
From Bogtrotting to Herding: A UCD

Perspective

Sean E. Russell, Dominic Carr, Mauro Dragone,
Rem W. Collier and G. M. P. O’Hare

School of Computer Science and Informatics
University College Dublin

{sean.russell, dominic.carr, mauro.dragone,
rem.collier, gregory.ohare}@ucd.ie

Abstract. This is the third year in which a team from University Col-
lege Dublin has participated in the Multi Agent Contest1. This paper
describes the system that was created to participate in the contest, along
with observations of the team’s experiences in the contest. The system
itself was built using the AF-TeleoReactive and AF-AgentSpeak agent
programming languages running on the Agent Factory platform. A hy-
brid control architecture inspired by the SoSAA strategy aided in the
separation of concerns between low-level behaviours (such as movement
and obstacle evasion) and higher-level planning and strategy.

1 Introduction

This year’s entry to the 2010 Multi Agent Contest was designed and built using
the multi agent framework Agent Factory [1]. Agent Factory, which is described
in further detail in Section 4, is a modular and extensible Java based Agent
framework. Specifically two languages constructed using Agent Factory’s com-
mon language framework, AF-TeleoReactive and AF-AgentSpeak, were used in
the system. The overall architecture of the system, which was described in detail
in [2], is loosely based on the robotic control architecture SoSAA [3] in which
system components are supervised by agents thereby providing goal-driven ca-
pabilities and ease of interoperability through agent communication.

Building on the last two year’s entries to the contest (named “AF-ABLE”
[2] and “Dublin Bogtrotters” [4]) allowed the team to focus on integrating some
new technologies developed within Agent Factory, namely the languages AF-
TeleoReactive and AF-AgentSpeak, and also to focus on optimisation of the
lower level behaviours. Whilst we did not feature highly in the score boards in
the previous two years (placing 6th and 7th respectively), the performance of the
system was gradually increasing and as such we were confident in building upon
the our existing system. This was our main motivator for entering the compe-
tition this year2 as it was our belief that optimisation of the base system along

1 http://www.multiagentcontest.org/2010
2 The agent code used by the team can be downloaded from
http://sourceforge.net/projects/agentfactory/



with a more refined strategy would result in a competitive system. An ongoing
motivation of our involvement in the competition is that of education and stu-
dent integration, as the contest provides an interesting problem with which to
introduce students to agent-based programming within Agent Factory. This goal
was realised through the inclusion of the agent-oriented programming language
AF-TeleoReactive developed as a final year project by an undergraduate within
the UCD School of Computer Science and Informatics.

Even though the main aim remained to improve significantly on last year’s
entry, this was subdivided into several objectives. The first of which was to en-
sure the stability of the base system and improve the performance of the low level
components of the system. The team was then free to optimise the performance
of the high level behaviours such as fence operation and herding whilst simulta-
neously developing new strategies geared toward maximising performance. Addi-
tionally quite an amount of time was spent analysing higher level task allocation
and incorporating the newly developed strategies into the allocation model.

The hardware which was used to run the system for the competition was
contingent on who was monitoring the simulation. As such the machines used
were a Dell XPS running Windows 7, a MacBook running OS X 10.5 and a HP
tablet pc running Ubuntu 10.04. The ability to run the system on heterogeneous
hardware and operating systems stems from the fact that Agent Factory is Java
based. As the processing power of the laptops was sufficient for the needs of the
contest, only one was used at a time even though the system was designed so as
not to preclude the addition of further machines if necessary.

2 System Analysis and Specification

In previous years the requirements analysis process was based on user stories
[5], in which tasks, behaviours etc are defined in a high level manner denoting
expected functionality. These tasks were then disseminated to and implemented
by team members.

For this year’s entry, in an effort to overcome the numerous problems encoun-
tered previously, a team programming approach was adopted. In which one team
member actively engaged with coding supported by other team members provid-
ing strategy analysis, debugging assistance etc. This alleviated the problem of
inconsistent modifications to the code base encountered last year. Despite a lack
of provision for parallel development, a significantly rapid development pace was
achieved. This approach allowed for a free, almost constant, flow of ideas which
resulted in the development of new strategies. Similarly this approach allowed
for easy management of a centralised repository of plans detailing strategies to
overcome bugs or implement new functionality.

At the outset of team programming sessions an informal requirements anal-
ysis and update was conducted, from this goals were broken down into logical
sub-components for implementation.



There was no formal specification generated, it was felt that the relatively
small degree of change to the underlying system negated the need for formal
specification.

Anticipating that very little specification work needed to be done, we did
not adopt any particular multi-agent system methodology. System specifications
were built upon during the team programming sessions. The application of unit
testing greatly improved the efficiency of programming efforts.

