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Abstract—To date web search has been a solitary experience

for the end-user, despite the fact that recent studies highlight the

potential for collaboration that is inherent in many search tasks

and scenarios. As a result, researchers have begun to explore the

potential for a more collaborative approach to web search, one in

which the search actions of other users can influence the results

returned. In this context, the expertise of other users plays an

important role when it comes to ensuring the quality of recom-

mendations that arise from their actions. The reputation of these

users is important in collaborative and social search tasks, much

as relevance is vital in conventional web search. In this paper

we examine this concept of reputation in collaborative and social

search contexts. We describe a number of different reputation

models and evaluate them in the context of a particular social

search service. Our results highlight the potential for reputation

to improve the quality of recommendations that arise from the

activities of other searchers.

I. INTRODUCTION

There is little doubt the impact that search engines have had
on the internet and on the lives of internet users. Most of us
routinely turn to our favourite search engine when we want
to locate information online. The success of web search has
come about as a result of some very significant innovation that
dates back to the early days of web search in the late 1990s.
At the time, the first generation of web search engines (e.g.
Altavista, Excite, Lycos etc.) relied on an information retrieval
type approach to search, selecting and ranking results based
largely on how well they matched the terms in the current
search query. It quickly became apparent, however, that such
an approach would not scale in the world of the web. While
the presence of query terms in a result page might signal
potential relevance, this type of matching did not provide a
strong enough ranking signal and consequently search engine
result lists performed poorly in terms of their overall precision.
The significant breakthrough that led to modern web search
engines came about through the work of Brin and Page [1], and
Kleinberg [2], highlighting the importance of link connectivity
when it came to understanding the importance of web pages.
In the end, ranking metrics based on this type of connectivity
data came to provide a key signal for all of today’s mainstream
search engines.

Today’s search engines still rely on link connectivity, term
overlaps, and other relevance signals. In the meantime how-
ever, the so-called social web has provided users with new
types of information discovery tools. Many users frequently
find that the content they are interested in is shared via
their social graph; for example, page sharing on Twitter and

Facebook is now commonplace and many users rely on their
social feeds as a source of daily content. Consequently, there
is now considerable interest in the concept of social search.
If our social graphs are a valuable source of content then
why not harness our social networks to improve mainstream
search results? As a result, we have seen major search engines
like Bing and Google introduce Twitter and Facebook feeds
into the result pages and both search engines now provide
users with an opportunity to effectively vote on pages (through
Facebook “likes” and Google +1) so that this social signal can
be used during result ranking. In this paper we focus on the
HeyStaks system [3]. HeyStaks has been developed to add a
layer of social search onto mainstream search engines, using
recommendation techniques to automatically suggest results
to users based on pages that members of their social graphs
have found to be interesting for similar queries in the past.
HeyStaks adds collaboration to conventional web search and
allows us to benefit from the past searches of people we trust
on topics that matter to us. Previous work has focused on the
HeyStaks recommendation engine and on a novel model of
user reputation based on instances of collaboration between
users [4].

In this paper we describe in detail how user reputation can
be used during the result recommendation process. While ear-
lier work evaluates different types of user reputation models,
in this work we describe how reputation from multiple users
can be combined and aggregated to model page reputation,
which can provide evidence for result quality and relevance at
recommendation time. Specifically, we describe and evaluate 5
different reputation aggregation techniques and evaluate their
impact on the quality of recommendations based on the results
of a live-user trial. The remainder of this paper is structured
as follows. In the next section we outline related work in the
area of web search and recommender systems. In sections III
and IV we provide a brief overview of the HeyStaks system
and its user reputation model, which will serve as the basis for
this work. In section V we describe a number of different page
reputation models and show how they can be used to influence
recommendations at search time. Finally, before concluding,
in section VI we describe the results of a comparative study
of these strategies, based on live-user data.

II. RELATED WORK

Recently, research efforts have been focused on identifying
new signals that can be harnessed to assist users to locate



relevant search results and product and service recommenda-
tions on the web. Here we briefly review some related work
in this regard, examining some of the relevance models that
drive modern web search engines and recommender systems.
Further we describe recent work in the area of reputation
systems and how reputation can be used to further enhance
the quality of search results and recommendations that are
delivered to end users.

