class is the han-
dle(...) method, which implements the operational semantics of that plan operator. This
method is called by the plan executor. Additional operators can be added, for example,
in Af-AgentSpeak, goal invocation is implemented as a custom plan step.

2.2 Skeleton Interpreter

The recommended hierarchy of the agent classes is shown in Fig. 3. Whilst it is not re-
quired that agents extend the AbstractLanguageAgent class, it is the easiest and quick-
est way to incorporate Agent Factory’s Environment Interface, FIPA standard platform
services, and runtime environment features such as scheduling algorithms. The Ab-
stractLanguageAgent class provides basic agent action and sensor functionality, such as
printing, ACL communication, migration, state monitoring, and platform service avail-
ability.

When prototyping languages we recommend the following naming scheme. The
primary functionality of the agent is encapsulated within the AbstractXXXXAgent class,
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Fig. 3. Recommended agent class hierarchy.

where XXXX is replaced with the name of the language. This scheme is also applied
to the three recommended subclasses, JavaXXXXAgent, ScriptBasedXXXXAgent and
MigrationBasedXXXXAgent, which will be further explained in section 3.

As is shown in figure 4, the interpreter of the language is represented by the method
execute() in the AbstractXXXXAgent class. This method performs a single step of the
interpreter, during which the agent perceives its environment, deliberates, and performs
an action. The 3-step process shown below is not enforced, but is indicative of a typical
execution step.

public class AbstractXXXXAgent extends AbstractLanguageAgent {
protected BeliefSet beliefs;
protected IQueryEngine queryEngine;

<constructor> (String name) {
super (name) ;
queryEngine = new ResolutionBasedQueryEngine ()
beliefs = new BeliefSet ();
queryEngine.addSource (beliefs) ;

}

public void execute() {
// 1. Sense environment
senseEnvironment () ;
// 2. Deliberate...
// 3. Act: Select one or more activities:
for (Predicate activity : activities)

performActivity (activity);

endOfIteration();
}

protected void noSuchAction (Predicate activity) {

}

Fig. 4. Recommended structure of an AbstractXXXXAgent.



2.3 Parser Support

Parser support is provided using JavaCC and JJTree. While a separate parser must be
developed for each language, CLF includes sample JavaCC production rules demon-
strating the use of each infrastructure component, which can easily be customised. The
CLF provides standard visitor implementations to generate compiler code from these
production rules; only the CodeGeneratorVisitor must be modified to handle the new
language constructs. At runtime, the ScriptBasedXXXXAgent outlined in section 2.2
invokes this compiler, and uses the resulting object files to initialise the interpreter.

2.4 Tool Support

Debugger Framework The Agent Factory Debugger is a highly extensible tool de-
signed to be easily customisable for different agent architectures. The debugger allows
agents to be collectively suspended or resumed as well as individually resumed, sus-
pended and stepped.

The debugger provides a default inspector for all agent factory agents which details
the platform services subscribed to and a log of incoming and outgoing messages. This
default inspector also manages the state history of the agent and can be easily extended
to include much more information, requiring only the extension of two components: the
state manager and the inspector.

-
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Fig. 5. Screeenshot of the debugger.

A screen shot of the Agent Factory debugger is shown in Figure 5, this shows the
the Agent Inspectors and controls for two agents of the same type. In this situation there
is only one instance of the StateManagerFactory and InspectorFactory, these factories
create a seperate StateManager and Inspector (Visible in the right pane of the figure)
for each agent .

Each agent’s StateManager is responsible for updating its Inspector at the end of
every execution cycle. To this end the StateManager creates a Snapshot of the current
internal state of the agent and passes it to the Inspector. Extending the functionality



of the inspector requires the addition of new InspectorPanels formatted to display the
required information and the extension of the Snapshot class to include the data required
to update the Inspector.

Eclipse Integration Eclipse integration with Agent Factory is provided through the
use of a number of plugins, one which provides the Agent Factory libraries as well as a
number of support classes and an individual plugin for each of the languages developed
using the common language framework.