Our system is a true multi-agent system with centralised coordination. The
choice of centralised coordination was made in an effort to allow the rapid proto-
typing of different task allocation strategies during development while abstract-
ing from communication issues. In order to facilitate this centralised coordina-
tion, a strategist agent was specified to complement the herding agents. This
strategist agent operates by monitoring a shared world model, which is used by
the agents to record and share their percepts about their environment and sur-
roundings. A list of possible tasks is generated by the world model; the utility
of each task, and its cost to each agent, is evaluated; then agents are centrally
assigned to tasks. These tasks may include the opening of a fence, exploration
or the herding of a particular group of cows. The mechanism by which tasks
may be achieved is left to each individual herding agent’s own proactivity and
autonomy and is done without further central input. Agents carry out their tasks
until either the task is complete, or the agent is reassigned. Further details of
task selection and allocation is contained in the following sections.

3 System Design and Architecture

As discussed in Section 2, the overall coordination strategy adopted in the UCD
Bogtrotters system is a centralised task allocation model, this approach remains
consistent with last year’s entry.

The composition of the system is shown in Fig. 1. At the core of the system
is a group of herder agents, implemented in the AF-TeleoReactive agent oriented
programming language, which are representative of the herding entities present
in the contest.

Herder Agents

Each herder is a three-tier entity. A low level tier serves as wrapper for the
AbstractAgent class, provided the contest organisers. In this layer a connection
to the server is established and maintained. Perceptions are received from the
server and details of the agent’s movements are passed to the server. Received
perceptions are recorded in a world model which is shared by all agents, this
provides each agent with information regarding his team-mates position and
surroundings.

The behavioural layer is composed of a set of Java classes providing a library
of available behaviours for use by the agents. Included therein are behaviours
for tasks such as obstacle avoidance or exploration. At any time the agent will



be engaged in one active behaviour. The agent’s next preferred move will be
calculated by their currently executing behaviour. Specific detail regarding the
implementation of the behavioural layer is described in [2].

The deliberative layer is the agent’s top most layer. Dependent upon their
assigned role the agent is responsible for conducting its own planning so as to
carry out the task. This layer is written in AF-TeleoReactive, it serves to activate
and configure particular behaviours according to it’s own reasoning process.

Fig. 1. Schematic of the Herder agent architecture



Agent autonomy is constrained by the task they have been assigned, and the
goals associated with that task, within a given task an agent is free to operate as
it pleases. A detailed description of the AF-TeleoReactive language and its use
in the implementation in the deliberative layer is provided in Section 4. The AF-
TeleoReactive layer monitors the behavioural layer and responds to key events,
those which update the agents world state, issued in the behavioural layer. These
key events may necessitate the selection and activation of new behaviour. For
example, when an agent is assigned exploration of a particular area of the map,
the task could be decomposed into two simpler behaviours. Firstly the agent
moves via the shortest path towards the centre point of the area, when the
agent nears the location, an event will be raised to indicate this which in turns
triggers a specific exploration behaviour.

The behavioural and deliberative layers operate in their own execution con-
texts (the lower layer in its own thread while the upper layer applies whatever
scheduling policy has been installed on the agent platform) as such deliberation
time is not constrained by the need to select an action in an allotted time frame.

Strategist Agent

Aside from the Herder agents, the system encompasses one other vital agent,
the Strategist agent. The Strategist agent is responsible role assignment, this is
conducted so as to maximize the success of the whole team. It’s decisions are
based upon the shared world model, maintained by the precepts of the herder
agents. Its decisions are communicated to each agent, this results in them taking
on new roles associated goals. The world model may also be accessed through a
visualization tool, giving developers the ability to watch matches in real-time.

Communication: Two differing communication models are utilized within the
system architecture. Role assignment, as dictated by the strategist agent, is
disseminated through explicit communication, conducted via FIPA Agent Com-
munication Language (ACL) messages. The shared world model is representative
of implicit agent communication, as each agent records its precepts of the envi-
ronment state for use by all other agents.

Coordination: The coordination of teamwork amongst the herding agents takes
two forms. Firstly, through use of a centralised task allocation system, the Strate-
gist agent can ensure multiple agents are not assigned to the same task. Excep-
tions are made for tasks for which successful completion requires multiple agents
e.g. defensive herding. The herding task demonstrates our second form of team-
work. By way of the shared world model an agent monitors the position of its
team-mates. This allows the agent to plan its own movements while factoring
in the movements of other agents on its team. This method avoids the neces-
sity of expensive, time-consuming ACL communication while still ensuring that
accurate, relevant information is available.



4 Programming Language and Execution Platform

The underlying agent technology utilised by our team is Agent Factory (AF) [1],
an open-source Java-based development framework that provides support for the
development and deployment of agent-oriented applications.

Agent Factory provides a generic run-time environment for deploying agent-
based systems that is based on the FIPA standards [6]. Central to this environ-
ment is a configurable agent platform that supports the concurrent deployment
of heterogeneous agent types employing a range of agent architectures and in-
terpreters. AF also supports the deployment of platform-level resources in the
form of platform services that are shared amongst agents, along with monitoring
and inspection tools that aid the developer in debugging their implementations.

Support for the implementation of specific types of agents is realised via the
notion of a development kit, an example of which is the AF-TeleoReactive (AF-
TR) [7] Development Kit, which provides support for the fabrication of agents
based on the AF-TR agent-oriented programming language. This kit consists of
a purpose-built interpreter, a plugin for the Eclipse IDE and a custom set of
views for the AF Debugger that allow the developer to inspect the internal state
of AF-TR agents.