One of the key differentiators between web search engines
and traditional information retrieval approaches is that the
underlying link structure of the web can be leveraged by
search engines as a additional source of relevance and ranking
information to complement query term matching techniques.
Two of the best known examples of web search algorithms
that utilise link structure are Google’s PageRank algorithm
[1] and the HITS algorithm developed by Kleinberg [2]. The
PageRank algorithm models pages on the web as vertices in a
directed graph with the hyperlinks between pages representing
the edge set. The relative importance of a page is modeled by
the number of inlinks to the page, which can be seen as a kind
of recommendation from the wider community. PageRank is a
recursive algorithm, where the ranks of pages are a function of
the ranks of those pages that link to them, with pages that are
linked to by many other important pages receiving higher ranks
themselves. The HITS algorithm also utilizes link structure to
rank web pages. In contrast to PageRank, HITS computes an
authority and a hub score for each page, which measure the
value of a page’s content and the value of its links to other
pages, respectively. There is no doubting the value and success
of mining the link structure of the web as a page ranking
signal; a recent comScore press release indicates that Google
Sites achieved 65.4% market share in the U.S. explicit core
search market1.

In addition to conventional query-based search services,
recommender systems have also been widely employed on
the web to help people discover information, products and
services that are relevant to their personal needs. In the
literature, two main approaches to recommender systems have
been described, known as content-based [5] and collaborative-
filtering based [6] approaches. In content-based systems, items
are recommended to users that are similar to items that
have been liked in the past. Comparisons between items are
calculated over the features that are associated with each item
(for example, movies can be described by meta-data such as
genre, director, cast etc.). Content-based approaches have been
used in a variety of recommendation applications, including
TV, e-commerce and travel recommenders [7], [8]. On the
other hand, collaborative recommenders help users to make
choices based on the preferences of other users in a system.
The basic heuristic employed is that users who agreed or
disagreed on items in the past are likely to agree or disagree on
future items. To make recommendations, collaborative filtering
algorithms typically find the most like-minded users in a

1http://www.comscore.com/Press Events/Press Releases/2011/5/
comScore Releases April 2011 U.S. Search Engine Rankings. Accessed
June 19th, 2011

system based on the similarity of their preference data, and
weight and combine the preferences of those users. A key
advantage of collaborative recommenders is their ability to
capture relationships between users based on item preference
information alone, and without the need for any rich meta-data
about the item being recommended. In addition, collaborative
and content-based techniques can be combined to form hybrid
recommenders as described in [9].

Recently there has been considerable interest in reputation
systems as an additional signal to enhance the quality and
robustness of recommendations made to users. The work of
O’Donovan and Smyth [10] addresses reputation in the context
of collaborative recommender systems. In this case, a standard
collaborative filtering algorithm is modified to add a user-user
trust score to compliment the normal profile or item-based
similarity score, so that recommendation partners are chosen
from those users that are not only similar to the target user,
but who have also had a positive recommendation history with
that user. It is posited that reputation can be estimated by
measuring the accuracy of a profile at making predictions over
time. Using this metric average prediction error is improved by
22%. Similar to O’Donovan and Smyth, Massa and Avesani
[11] propose a reputation algorithm called MoleTrust that can
be used to augment an existing collaborative filtering system.
The mechanism calculates a “trust metric” similar to item-
based similarity, which propagates across a network of content
producers. This algorithm can be tuned to propagate over a
specific depth across a social graph, meaning reputable users
only have influence over a set of users of a known size.
The authors find that MoleTrust can improve the accuracy of
predictions made by a recommender system, even in cases
where users have provided few item ratings.

In this paper we show how reputation can be leveraged to
influence the ranking of result page recommendations made by
the HeyStaks social search service. In particular, we propose
a number of models to estimate page reputation based on
the reputation of those HeyStaks users who have previously
interacted with the page. As with the related work discussed
above, our findings indicate that the signal afforded by our
reputation model leads to enhanced recommendation quality
when combined with the HeyStaks page relevance model as
described in the next section.

