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Abstract— In this paper we apply methods of nonlinear 

dynamics to examine the behavior of the pulsed digital oscillator 

for microelectromechanical systems (MEMS). We study the 

regions of existence of oscillations and demonstrate the effect on 

these of including additional delays into the feedback loop.  

I. INTRODUCTION 

The MEMS pulsed digital oscillator (PDO) [1] is a large-

signal oscillator that utilizes a micromechanical resonator in a 

feedback loop of a type well known from the domain of 

sigma-delta modulation [2]. The general single-feedback 

topology of this oscillator is shown in Fig. 1. The position of 

the resonator is evaluated at each sampling time, and short 

force pulses (which can take two possible values { , }F F+ −  

depending on the position of the resonator) are applied to it. In 

the figure, D  is the number of delay blocks in the feedback 

loop and ε  is the sign of the feedback term. This design 

overcomes a number of difficulties and eliminates the impact 

of certain nonlinearities that beset other topologies. 

 

 

Figure 1.  Topology of the pulsed digital oscillator. 

Simulations and experimental verification of the PDO are 

carried out in [1]. It has been shown there that the plot of the 

oscillation frequency as a function of the natural frequency of 

the resonator is similar to the devil’s staircase known from the 

domain of nonlinear dynamics. In [3], it has been shown that 

the PDO can maintain oscillations even for sampling 

frequencies below the Nyquist limit.  

The dynamics of the simplest topology with one delay in 

the feedback loop have been studied in [4] by application of 

techniques of nonlinear dynamics.  This work included the 

study of regions of admissibility of limit cycles in the plane 

spanned by parameters of the system (the parameter plane).  

The devil’s staircase of [1] is obtained by taking a slice 

through this plane. Ref. [5] considers mechanical nonlinearity 

in the resonator, which causes distortion of the regions of 

existence of limit cycles (the tongues) in the parameter plane.  

The aim of this paper is to examine the general single-

feedback topology of Fig. 1. We study the parameter plane for 

the cases of two and three delay blocks in the feedback loop, 

showing the rearrangements that are caused by the delay. In 

[6], it has been noted that depending on the sign of the 

feedback term ε  the PDO can operate in “reverse” mode. 

This mode corresponds to oscillations with small amplitude, 

i.e. to limit cycles near the origin. We present the planes for 

different signs of the feedback term and show the structure of 

the tongues in the regions where the PDO demonstrates the 

“reverse” behavior.  

II. ITERATIVE SYSTEM 

The position ( )x t  of the resonator shown in Fig. 1 is 

described by the second-order differential equation 
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where m  is the mass of the movable plate, b  is the damping 

factor, k  is the spring factor, F  is the amplitude of impulses, 

which affect the system at the moments n st nT= , ( )tδ  is the 

Dirac delta function and sgn( )x  is the signum function. We 

introduce the variable 
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/(2 )b kmβ =  is the dimensionless damping factor, 0ω  is the 

natural frequency of the resonator and ( ) /v t dx dt= .  

The map describing the evolution of the values 

( )n sx x nT=  and ( )n sy nT +  at the moments snT  has been 

obtained in [5] for the case of 1D = , and it can be extended to 

arbitrary D : 
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0 1 /(2 )sr Tω β π= −  is the 

normalized sampling ratio, 
2

exp( 2 / 1 )a rπ β β= − −  is the 

contraction factor and 
2

0/( 1 )Y F mε ω β= −  is the 

normalized increment. 
The oscillations displayed by the PDO correspond to stable 

limit cycles of the map (2).  From the standpoint of nonlinear 
dynamics, it is natural to consider the rotation number defined 
as in [4] and discussed more generally in [7], which shows the 
average number of loops around the origin a trajectory makes 
in a single step.  Note that in practice it is easier to measure 
the oscillation frequency, not the rotation number. In [8], it has 
been shown that the frequency can be easily obtained directly 
from PDO bitstream output. However, since we study the 
system as a dynamical one, we will use the rotation number 
introduced by (3) throughout the paper. 

For a given N-periodic sequence of signs nσ , there can be 

only one N-periodic trajectory of the system (2): 
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If the N-periodic sequence generated by (3) satisfies the 

condition 

sgn n nx σ= ,   (4) 

then it is a limit cycle [4]. The sequence of signs in (3) is 

generated as follows: 0sgn(cos(2 ))n nσ πρ φ= + , where ρ  is 

the ratio of two integers /M Nρ =  with the greatest common 

divisor g.c.d. ( , ) 1M N =  and 0 [0,2 )φ π∈ . Equations (3) and 

(4) allow us to find the domain of existence of a particular 

limit cycle with rotation number ρ  on the ( , )rβ parameter 

plane. 

III. DYNAMICS OF THE PDO WITH SEVERAL DELAYS IN THE 

FEEDBACK LOOP 

The dynamics of the system (2) in the case of one delay 

have been studied in [1,4,5]. The aim of this section is to study  

changes in the behavior of the system when the number of 

delays is increased.  

As noted in [1], energy can be put into or extracted from 

the resonator. When the velocity of the resonator is positive, 

applying a positive impulse leads to an increase in the kinetic 

energy of the resonator. On the other hand, when the velocity 

is negative, applying a positive impulse will decrease the 

energy.  