For the competition we utilised two types of agents, AF-TeleoReactive devel-
oped as the final year thesis of one of our undergraduate students [7], and AF-
AgentSpeak, developed as a demonstration of Agent Factory’s constructs for
rapidly prototyping agent-oriented programming languages. AF-TeleoReactive
agents were used to control the herders and an AF-AgentSpeak agent was used
as the Strategist agent. In the following sections we shall describe both agent
programming languages.

4.1 AF-TeleoReactive

AF-TeleoReactive is based on Nils Nilsson’s Teleo-Reactive agent paradigm [8]
which was designed to react to a changing environment (hence reactive) whilst
still performing actions which take it to it’s goal (hence teleo, meaning goal
oriented). The functional components of AF-TR agents are represented by an
ordered list of production rules.

K1 → A1

K2 → A2

...

Ki → Ai

...

Kn → An

Fig. 2. Example of AF-TeleoReactive production rules



In the example given in Fig. 2, the element Ki represent conditions on the
input from the sensors or the model of the environment, and the element Ai

represent an action on the environment. When a sequence is being interpreted it
is scanned from the top until it comes across a rule whose condition is satisfied.
The corresponding action is then performed and the interpreter is then restarted
from the top of the list.

Information about the current state of the environment is gathered via a
set of Sensors: Java classes that convert raw sensor data into beliefs that are
added to the agents belief set. To handle the potentially dynamic nature of the
environment that the agent is sensing, beliefs stored in the AF-TR belief base
do not persist by default. Instead they are wiped at the start of each iteration
of the agent interpreter. To cater for beliefs that should persist, consideration
must be given to this when creating the sensor, which allows the programmer
to define which types of beliefs should persist. Whether a belief should persist
or not depends on the nature of the item being observed. For instance, in the
context of the agent contest, it would safe to adopt a temporal belief regarding
the position of a wall within an arena (which by its very nature cannot move)
whereas a belief about the location of a cow will change over time.

AF-TeleoReactive was developed based on the notion of blind commitment,
is so far as the agent will continue performing an action until its actions have
modified the environment sufficiently to cause another condition to fire. As such
it is assumed that the continuous execution of an action will cause such a change
in the environment.

As can be seen in the Herder agent code shown in Figure 3, goals are defined
implicitly through the ActiveTask belief. When the agent receives a message
detailing it’s task from the leader agent (actually, we assume naively that the
agent sending the message is the Strategist agent), the corresponding action is
to define this as the active task (line 4). As there can be only one active task at
any time one of the following lines (05 - 11) would activate a particular function.
Goals in this system can be viewed as both Maintenance and Achievement,
where an Achievement goal is dropped once the agent believes is is complete
and Maintenance goals are maintained even when they have been achieved. As
an example, line 03 defines the goal that the agent be connected to the server, in
this way until the agent believes that it is connected it will continue to execute
the connect function. Once the agent believes it is connected the function is no
longer executed (Achievement). Should the agent no longer believes that is is
connected the function will be activated again until it believes it is connected
(Maintenance).

The active task of the agent defines which of the functions specified below is
activated

– explore: the agent moves towards a given set of unexplored coordinates
– annoyEnemy : the agent moves into the enemy corral to remove the enemy’s

cows
– defendCorral : the agent positions itself outside the corral pushing cows back

in when the enemy removes them



00 #agent BasicHerder;
01 module bcm -> agentcontest.core.module.BehaviourControllerModule;
02 function main{
03 ~connected -> connect
04 message(REQUEST, ?agentID, doTask(?task, ?params)) -> bcm.setActiveTask(?task, ?params)
05 activeTask(Explore, params(?x, ?y)) -> explore(?x, ?y)
06 activeTask(Herd, params(?x, ?y, ?h, ?p)) -> herd(?x, ?y, ?h, ?p)
07 activeTask(AnnoyEnemy, params(?x, ?y)) -> annoyEnemy(?x, ?y)
08 activeTask(DefendCorral, params(?x, ?y)) -> defendCorral(?x, ?y)
09 activeTask(OpenFence, params(?x, ?y)) -> openFence(?x, ?y)
10 activeTask(Stop, params(?x, ?y)) -> stop
11 ~activeTask(?task, ?params) -> stop
12 };
13
14 function connect{
15 mapService(?id) & ~service(?id) -> .bind(?id)
16 ~activity(ActivityReadWorldModel) -> bcm.addActivity(massim.af.behaviours.ActivityReadWorldModel)
17 ~behaviour(MoveTo) -> bcm.addBehaviour(massim.af.behaviours.BehaviourMoveTo)
18 ~behaviour(MoveToViaShortestPath) -> bcm.addBehaviour(massim.af.behaviours.BehaviourMoveToViaShortestPath)
19 ~behaviour(AnnoyEnemy) -> bcm.addBehaviour(massim.af.behaviours.BehaviourAnnoyEnemy)
20 ~behaviour(DefendCorral) -> bcm.addBehaviour(massim.af.behaviours.BehaviourDefendCorral)
21 ~behaviour(OpenFence) -> bcm.addBehaviour(massim.af.behaviours.BehaviourOpenFence)
22 ~behaviour(SingleHerd) -> bcm.addBehaviour(massim.af.behaviours.BehaviourSingleHerd)
23 ~behaviour(Stop) -> bcm.addBehaviour(massim.af.behaviours.BehaviourStop)
24 serverDetails(?host,?port) & credentials(?id,?pw) & mapService(?sid) &id(?aid)&~connected ->