III. A REVIEW OF HEYSTAKS

HeyStaks is an approach to collaborative web search that
is designed to work with mainstream search engines such
as Google, Bing, and Yahoo; so users search as normal, on
their favourite search engines, but benefit from search rec-
ommendations from people they trust. The HeyStaks system
has been described previously in [3], where the focus was
on a description of its recommendation technique. The aim
of this paper is to investigate the role of a novel reputation
model during recommendation, whereby the search reputation
of users is allowed to influence recommendation directly. We
will return to the issue of reputation in following sections, but
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Fig. 1. The HeyStaks system architecture and outline recommendation model.

first we present a brief review of HeyStaks in order to provide
sufficient technical context for the remainder of this paper.

A. System Architecture

Figure 1 presents the HeyStaks architecture. There are two
key components: a client-side browser toolbar/plugin and
a back-end server. The toolbar serves a dual purpose: It
provides users with direct access to the HeyStaks functionality,
allowing them to create and share staks, tag or vote for
pages etc. It also provides for the type of deep integration
with mainstream search engines that HeyStaks requires. For
example, the toolbar captures the routine search activities of
the user (query submissions and result click-thrus) and it also
makes it possible for HeyStaks to augment the mainstream
search engine interface so that, for example, HeyStaks’ rec-
ommendations can be integrated directly into a search engine’s
results page. The toolbar also manages the communication
with the back-end HeyStaks server. Search activities (queries,
click-thrus, tags, votes, shares etc.) are used by the server
to update the HeyStaks stak indexes. And these stak indexes
provide the primary source of recommendations so that when
a user submits a query to a mainstream search engine, in a
given stak context, this query is fed to the HeyStaks server
in order to generate a set of recommendations based on the
target stak and, possibly, other staks that the user has joined.

B. The Recommendation Engine

Each stak in HeyStaks captures the search activities of its
stak members. The basic unit of stak information is a result
(URL) and each stak (S) is associated with a set of results,
S = {r1, ..., rk}. Each result is also anonymously associated
with a number of implicit and explicit interest indicators, based
on the type of actions that users can perform on these pages,
which include:

• Selections (or Click-thrus) – a user selects a search result
(whether organic or recommended);

• Voting – a user positively votes on a given search result
or the current web page;

• Sharing – a user chooses to share a specific search result
or web page with another user (via email or by posting
to their Facebook Wall etc.);

• Tagging/Commenting – the user chooses to tag and/or
comment on a particular result or web page.

Each of these actions can be associated with a degree of
confidence that the user finds the page to be relevant for a
given query. Each result page rS

i from stak S, is associated
with these indicators of relevance, including the total number
of times a result has been selected (Sl), the query terms
(q1, ..., qn) that led to its selection, the terms contained in the
snippet of the selected result (s1, ..., sk), the number of times a
result has been tagged (Tg), the terms used to tag it (t1, ..., tm),
the votes it has received (v+, v−), and the number of people
it has been shared with (Sh) as indicated by Equation 1.

rS
i = {q1...qn, s1...sk, t1...tm, v+, v−, Sl, Tg, Sh} . (1)

Importantly, this means each result page is associated with
a set of term data (query terms and/or tag terms) and a set
of usage data (the selection, tag, share, and voting count).
The term data is represented as a Lucene (http://lucene.apache.
org) index, with each result indexed under its associated query
and tag terms, and this provides the basis for retrieving and
ranking recommendation candidates. The usage data provides
an additional source of evidence that can be used to filter
results and to generate a final set of recommendations.

At search time, the searcher’s query qT and current stak ST

are used to generate a list of recommendations to be returned
to the searcher. For the purpose of this paper we will discuss
recommendation generation from the current stak ST only,
although in practice recommendations may also come from
other staks that the user has joined or created.

There are two key steps when it comes to generating
recommendations. First, a set of recommendation candidates
are retrieved from ST by querying the relevant Lucene index
using the target query qT . This effectively produces a list
of recommendations based on the overlap between the query
terms and the terms used to index each recommendation
(query, snippet, and tag terms). Next, these recommendations
are then filtered and ranked. Results that do not exceed certain
activity thresholds are eliminated as candidates; such as, for
example, results with only a single selection or results with
more negative votes than positive votes (see [3]). Each remain-
ing recommendation candidate r is then ranked according to a
weighted sum of its relevance (rel) and reputation (rep) scores
at time t as per Equation 2; where w is used to adjust the
relative influence of relevance and reputation.