The core functionality provided by each of the individual plugins consists of;

1. An Editor to provide syntax highlighting on the various elements of the language.

2. A Builder to provide a mechanism for the automatic compilation of the agent code
and reporting of errors through eclipse.

3. A new file Wizard to automatically create an agent file from a template.

3 Prototyping an AOP Language

AOP language developers typically employ a wide range of techniques in the design and
implementation of an AOP language that includes the design of the underlying reason-
ing mechanisms, the definition of an interface to the environment, and the integration of
the interpreter with an associated run-time framework, and potentially the creation of an
associated development toolkit. In this section, we outline an approach to prototyping
AOP languages that attempts to remove many of these barriers to allow the developer
to focus on the core deliberation algorithm. We do this by advocating a simple structure
for the design of AOP languages that is based on the approach adopted in the design of
AFAPL2. We do not argue the this approach is better or more suitable, but advocate its
use for the purpose of ensuring greater consistency between languages.

T —C———.
Language Interpreter Debugger Parser Eclipse
Design Construction Integration Construction Integration
Fig. 6. CLF Language Development Process.

The specific approach advocated combines the default logic implementation out-
lined in section 2.1 together with the environmental interface described in Section 2.1.

In order to develop a new AOP language using AF, there are a number of key steps
to be followed. In this section, we outline these steps through a set of high level instruc-
tions, should the reader require more detailed information this is available through the
Agent Factory website>.

3http://www.agentfactory.com



3.1 Language Design

First the specifications of the language must be defined, this includes both the syntax
of the language as well as the operation semantics of the interpreter. The former can be
achieved through the construction of a Backus-Naur Form (BNF) grammar describing
the unique constructs of the language, this can be done by creation of a grammar in the
case of a new language or the modification of an existing grammar when the language
already exists. The latter requires the definition of the operation semantics of the inter-
preter which will be used to structure the actions of the interpreter in the next section.
Finally it is recommended that a suitable example agent program is written, as this will
make later testing much easier.

3.2 Skeleton Interpreter

Based on the recommended structure provided in Section 2.2, implementation of the
skeleton interpreter requires the creation of an abstract class AbstractXXXXAgent. This
class requires the creation of custom data structure to represent the constructs of the
language and the agents belief, goals, etc.. The operational semantics defined in Sec-
tion 3.1 are then used to structure the implementation of the execute() method within
the class thus providing the functionality of a single step of the interpreter.

It is also recommended that the class JavaXXXXAgent should be created which ex-
tends AbstractXXXXAgent, this allows the direct injection of the example agent pro-
gram into the data structures of the agent without the need for a parser. Through this
class the operation of the interpreter and the functionality of the data structures can be
tested.

3.3 Debugger Implementation

The next logical step in the development process is the implementation of the debugger
as it allows the mental state of the agent be viewed during the operation of the agent.
This is instrumental in ensuring the correct operation of the developed interpreter. In
short this process requires the creation of a number of classes used for the representation
of the agents state and it display within the debugger, namely;

— XXXXSnapShot, which holds all the required state information.

— XXXXStateManager, which creates the snapshots at the end of an interpreter cycle.

— XXXXlInspector, which displays the recorded information

— XXXXStateManagerFactory and XXXXlInspectorFactory which manage the auto-
matic creation of the StateManagers and Inspectors respectively.

3.4 Parser Implementation

Having successfully tested the interpreter using the debugger and the JavaXXXXAgent,
the next step is the implementation of the parser for the language and its integration with
the system. This process involves a number of complex steps;



— Based on the grammar developed in Section 3.1 and the template provided within
Agent Factory, complete the JavaCC grammar defining the language. As production
rules are supplied for parsing the logic and environmental interface components this
is not an overly difficult task.

— Using JJTree, which constructs a parse tree during processing, modify the Code-
GeneratorVisitor template provided to harvest and store the required data structures
from the parse tree.

— Finally the creation of the ScriptBasedXXXXAgent, which utilises the parser and
CodeGeneratorVisitor to populate all the agent code into the class, thus allowing
the creation of agents within the language.