bcm.connect(?host, ?port, ?id, ?pw, ?sid,?aid)
25 };
26
27 function explore(?x, ?y) {
28 true -> bcm.activateBehaviour(MoveToViaShortestPath(x, ?x, y, ?y, tolerance, 5))
29 };
30
31 function openFence(?x, ?y) {
32 true -> bcm.activateBehaviour(OpenFence(x, ?x, y, ?y))
33 };
34
35 function annoyEnemy(?x, ?y) {
36 true -> bcm.activateBehaviour(AnnoyEnemy)
37 };
38
39 function defendCorral(?x, ?y) {
40 true -> bcm.activateBehaviour(DefendCorral)
41 };
42
43 function herd(?x, ?y, ?h, ?p) {
44 true -> bcm.activateBehaviour(SingleHerd(herd_x, ?x, herd_y, ?y, herders, ?h, position, ?p))
45 };
46
47 function stop{
48 true ->bcm.activateBehaviour(Stop)
49 };

Fig. 3. AF-TeleoReactive Code for the Herder agent



– herd : the agent starts herding cows at a given set of coordinates
– openFence: the agent opens the fence at the given coordinates
– stop: the agent stops moving
– connect : maintains the agents connection to the server

The BehaviourControllerModule, which is an encapsulation of the behavioural
sub-system described in section 5, is introduced on line 01 of the Herder agent
(Fig. 3) and provides the user with a set of Sensors and Actions. Actions are Java
classes which enable the agent to interact with the environment. An example of
such an action being used is shown on line 28.

When programming the herding agents we had intended to place a higher
level of logic in the task functions (lines 23-49), which is why we structured
them as individual functions rather than simply activating the behaviours in
the main function. Unfortunately as the contest date approached we prioritised
the optimisation and improvement of the underlying behaviours over this. As
an example the explore function (lines 24-27) simply sends an agent to a spe-
cific position, we had intended that once the agent reached this point it start
iteratively expanding into unexplored areas.

4.2 AF-AgentSpeak

AF-AgentSpeak is based on Jason [9], a purpose-built agent-oriented program-
ming language that implements an extended and improved version of Rao’s
AgentSpeak(L) language [10]. The language consists of a set of plan rules, an
example of which is shown in Fig. 4, which are defined by a triggering event, a
context and a plan containing a number of actions or events.

+triggeringEvent : context <-
step1,
step2,
...,
stepn;

Fig. 4. Example AF-AgentSpeak plan rule

The deliberation cycle of AF-AgentSpeak is an adaptation of the algorithm
used in Jason that is compliant with the AF common language framework.

1. An event is selected from the set of internal and external events.
2. All plan rules triggered by this event are then selected.
3. The list of rules is reduced to those whose context evaluates to true.
4. From this list a single plan rule is selected and added to a new or existing

intention stack depending on whether it is a sub plan or new plan respec-
tively.



01 module bcm -> agentcontest.core.module.BehaviourControllerModule;
02 module ta -> agentcontest.cac.module.TestAllocatorModule;
03
04 +initialized : mapService(?sid) <-
05 .bind(?sid),
06 .println("configuring..."),
07 ta.setWorldModel(?sid),
08 foreach(herder(?name, ?addr)) {
09 ta.addWorker(?name)
10 };
11
12 +assignment(?agt, ?task, ?params) : herder(?agt, ?addr) <-
13 .send(request, agentID(?agt, ?addr), doTask(?task, ?params));

Fig. 5. AF-AgentSpeak Code for the Strategist agent

The TestAllocatorModule, which is an encapsulation of the strategy subsys-
tem described in section 5, is introduced on line 02 of the Strategist agent (Fig.
5) and provides the user with a set of Sensors and Actions. Sensors are Java
classes that convert raw sensor data into beliefs and events that are added to
the agents belief set and event store respectively. Actions are Java classes which
enable the agent to interact with the environment. An example of such an action
being used is shown on line 07.

In addition to the Sensors and Actions provided by the TestAllocatorModule
a number of in built Actions and Sensors are provided to all agents which provide
basic functionality such as printing, ACL communication and the ability to bind
to platform services.

The plan rules of the Strategist agent are quite simple, the entire code of the
agent is given in Fig. 5. The first rule (lines 04-10) fires upon initialisation and
is responsible for the configuration of the TestAllocatorModule, setting up the
world map and adding herder agents as workers in the system. The second rule
(lines 12 & 13) fires upon the generation of an assignment and utilises the ACL
communication system to inform the relevant Herder of it’s new task.