score(r, qT , t) = w × rep(r, t) + (1− w)× rel(qT , r) . (2)

The relevance of a result r with respect to a query qT

is computed based on Lucene’s standard TF-IDF metric as
per Equation 3; TF-IDF is a well-known information retrieval
term-weighting function [12] that gives high weights to terms
that are popular for a result r but rare across other stak results,
thereby serving to prioritise results that match distinguishing
index terms.

rel(qT , r) =
�

τ∈qT

tf(τ ∈ r)× idf(τ ∈ r)2 . (3)
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Fig. 2. Collaboration and reputation: (a) the consumer c selects result r,
which has been recommended based on the producer p’s previous activity, so
that c confers some unit of reputation (rep) on p. (b) The consumer c selects
a result r that has been produced by several producers, p1, ..., pk; reputation
is shared amongst these producers with each user receiving an equal share of
rep/k units of reputation.

IV. REPUTATION AS COLLABORATION

The above relevance model pays no attention to the source
of the recommendation; i.e. the users who originally con-
tributed the page to a stak or whose subsequent activities
resulted in the page being recommended. For this reason
recent research has looked at the possibility of adding a
reputation component to recommendation. Recommendation
candidates can be scored by a combination of relevance and
reputation according to Equation 2, so that pages that have
been contributed by many reputable users are considered
more eligible for recommendation than those that have been
contributed by fewer, less reputable users.

The key idea in the user reputation model for HeyStaks
is that reputation can be calculated by mining the implicit
collaborations that occur between users as a result of their
searches. If HeyStaks recommends a result to a searcher, and
the searcher chooses to act on this result (i.e. select, tag,
vote or share), then we can view this as a single instance
of search collaboration. The current searcher who chooses
to act on the recommendation is known as the consumer
and, in the simplest case, the original searcher, whose earlier
action on this result caused it to be added to the search
stak, and ultimately recommended, is known as the producer.
In other words, the producer created search knowledge that
was deemed to be relevant enough to be recommended and
useful enough for the consumer to act upon it. The basic
idea behind the user reputation model is that this act of
implicit collaboration between producer and consumer confers
some unit of reputation on the producer (Figure 2(a)), and to
calculate the overall reputation of a user (producer) we need to
aggregate these units of reputation across past collaborations.

The reputation model calculates the reputation of a producer
as a weighted sum of the collaboration events in which they
have participated. The simplest case is captured by Figure
2(a) where a single producer participates in a collaboration
event with a given consumer, benefitting from a single unit of
reputation as a result. More generally, at the time when the
consumer acts (selects, tags, votes etc.) on the recommended
result, there may have been a number of past producers who
each contributed part of the search knowledge that caused this
result to be recommended. A specific producer may have been
the first to select the result in a given stak, but subsequent users

may have selected it for different queries, or they may have
voted on it or tagged it or shared it with others independently
of its other producers. Thus we need to be able to share
reputation across these different producers; see Figure 2(b).

More formally, let us consider the selection of a result r by
a user c, the consumer, at time t. The producers responsible for
the recommendation of this result are given by producers(r, t)
as per Equation 4 such that each pi denotes a specific user ui

in a specific stak Sj .

producers(r, t) = {p1, ..., pk} . (4)

Then, for each producer of r, pi, we update its reputation
as in Equation 5. Reputation is shared equally among its k
contributing producers.

rep(pi, t) = rep(pi, t− 1) + 1/k . (5)

In this way reputation is based on the accumulation of
collaboration instances and essentially the reputation of a user
is a weighted sum of the number of collaborations they have
contributed to by way of their past searches. Importantly this
is just one specific way to model reputation according to
this producer-consumer model; there are many other ways to
count and accumulate reputation and in [13] we describe and
evaluate of a variety of different approaches.

In this paper, however, we assume the above user reputation
model and focus instead on how it can be incorporated into
the HeyStaks recommendation model. To do this we need a
way to translate user reputation scores into corresponding page
reputation scores which we consider in the following section.