— To fully connect the agent type with Agent Factory we must create the XXXXAr-
chitectureFactory which is responsible for automatic creation of agents using the
ScriptBasedXXXXAgent class, automatic creation is achieved through the associ-
ation of the file extension to the agent type.

— A supplementary step in the process is the creation of the MigrationBasedXXXXA-
gent which is similar to the ScriptBasedXXXXAgent in that it allows the creation
of an agent of the language on the system. Rather that through the use of the parser
it uses the state information from another platform to instantiate the agent.

3.5 Eclipse Integration

At this point the language is fully developed and functional, however the final step of
Eclipse integration is recommended as it makes designing agents within the language
easier. As discussed in Section 2.4 there are three components to the eclipse integration,
the builder, editor and new file wizard. An Eclipse plugin is provided which provides
the structure and an example implementation of all the features described.

— The builder is implemented by integrating the parser developed in Section 3.4 and
display the errors through eclipse’s built in marker system.

— The editor requires only the modification of the example implementation such that
the correct keywords, labels and operators are highlighted.

— Finally the new file wizard is created through the modification of the example and
the provision of a sample agent file.

4 Evaluation

Scientific evaluation of this system is not an easy task, initial evaluation has been com-
pleted and further evaluation is planned.Informally it is the opinion of the authors that
the provided components simplify the process of developing AOP languages. The ini-
tial evaluation comprised of the use and comparison of two languages created using the
framework during participation in the 2010 Multi Agent Contest*[11].

The contest scenario consisted of developing a multi-agent system to solve a coop-
erative task in a dynamic environment. The environment was a grid-like world in which

4 http://www.multiagentcontest.org/2010



virtual cows move around collectively in one or more herds exhibiting a swarm-like be-
havior. There were two corrals, each belongs to one of the two agent teams. The teams
of agents competed to control the behavior of animals and lead them to their own corral.
The winning agent team being the one which scored highest.

The two languages used were AF-TeleoReactive (AF-TR), which is based on Nils
Nilsson’s Teleo-Reactive formalism [9], and AF-AgentSpeak (AF-AS), an implementa-
tion of AgentSpeak(L). The scenario is very much suited to having two types of agents,
a leader agent and a herder agent. The CLF allowed us do develop modules which could
be used with both languages and made it possible to rapidly develop a number of pro-
totype agents with those languages. Through these prototypes, we were able to identify
that AF-AgentSpeak was suited to the Leader role, this is due to the comprehensive
planning support available, and AF-TeleoReactive was suited to the Herder role, as it is
designed to react quickly to a changing environment.

This pilot evaluation serves to justify the comparability of the created languages. As
this project was completed by members of the team responsible for the creation of the
framework, evaluation of the CLFs ease of use is currently future work. This thorough
evaluation will be performed when the Agent-Oriented Software Engineering course
runs again (Jan 2012). The planned evaluation similarly allows the assessment of the
CLF in terms only of the usability and comparability of the produced languages, whilst
this evaluation is useful it is not sufficient to validate the goal of providing a common
toolset that can be adapted to different agent models.

To properly validate the usefulness of the components for the development of AOP
languages would require a large number of people creating languages both with and
without the support of the framework. Whilst ideally we would like the feedback this
would bring, for logistical reasons alone we will not be attempting it.

5 Conclusions

Our main objective making these changes to Agent Factory is to develop versions of
existing AOP languages for Agent Factory, that are adapted to employ a consistent un-
derlying infrastructure which we hope will allow developers to focus on understanding
the strengths and weaknesses of the languages rather than the supporting machinery. By
providing this common infrastructure and implementing various AOP languages, we
also hope to gain additional insight into the weaknesses of the current state-of-the-art
in AOP with the goal of identifying and exploring potential features that will underpin
the next generation agent programming languages. Finally, we hope that Agent Factory
will help to foster the development of new AOP languages by reducing the complexity
of AOP language development.
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