5 Agent Team Strategy

The behaviour system used in our hybrid control architecture provides the func-
tional basis upon which the basic capabilities of agents can be implemented and
extended. The principal inspiration behind its design is the Vector Field His-
togram family of navigation algorithms for mobile robots (VFH/VFH+) [11,
12]. Based on the discrete encoding of behaviour response, VFH+ starts with
examining a number of manoeuvres available in the robotic platform. This set
of available manoeuvres is then filtered by excluding those leading to collision,
based on the information the robot has about its surrounding obstacles. The
final control command is then decided upon by availing of a DAMN-like vot-
ing coordination mechanism (VFH) [13], with each primitive expressing the cost



they associate with each manoeuvre when voting. The behavioural system it-
self remains unchanged from that of our previous entry to the competition, for
further details of the behavioural subsystem see [2].

As discussed in Section 3, our system is based on a single agent in charge
of deliberating the goals for the whole team. The multi agent system relies on
a simple master-slave protocol within which the strategist agent distributes, via
FIPA ACL, a list of tasks to all the herder agents, which then perform the
corresponding action.

The shared world model utilised by the system provides a navigational mech-
anism through the application of the Dijkstra algorithm [14] which floods the
map from the centre of the corral at the start of each simulation step.Using this
method the system maintains the shortest path from any point to the center of
the corral.

The functions of the strategy sub-system run periodically, where execution is
controlled by the shared world model. This execution model was chosen as there
were synchronisation problems when it was controlled by the agent, resulting in
tasks being allocated based on a partially updated world model. This allowed the
configuration of the frequency at which task assessment and allocation occurred,
a higher frequency resulting in a more reactive system and a lower frequency
providing much more stability in terms of task allocation.

The main types of tasks considered within the strategy sub-system are the
herding, exploring, defence, offence and fence opening tasks. Each task is labelled
with an identifier, and it is described by:

1. An (x, y) target representing the coordinates in the world map associated
with the task

2. The minimum and maximum number of agents required for its successful
execution

3. A (benefit, cost) pair used to evaluate the task in the context of the global
assignment process.

For further information on the strategy subsystem the user is directed to last
years paper in which this was discussed in detail [2].

Apart from several bug fixes and the addition of new behaviours the system
as a whole remained mostly unchanged from our previous entry. As such we
attribute our improved performance mostly to the inclusion of domain specific
knowledge within the behaviours. These took the form of our three main strategic
components;

1. Herding behaviours
2. Offensive behaviours
3. Defensive behaviour

5.1 Herding

As this is the most important behaviour we prioritised it’s development over all
others. Initially we developed a single herding behaviour Curved herding, which



attempted to encircle the cows and force them in the direction of our corral,
however this algorithm proved less effective on maps with enclosed spaces. As
such we developed a second behaviour Straight line herding, which utilised the
obstructions in the map to funnel the cows towards our corral.

Directional Arrow Cow Obstructions Team Herder Enemy Herder Team Corral Enemy Corral Fence Switch

1

2

3

4 1

2

3

1
Position

Fig. 6. Example of the herding behaviours

Both herding behaviours shown in Fig. 6 function by passing each of the
agents four parameters;

1. X coordinate of the centre of the herd,
2. Y coordinate of the centre of the herd,
3. The number of agents herding, n,
4. The agents position in the team, x, where {1 ≤ x ≤ n}.

Curved Herding: Within this behaviour (shown on the left of Fig. 6) each
agent uses these parameters to calculate the X and Y coordinates of it’s desired
position by starting at the centre of the herd and then moving back and to the
side based on the agent’s position within the team. The positions are encoded
in a clockwise manner and the positions are designed to be symmetrical with
respect to the directionality of the corral. These positions are taken to force the
cows towards the corral whilst keeping them clustered together.

Straight Line Herding: Within this behaviour (shown on the right of Fig. 6)
each agent calculates the point on the opposite side of the herd from the corral
(taking obstructions etc. into account), then based on the agents position within
the team it selects a point on the line perpendicular to the path of the herd to
the corral (shown in light blue). The positions in the behaviour are symmetrical
with respect to the herds path to the corral, such that for odd numbers the agent
in position 1 will be in the centre and the following agents will be alternated
from side to side at increasing intervals of distance.



5.2 Offence

Due to the success of offensive behaviours in last years contest we elected to
develop an effective offensive strategy to supplement our herding behaviours.
With the changes in the contest rules, offensive strategies such as removing all
the cows from the enemy corral would no longer be effective. The new scoring
system as well as the increase in the numbers of agents implied that a designated
team for disruption of the enemy would be the most effective approach.

As the scoring system favoured securing cows into the corral early, it was
imperative that the enemy corral was located and attacked as early in the sim-
ulation as possible. To facilitate this we utilised our offensive team as explorers
initially, exploiting symmetry we located areas on the map likely to be the loca-
tion the enemy corral and dispatched our agents there. Once the enemy corral
was found all the offensive agents converged on upon it.