V. PAGE REPUTATION MODELS

In this section we describe a number of approaches to model
page reputation. In each case, the goal is to calculate the
reputation score of a result page r at time t based on the
reputation scores of the page’s producers at that point in time;
see Equation 6.

rep(r, t) = f
�
rep(p1, t), ..., rep(pk, t)

�
. (6)

For the purpose of illustration we will calculate each repu-
tation score based on a hypothetical recommendation scenario
for a page r which is associated with a set of 10 producers
with the following reputation scores at time t: {0.003, 0.014,
0.023, 0.052, 0.089, 0.097, 0.154, 0.297, 0.348, 0.581}. This
includes a cross section of producers including some with
low reputation scores and some with high scores. Note that
in practice producer reputation scores are first normalised by
the maximum producer reputation in the corresponding stak
to ensure a score between 0 and 1.

A. Median Reputation

Perhaps the simplest way to translate user reputation into
page reputation is to calculate the average reputation of the
page’s producers. We propose to do this by finding the median
reputation of the producers as follows:

rep(r, t) = median
�
rep(p1, t), ..., rep(pk, t)

�
. (7)



The advantage of this approach over a simple mean repu-
tation is that the median statistic tends to better represent the
central tendency of the set of user reputations. In the case of
our hypothetical recommendation scenario the reputation of
the page r is 0.093 according to this median model.

B. Max Reputation
Another simple way of scoring a page based on the reputa-

tion of its producers is to take the maximum reputation value
from that set. Formally, Max Reputation is calculated thus:

rep(r, t) = max
�
rep(p1, t), ..., rep(pk, t)

�
. (8)

Scoring pages in this way is advantageous as the reputation
of a page will not be harmed if, for example, many new, not yet
reputable users have selected the page. In our recommendation
scenario, the reputation of page r is 0.581 by this approach.

C. Harmonic Mean Reputation
Harmonic Mean is an average measure that tends towards

the lower bound of a set of numbers, and thus is more con-
servative than arithmetic mean or median. It is calculated by
finding the reciprocal of the arithmetic mean of the reciprocals.
Formally, the harmonic mean of a set of user reputation scores
is calculated as:

rep(r, t) =
k

�k
i=1

1
rep(pi,t)

. (9)

In this case, the reputation of page r is 0.020. Harmonic
mean may be a good indicator of the utility of a page in the
sense that a page is only as reputable as its least reputable
producer. However, rather than simply using the minimum
producer reputation score available, harmonic mean permits
the full range of producer reputation scores to influence the
overall page reputation.

D. Root Mean Square Reputation
In order to get a sense of the magnitude of a set of user

reputation scores, it is useful to calculate the root-mean-square
(RMS) of those values. RMS is defined as the square root of
the mean of the squares.

rep(r, t) =

��k
i=1 rep(pi, t)2

k
. (10)

As RMS is a measure of the magnitude of a set of numbers,
this value tends towards the upper bound of a set of user
reputation scores. As such, RMS can be considered as a less
conservative method of calculating page reputation compared
to the previous harmonic mean approach. As per our worked
example, the reputation of page r using RMS is 0.243.

E. Hooper’s Reputation
In order to reinforce a page’s reputation according to the

number of producers, keeping in mind their score, a dif-
ferent approach is required. A simple technique is George
Hooper’s Rule for Concurrent Testimony, originally proposed
as a technique to calculate the credibility of human testimony
[14]. This is applicable in our case in the sense that users

who have produced a result in HeyStaks are endorsing it,
in the same way that a group of witnesses might attest to
the same report. Hooper gives to the report a credibility of
1− (1− c)k, assuming k reporters, each with a credibility of
c (where 0 ≤ c ≤ 1). For HeyStaks, the quality of a page can
be determined by performing the same calculation across the
reputation scores if its producers.

rep(r, t) = 1− (1− c)k . (11)
As per [14], we can calculate the reputation of result r as

0.003 + (1 − 0.003)0.014 + (1 − 0.003)(1 − 0.014)0.023 ...
and so on. The reputation of this particular result r is 0.865.

In the following section we evaluate these five models
by examining their influence on recommendations made by
HeyStaks, according to Equation 2. Of course, the success
of each model is determined by the extent to which they
improve the effectiveness of the HeyStaks recommendation
engine, which we analyse using a set of queries submitted to
HeyStaks during the course of a live-user trial.