 

(a) 

 

(b) 

Figure 2.  Tongues on the parameter plane for ε  = (a) +1; (b) –1.  The 

rotation number of the corresponding limit cycle is indicated for each tongue. 



Sustained oscillations in the PDO are reached if the 

feedback sign ε  is selected correctly. In the case of one delay 

in the feedback loop, at the sampling ratio 0.5r >  one has to 

switch the sign 1ε = +  to 1ε = −  in order to preserve the 

qualitative behavior of the system. 

Fig. 2 illustrates tongues on the plane of parameters (β, r) 
in the case of two delays in the feedback loop. The tongues 

shown in Fig. 2(a) were calculated with 1ε = +  over the entire 

region of the sampling ratio 0 0.5r< < , whereas the tongues 

in Fig. 2(b) have 1ε = − . Each tongue in the figures 

corresponds to the domain of existence of a particular limit 

cycle with the given rotation number.  

Examining first Fig. 2(a), where ε = +1, we see that for 

r < 0.25 and β close to 0 (as will be the case in practice with a 

high-quality resonator) the tongues are very narrow and close 

to the value r = ρ.  This means that the (normalized) frequency 

of the output of the system is very close to the (normalized) 

natural frequency of the resonator. Many MEMS sensors 

exploit the variation of that natural frequency with 

environmental conditions, so the fact that the output frequency 

follows that natural frequency permits the use of this PDO in 

such sensors.  The non-zero width of the tongues limits 

resolution in a highly nonlinear fashion (the devil’s staircase), 

but for very small β this loss of resolution is within acceptable 

levels.   

For r > 0.25, however, we see that even for very low 

values of β the behaviour is no longer suitable for such 

applications.  Only a small number of low-order limit cycles 

appear, and they persist over wide intervals of r.  There is also 

considerable overlap between the tongues, which means that 

the rotation number depends on initial conditions. 

In addition, the amplitudes of oscillations for 0.25r >  

are considerably smaller than for 0.25r < .  This is illustrated 

by the simulation results presented in Fig. 3, which shows the 

48-cycle at 0.001β =  and 0.23r =  and the 4-cycle (with a 

much smaller amplitude) at the same value of dissipation and 

0.26r = . Both values of the sampling ratio are close to the 

“boundary” value 0.25r = .  

Note that the amplitude of oscillations decreases 

gradually and tends to zero around the value 0.25r = . Fig. 4 

shows the amplitude of a limit cycle as a function of the 

normalized sampling ratio r . The inset of the figure shows the 

magnified view of the plot near the value 0.25r = .  

In general, we observe the normal mode (large amplitude 

oscillations) and “reverse” mode (very small amplitude 

oscillations) depending on values of the sampling ratio.  The 

“reverse” mode behavior has been described in [6] for the case 

of one delay. It has been shown there that one can control 

oscillations by switching the sign of the feedback, i.e. turning 

the PDO to the “reverse” mode and  back.  For the topology 

with 1ε = − , the region of the “reverse” mode is 0 0.25r< < , 

as is evident from Fig. 2(b). Comparing Fig.2(a) and Fig. 2(b), 

we see that one has to change the sign of ε  at 0.25r =  to 

keep the desirable qualitative behavior.  As a result, the entire 

plane of parameters consists now of two parts, as shown in 

Fig. 5. 

 

 
 

Figure 3.  The cycle marked 1 is the 48-cycle observed in the system at 

0.001β =  and 0.23r = , and that marked 2 is the 4-cycle observed at 

0.001β =  and 0.26r = .  The sign of the feedback 1ε = + , and D = 2. 

 

 

 

Figure 4.  Amplitude of a limit cycle as a function of the normalized 

sampling ratio r.  The inset shows a magnified version.  D = 2. 

 

A similar situation takes place if three delays are included 

in the feedback loop. Fig. 6(a) shows tongues on the parameter 

plane for 1ε = +  and D = 3. The region of the sampling ratio 

1/ 6 1/ 3r< <  now corresponds to the “reverse” mode of the 

PDO. One has to switch the sign from 1ε = +  to 1ε = −  at 

1/ 6r =  and back to 1ε = +  at 1/ 3r =  to preserve the 

qualitative behavior of the system. Fig. 6(b) shows tongues on 

the parameter plane when this switch is implemented. 



 

(a) 

 

(b) 

Figure 5. (a) Tongues on the parameter plane for D = 2.  The sign of the 

gain in the feedback loop is switched from 1ε = +  to 1ε = −  at 0.25r = ; (b)  

Magnified view of plot (a), the tongues correspond to the rotation numbers 

/N Mρ =  where 3 16M≤ ≤ , g.c.d. (M, N)=1. 

IV. CONCLUSION 

In this paper, we have studied the regions of existence of 

limit cycle oscillations in the parameter plane for the MEMS 

PDO with two and three delays in the feedback loop, 

highlighting differences with the standard one-delay case. We 

presented plots for different signs of the feedback term, and 

showed the structure of tongues and the nature of the 

oscillations in regions where the PDO demonstrates “reverse” 

behavior. 
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