Directional Arrow Cow Obstructions Team Herder Enemy Herder Team Corral Enemy Corral Fence Switch

Fig. 7. Example of the offensive behaviours

Once the agents were within the confines of the enemy corral, our team
engages in two types of behaviours:

1. Random movement

2. Offensive herding

Random Movement: This strategy (shown on the right of Fig. 7) was em-
ployed when the enemy had no cows in the corral, the purpose of the random
movement was to discourage cows from entering the corral. A more effective
strategy could have been lining the agents across the fence of the corral, how-
ever this would not have scaled well to corrals with more than one fence. For
this reason we chose to move the agents randomly such that it would provide
influence the cows over the whole of the corral.



Offensive Herding: This strategy (shown on the left of Fig. 7) was utilised to
remove the enemy cows from the corral by herding them to the area immediately
outside the corral. It was decided that having the agents remain within the
enemy corral was more effective than having the agents attempt to herd the
cows to our corral, as they would have to would have to overcome any possible
enemy defences and herd the cows over a large distance. The alternate behaviour
however presented itself when the herd was the closest to our corral, whereby
another team of agents would be assigned to herd the cows. In the case where
the enemy exhibits a strong defensive behaviour, remaining within the corral
offsets its effectiveness.

5.3 Defence

The requirement for a defensive strategy was an obvious inference from the suc-
cess of the offensive strategies in last years contest. However it was through
experimentation with an early version of our offensive behaviour that the de-
fensive strategy was conceived, in which a default behaviour of agents assigned
to offensive tasks was to position themselves a certain distance from our cor-
ral. Through experimentation the unintended elegance of this strategy became
apparent.

Directional Arrow Cow Obstructions Team Herder Enemy Herder Team Corral Enemy Corral Fence Switch

Fig. 8. Example of the defensive behaviours

The default positioning of the agents is shown in the left of Fig. 8 and evolved
from a combination of three of the VHF primitives with which they were in-
structed to:

1. Follow the flood gradient of the shared map.
2. Avoid the vicinity of allied agents.



3. Avoid the vicinity of the corral.

The first primitive brings the agents close to the fence of the corral, the
second keeps them spread out and the third stops them from entering the corral
and becoming a destructive force.

Defensive Herding: When any cows either leave the corral, through their
own default behaviour, or are pushed out by the enemy the defensive team
immediately becomes focused on herding the cows back in. This is shown on the
right of Fig. 8. This behaviour provided a mechanism to facilitate the retention
of successfully herded cows.

Directional Arrow Cow Obstructions Team Herder Team Corral Fence Switch

Fig. 9. Example of the assisted behaviours

Herding Assistance: An unanticipated but advantageous consequence of the
defensive strategy was an emergent behaviour which we define as Herding As-
sistance. An example of this is shown in Fig. 9, this behaviour is a result of the
combination of the ally avoidance primitive and the defensive herding behaviour.
Whereby the ally avoidance primitive causes the defensive team to avoid the path
of the incoming herding team, when the herd is close to the corral the defensive
herding behaviour activates, the defensive team moves to assist the herding team
force the cows into the corral.

6 Technical Details

The execution of the agents within the system was performed asynchronously
with respect to the simulation, in this way a Herder agent on receipt of a new



task would not have to wait for the next simulation step to instantiate the
new behaviour. Thus the allocation of tasks to agents and their instantiation
of behaviours could be viewed as background processing. However with respect
to the behavioural sub-system no background processing was conducted. This
concurrency strategy has the advantage that, except when a task has just been
completed, herder agents always have a task assignment and do not waste any
deliberative cycles.

The detection of system crashes was handled manually. On the rare occasion
of a system crash, our system was restarted on an alternate back up system, this
was made possible as the system was deployed on several heterogeneous plat-
forms, see Section 1. This approach ensured a minimal period of disconnection
from the contest server. So as to avoid the loss of environmental information, and
to avoid incurring the associated cost of re-exploration, the strategist agent pe-
riodically saved the static elements of the shared world model (obstacles, fences
etc) to disk. If a restart were necessary while a match was in progress, the maps
static elements are reloaded to the shared world model. A series of bugs were
detected using the Agent Factory [15] debugger and subsequently removed.

Supplementary to the Agent Factory debugger, the team utilised a stripped
down version of the contest server, “FastSim”, which was optimised for speed
in order to rapidly test and debug behaviours. Using this system we developed
a number of unit tests to assess the performance of specific behaviours and
combinations of behaviours. FastSim was created by combining the behavioural
sub-system with the contest server using a set of custom classes to encapsulate
the functionality of the agents, the FastAgent class, and teams, the FastTeam
class. As the code was all running on a single machine this negated the need for
the costly networking overhead and allowed the simulation to step as fast as the
behavioural layer could compute.

Running a simulation of two teams of agents over 1500 steps took approx-
imately 10-20 min depending on the speed of the computer running the simu-
lation. This provided us with a great advantage as simulations run through the
contest server could take up to 3 hours to complete.

Our overall system stability was improved over last years entry which in-
curred frequent crashes. This stability was improved incrementally over the
course of the contest. In previous years we noted problems associated with the
compartmentalization of development team knowledge as a preceptor of numer-
ous system bugs and behavioural inconsistencies, much of this was overcome by
way of our team development approach. System stability was further improved
through use of automated unit testing. Additionally it is felt maintaining a high
level of system documentation would result in stability and improved developer
productivity. By the competitions end we had a stable system, we do not envisage
issues of stability being relevant in future.