VI. EVALUATION

In previous work [3] we have demonstrated how the stan-
dard relevance-based recommendations generated by HeyStaks
can be more relevant than the top ranking results delivered by
Google. In this work we wish to compare this relevance-based
recommendation technique to an extended version of HeyStaks
that also includes page reputation.

The purpose of this paper has been to propose a number of
alternatives to calculating the reputation of content based on
that of its producers who are helping other users (consumers)
to search within the HeyStaks social search service. The
hypothesis is that by allowing reputation, as well as relevance,
to influence the ranking of result recommendations, we can
improve the overall quality of search results. In this section
we evaluate our page reputation models using data generated
during a recent closed, live-user trial of HeyStaks, designed
to evaluate the utility of the HeyStaks brand of collaborative
search in fact-finding information discovery tasks.

A. Dataset and Methodology
Our live-user trial involved 64 first-year undergraduate

university students with varying degrees of search expertise.
Users were asked to participate in a general knowledge quiz,
during a supervised laboratory session, answering as many
questions as they could from a set of 20 questions in the space
of 1 hour. Each student received the same set of questions
which were randomly presented to avoid any ordering bias.
The questions were selected for their obscurity and difficulty;
see [15] for a list of questions used in the trial. Each user was
allocated a desktop computer with the Firefox web browser
and the HeyStaks toolbar pre-installed; they were permitted
to use Google, enhanced by HeyStaks functionality, as an
aid in the quiz. The 64 students were randomly divided into
search groups. Each group was associated with a newly created
search stak, which would act as a repository for the groups’
search knowledge. We created 6 solitary staks, each containing



just a single user, and 4 shared staks containing 5, 9, 19,
and 25 users. The solitary staks served as a benchmark to
evaluate the search effectiveness of individual users on a non-
collaborative search setting, whereas the different sizes of
shared staks provided an opportunity to examine the effective-
ness of collaborative search across a range of different group
sizes. All activity on both Google search results and HeyStaks
recommendations was logged, as well as all queries submitted
during the experiment. Although trial users were made fully
aware of how to use HeyStaks and its benefits, they were not
explicitly encouraged to use the system during the trial, nor
were they encouraged to perform one activity over another
(sharing over tagging, for example).

During the 60 minute trial, 3,124 queries and 1,998 result
activities (selections, tagging, voting, popouts) were logged,
and 724 unique results were selected. During the course of the
trial, result selections — the typical form of search activity —
dominated over HeyStaks-specific activities such as tagging
and voting. On average, across all staks, result selections
accounted for just over 81% of all activities, with tagging
accounting for just under 12% and voting for 6%.

In recent work we described the performance results of
this trial showing how larger groups tended to benefit from
the increased collaboration effects of HeyStaks [15]. For
example, members of shared staks answered significantly more
questions correctly, and with fewer queries, than the members
of solitary staks who did not benefit from collaboration. In
this paper we are interested in exploring how we can utilise
reputation to measure the quality of recommendations. No
reputation model was used during the live-user trial and so rec-
ommendations were ranked based on relevance only. However
the data produced makes it possible for us to effectively replay
the user trial so that we can construct our user reputation model
and test each page reputation model by using each to re-rank
HeyStaks recommendations. In order to ensure accuracy, we
calculate the reputation of each recommendation made during
the trial according to the reputation of its producers at the
time the recommendation was made. We can retrospectively
test the quality of re-ranked results versus the original ranking
against a ground-truth relevance; since as part of the post-
trial analysis, each selected result was manually classified
as relevant (the result contained the answer to a question),
partially relevant (the result referred to an answer, but not
explicity), or not-relevant (the result did not contain an explicit
or implicit reference to an answer) by experts.