7 Discussion and Conclusion

The approach taken by the team in the development of the system was that
of agile development augmented by team programming sessions. This approach
suited the team well and allowed us to make rapid progress, however the speed
at which development progressed also caused problems, bugs and undesired be-
haviour emerged at roughly the same pace. The impact of this was diminished
through the application of unit testing, despite this our testing was not compre-
hensive enough to catch all the bugs and as a consequence system performance,
whilst improving over the entire course of the contest often degraded over the
short term. An example of this can be seen in Table 1 where the average score
per simulation reduced from Day 2 to Day 3, however it can be seen that the
average score rose as evidenced by the dramatic difference between the Day 1
and Day 4 results.

Table 1. UCDBogtrotters results

Simulation Day 1 Day 2 Day 3 Day 4

Circles 1.690 2.199 1.285 3.587
Spirals 1.285 0.000 0.854 3.148
Prairie 0.814 8.258 0.000 7.651
Circles - 1.284 3.147 14.463
Spirals - 0.480 0.315 7.058
Prairie - 4.836 5.939 10.723
Average 1.263 2.843 1.923 7.772

Through participation in the multi agent contest we gained insights into the
suitability of languages to different tasks, as an example AF-TeleoReactive was
suited to the control of the behavioural layer but was not ideal as a Strategist
agent. For this reason we chose to also utilise AF-AgentSpeak as the Strategist
agent as it contains more complex structures such as for loops which allowed
the iterative application of functions to workers and in our initial design the
periodic control of the task allocation functions. Implementing this functionality
in AF-TeleoReactive whilst possible would have been counter intuitive.

The only problem faced whilst choosing our approach was in selecting the
appropriate languages for control of the agents in the system, which was negated
to an extent by the diversity of compatible languages created using the Agent
Factory common language framework, detailed in section 4. As the underlying
system was well established another problem faced was the introduction of new
members to such a complex code base, this problem was an attributing factor in
our selection of a team programming approach as it allowed new team members
to become immersed in the development process.

Last year’s welcome introduction of fences to the herding scenario added the
necessity for a new level of inter-agent coordination. This year use of a higher
number of fences within the scenario provided a challenging scenario. This was



particularly evident in the challenging “Prairie” scenario. The “Spirals”scenario
proved a challenge for our herders, the position of the fences near the boundary
and the problem posed by the diverging paths at that point made effective
herding difficult. This resulted in a large number of cows moving in the wrong
direction and splitting from the herd.

7.1 Extensions

We feel the scoring system used in this years contest is the most fair system
thus far and allows more choice of strategy in terms of speed vs size herding
strategies. In the implemented model important considerations can be made
about the trade-off over spending significant periods herding a large number of
cows, or spending minimal time herding several small sets of cows.

This years contest saw the increased effectiveness of offensive strategies,
whilst we believe this to be a welcome challenge to be overcome, others felt
that it was overly aggressive. We suggest a possible solution to the problem.

– A small number of enemy agents be allowed in the corral (2-3).
– Agents in excess of this threshold could be transported to an undesirable

location on the map.
– Alternatively agents could be transported to their own corral.

The alternate solution of agents being transported to their own corral could
be used in a positive manner, such as to swiftly return from a large distance to
help defend the corral.

Further to this we believe an interesting extension to the aforementioned
scenario would be the introduction of tunnels or wormholes which instantly
transport agents and cows from one point on the map to another. This could add
a new dimension to the scenario by removing the linearity from the environment
map. It is envisioned that on the map there would exist a number of coupled
way points through which agents and herded cows could travel instantly to the
other associated way point. Herders would have to be careful not to push cows
through this points if it was not desirable, the converse also being true. For our
specific implementation this would have some interesting effects on our world
model. This would add an addition element to discovery and shortest path route
construction.

References

1. Collier, R.W.: Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications. PhD thesis, School of Computer Science and Informatics (2002)

2. Jordan, H., Treanor, J., Lillis, D., Dragone, M., Collier, R., O’Hare, G.: AF-ABLE
in the multi agent contest 2009. Annals of Mathematics and Artificial Intelligence
1–21

3. Dragone, M., Lillis, D., Collier, R.W., O’Hare, G.: SoSAA: A Framework for
Integrating Components and Agents. SAC ‘09 (2009)



4. Dragone, M., Lillis, D., Muldoon, C., Tynan, R., Collier, R., O’Hare, G.: Dublin
bogtrotters: Agent herders. Programming Multi-Agent Systems (2009) 243–247

5. Cohn, M.: User stories applied: For agile software development. Addison-Wesley
Professional (2004)

6. Poslad, S., Buckle, P., Hadingham, R.: The FIPA-OS agent platform: Open source
for open standards. In: Proceedings of the 5th International Conference and Exhi-
bition on the Practical Application of Intelligent Agents and Multi-Agents. (2000)
355–368

7. Russell, S.E.: Teleo-reactive agents. Final Year Thesis, School of Computer Science
and Informatics, University College Dublin