B. User Reputation
To get a sense of how users were scored by our model,

we first examine the type of user reputation values that are
generated from the trial data. It should be noted that each trial
user was a member of only one stak, and thus could only
receive (as a consumer) recommendations resulting from the
activities of fellow stak members, and likewise could only gain
reputation (as a producer) from the consumer activity of other
members of the stak. Figure 3 shows box-plots displaying user
reputation scores for each of the 4 shared staks at the end of the

trial. We see there is a clear difference in the median reputation
score for members of the 5 person stak when compared to
members of the larger staks. Despite the most reputable user
in the trial hailing from the large 19-person stak, it is the 9-
person stak which has the highest median reputation score.
The interquartile range of reputation scores in this stak was
relatively small, indicating that these users worked closely in
collaboration with each other during the trial. It was these
users who collectively outperformed most other users in the
quiz, scoring higher marks and, on the whole, achieving a
better correct answer per query rate (see [15] for more details).
The box-plots show that there is a wide variation in reputation
scores: Some users, particularly in the stak with 5 and 25
members, achieved an almost negligible amount of reputation.
On the other hand, others received a score in excess of 20, the
most reputable user scoring 37. These users were the primary
drivers of search collaboration during the quiz.

C. Evaluating Page Reputation Models

The true test of the reputation models in this work is
the extent to which they improve in the quality of results
recommended by HeyStaks. We have described how HeyStaks
combines term-based relevance and user reputation to generate
its recommendation rankings; see Equation 2. For the purpose
of this evaluation we regenerate each of the recommendation
lists produced during the trial using each of the page reputation
models, based on the user reputation scores calculated at
the appropriate point in time. Since we have ground-truth
relevance information for all of the recommendations (relative
to the quiz questions), we can then determine the quality of the
resulting recommendations. Specifically, we focus on the top
recommended result and note whether it is relevant (that is,
contains the answer to the question) or not relevant (does not
contain the answer to the question). For each page reputation
model we compute an overall relevance rate, as the ratio of the
percentage of recommendation sessions where the top result
was deemed to be relevant, to the percentage of those where
the top result was not-relevant. Moreover, we can compare
this to the relevance rate of the recommendations made by
the standard HeyStaks ranking (i.e. when w = 0 in Equation
2) during the trial to compute an overall relevance benefit;
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such that a relevance benefit of 40%, for a given reputation
model, means that this model generated 40% more relevant
recommendations than the standard HeyStaks ranking scheme.

Figure 4 presents a graph of relevance benefit versus the
weighting (w) used in Equation 2 to adjust the influence of
term-based relevance versus page reputation during recom-
mendation. Remember that as a recommendation is made, its
reputation score is calculated based on the reputation of its
producers at the time the recommendation is made. A similar
trend can be seen in the figure for each technique in that
relevance benefit is observed to increase initially with w before
decreasing as w approaches 1. Peak performance occurs at
different weights for each technique. For example, Harmonic
Mean peaks at w = 0.2 before dipping below 0% relevance
benefit for all remaining weights. Hooper, the best performing
technique by some distance, peaks twice at w = 0.4 and w =
0.8, each time achieving around 55% relevance benefit. Four of
the five techniques result in considerable improvement over the
standard HeyStaks relevance-based model, each achieving at
least 30% relevance benefit at their respective optimal weight-
ing. Harmonic Mean was the worst performer, only managing
a maximum of 3.4% relevance benefit, and for most weights
it delivered a negative relevance benefit, meaning the standard
HeyStaks recommendation engine delivered proportionately
more relevant results across the trial. This is most likely due to
the fact that harmonic mean tends towards the lower bound of
a set of producer reputation scores: if, for example, a page that
has been produced by many users with varying reputation, the
harmonic mean of those scores will tend towards the lower
bound of the set. Conceptually, we may not wish to punish
pages whose producer reputation scores have high variance,
particularly where some producers have high reputation scores.
Hooper achieves the best relevance benefit of all, and at 55%
for w = 0.4, represents a realistic option for integration into a
live HeyStaks reputation engine. This may be the most suitable
option as the score it produces for a page is a consensus based
on the reputation of its producers. The technique promotes the
idea that a page will have a high score by way of reinforcement
from its producers, assuming they are reputable.

Figure 5 shows the median relevance benefit across weights
for each page reputation model. A Kruskal-Wallis test indi-
cates that there are statistically significant differences between
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Fig. 4. Relevance benefit for page reputation models vs. weight.

the performance of the reputation models at the .01 level.
Examining the pairwise differences between models, Tukey’s
Range test indicates that there are significant differences
between Hooper’s technique and two other techniques at the
.05 level, Harmonic Mean and Root Mean Square. These
findings further highlight the strong performance achieved by
the Hooper page reputation model.

D. Limitations

In the above we have compared a number of page reputation
models to map user reputation scores onto the content users
produce, based on real-user search data. One limitation of this
approach is that although the evaluation uses trial-user data,
the final recommendations are not themselves evaluated using
the trial users. Instead we replay users’ searches to generate
reputation-enhanced recommendations. The main reason for
this is the difficulty in securing sufficiently many users for a
trial of this nature, which combines a number of reputation
models and therefore a number of experimental conditions.
That being said, our evaluation methodology is sound since
we evaluate the final recommendations with respect to their
ground-truth relevance. We have an objective measure of page
relevance based on the Q&A nature of the trial and we use
this to evaluate the genuine relevance of the final recommen-
dations. The fact that our reputation models deliver relevance
benefits above and beyond the standard HeyStaks recommen-
dation algorithm is a clear indication that reputation provides a
valuable ranking signal. Of course this evaluation cannot tell
whether users would actually select these reputation-ranked
recommendations, although there is no reason to believe that
they would treat these recommendations differently from the
default HeyStaks recommendations, which they are inclined
to select. We view this as a matter for future work.

Another point worth noting is that the user trial is limited
to a specific type of search task, in this case a Q&A search
task. As such it would be unsafe to draw general conclusions
in relation to other more open-ended search tasks. However,
this type of focused search task is not uncommon among
web searchers and as such we feel it represents an important
and suitable use-case that is worthy of evaluation. Moreover,
previous work [3] has examined the role of HeyStaks in more
open-ended search tasks, where its default relevance-based
recommendations were also found to be beneficial to end-
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users. As part of our future work we are currently in the
process of deploying and evaluating our reputation models
across similar general-purpose search tasks.

VII. CONCLUSIONS

This paper is about social search and broadly speaking
the research looks at how we can make web search more
collaborative. In particular we describe the HeyStaks social
search platform which brings collaborative web search to
mainstream search engines such as Google, Bing, and Yahoo,
via browser plugins. The specific contribution of this paper is
the introduction of page reputation models that can be used to
influence result recommendations made by HeyStaks at search
time, recommendations that originate from the past searches
of communities of collaborating searches. The HeyStaks user
reputation model can be used to model the effectiveness of
a user from a search standpoint. For example, users whose
search results are frequently recommended to, and acted on
by, other users are considered to be reputable searchers. The
intuition behind this work is that these reputation scores can be
viewed as a type of evidence in support of page recommenda-
tions so that recommendation candidates that come from many
reputable users (producers) are considered to be more reliable
that recommendations from less reputable users.

In this paper we have explored different ways to translate
user reputation scores into an overall page reputation/relevance
score. We have described the results of a comparative eval-
uation in the context of real-user data which highlights the
ability of these techniques to improve overall recommendation
quality, when combined with the relevance-based recommen-
dation ranking metrics that are currently used by HeyStaks. For
example, many of the page reputation models can improve rec-
ommendation relevance (compared to the standard HeyStaks
benchmark) by over 30%. Moreover, we have found that one
model, based on Hooper’s rule for Concurrent Testimony [14]
is capable of delivering relative improvements of up to 55%.
We believe that this work lays the ground-work for future
research in this area which will focus on scaling-up the role
of reputation in HeyStaks and refining the combination of
relevance and reputation during recommendation.

In this paper we have focused on the role of reputation
during the recommendation process, in order to maximise
the relevance of the community recommendations made by
HeyStaks. But this is just one use of reputation in a system
such as HeyStaks. For example, in many social systems there is
the risk that malicious users will attempt to manipulate the out-
come of social processes; see relevant work in recommender
systems research [16]–[18]. In HeyStaks, for example, it is
possible to malicious users to flood search staks with irrelevant
or self-interested results, which could impact recommendation
quality. By using reputation to mediate recommendation it will
be possible to guard against this; these malicious users will
have low reputation scores (assuming their contributions are
rarely acted on by other users) and as such their contributions
will be unlikely to appear in future recommendation sessions.
Furthermore, reputation can be exposed to users of systems

like HeyStaks as an important social signal. For example, al-
though HeyStaks’ recommendations are anonymous (so users
do not know the source of result recommendations at search
time) it may make sense to explain recommendations with
reference to the reputation of producers in the future.
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