8. Nilsson, N.: Teleo-reactive programs for agent control. Arxiv preprint cs/9401101
(1994)

9. Bordini, R., Hubner, J., Vieira, R.: Jason and the Golden Fleece of agent-oriented
programming. Multiagent systems artificial societies and simulated organizations
15 (2005) 3

10. Rao, A.: AgentSpeak (L): BDI agents speak out in a logical computable language.
Agents Breaking Away (1996) 42–55

11. Borenstein, J., Koren, Y.: The vector field histogram fast obstacle avoidance for
mobile robots. IEEE Transactions on Robotics and Automation, 7(3):278.288
(1991)

12. Ulrich, I., Borenstein, J.: Vfh+: Reliable obstacle avoidance for fast mobile robots.
In International Conference on Robotics and Automation, pages 15721577, Leuven,
Belgium (1998)

13. Rosenblatt, J.K.: Damn: A distributed architecture for mobile navigation. Journal
of Experimental and Theoretical Artificial Intelligence 9(2-3): 339360 (1997)

14. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1) (1959) 269–271

15. Collier, R.: Debugging Agents in Agent Factory. Lecture Notes in Computer
Science 4411 (2007) 229



A Summary

1.1 This entry was developed using the multi-agent framework of Agent Factory.
1.2 Our primary motivations were building upon our previous entries and in-

volving new researchers in Agent-Orientated development.
1.3 Our agent platform was run on several heterogeneous hardware configura-

tions dependent upon the team member monitoring the simulation.
2.1 At the outset of team programming sessions an informal requirements anal-

ysis and update was conducted, from this goals were broken down into logical
sub components for implementation.

2.2 There was no formal specification generated, it was felt that the relatively
small degree of change in the underlying system negated the need for formal
specification.

2.3 Our system was not specified or designed using any particular multi-agent
system methodology.

2.4 Autonomy, role, proactiveness, communication, team-working, and coordi-
nation were not explicitly specified.

2.5 Our system is a true multi-agent system with centralised coordination.
3.1 The system is built on a hybrid control architecture, consisting of a high-

level deliberative layer based on the AF-TeleoReactive programming language
and a lower level responsible for executing simple behaviours.

3.2 No particular methodology was used. The architecture of the system is de-
scribed in detail in Sections 3-5

3.3 Roles are assigned to herder agents by a central strategist agent. Once as-
signed roles, herder agents are free to take whatever steps they deem necessary
to satisfy the goals of their roles.

4.1 A hybrid agent architecture, based on the SoSAA robot control architecture
was used. The basic abilities of the agents were implemented as behaviours
that were deployed in the lower reactive layer, while coordination and be-
haviour selection was realised through the use of two languages built using
the Agent Factory common language framework, AF-TeleoReactive and AF-
AgentSpeak.

4.2 AF-TeleoReactive is an agent oriented programming language based on Nils
Nilsson’s Teleo-Reactive agent paradigm, the agents are designed to perform
reactively in a dynamic environment whilst still moving towards a goal. AF-
AgentSpeak is based on Jason, a purpose-built agent-oriented programming
language that implements an extended and improved version of Rao’s AgentS-
peak(L) language.

4.3 answer
4.4 answer
4.5 answer
5.1 Our navigational system is inspired by the Vector Field Histogram family

of navigation algorithms for mobile robots (VFH/VFH+). Agents perform
shortest path computations to move toward intended locations and push cows
to the corral. Herds are found via a simple online clustering of all the known
cows.



5.2 The team coordination strategy is based on the use of a shared world model
and centralised task allocation. Whereby the assignments are distributed by
FIPA ACL.

5.3 During task allocation agents are assigned tasks based on the distance be-
tween them and the objective, allowing the minimisation of distance travelled
by agents.

5.4 All perception data is shared by every agent through the use of a shared world
model, and the Strategist agent disseminates tasks to agents using FIPA
ACL.

5.5 The communication complexity is very low in our system with each herder
agent sending only one message per simulation step and the strategist sending
20 messages when task allocation had occurred. In practice this occurred every
5 - 10 steps.

5.6 We believe that the overall strategy could be improved by breaking the agents
into several groups, each with it’s own strategist and primary function.

6.1 In practice no explicit background processing occurred, however the deliber-
ation of the agents in the system was asynchronous to the execution of the
simulation

6.2 Crash recovery was performed manually. As regards network disconnection,
the agent would attempt reconnection autonomously.

6.3 By the end of the contest the stability of the system solidified and was quite
reliable. The stability could be slightly improved through minor bug fixes in
some of the individual behaviours.

7.1 Overall the development process was suited to the needs of the team, however
it would have benefited from more comprehensive unit testing.

7.2 Interesting insights we gained regarding the suitability of different agent ori-
ented programming languages to different tasks.

7.3 The only problem faced whilst choosing our approach was in selecting the
appropriate languages for control of the agents in the system, which was
negated to an extent by the diversity of compatible languages created using
the Agent Factory common language framework, detailed in section 4

7.4 A mechanism could be put in place to reprimand aggressive corral invasive
behaviours, we propose a system by which invasive agents are transported
back to their own corral.


