
 

 
Abstract—Multivariate dimension reduction schemes could be 

very useful in limiting the number of random statistical variables 
needed to represent distributed wind power spatial diversity in 
transmission integration studies. In this paper, principal 
component analysis (PCA) is applied to the covariance matrix of 
distributed wind power data from existing Irish wind farms, with 
the eigenvector/eigenvalue analysis generating a lower number of 
uncorrelated alternative variables. It is shown that though 
uncorrelated, these wind components may not necessarily be 
statistically independent however.  A sample application of PCA 
combined with multivariate probability discretisation is also 
outlined in detail. In that case study, the capability of PCA to 
reduce the number and prioritise the order of the alternative 
statistical variables is key to potential wind power production 
costing simulation efficiency gains, when compared to exhaustive 
multi-year time series load flow investigations.  

 

 

Index Terms-- power transmission, principal component 
analysis, statistics, time series, wind energy. 

I.  NOMENCLATURE 
i      - multivariate component index 

t         - number of multivariate historical wind power data    

            observations 

n   - number of original wind power random variables 

X   - matrix of multivariate historical wind power data  

            observations 

Cx   - covariance matrix of X 

L   - PCA eigenvalue matrix with diagonal values li   

E   - PCA eigenvector matrix with columns ei 

σ   - chosen number of retained components  

Q   - principal component time series matrix 

X     - vector of original wind variable capacity factor values 

XREC  - reconstructed original variables for σ<n 

R      - reconstructed original variable residual errors 
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II.  INTRODUCTION  
ue to common weather patterns, wind power will exhibit 
reasonably strong statistical dependency within a small 

regional area. For more geographically distinct locations, this 
dependency reduces with increasing separation by distance [1]. 
While there will be many instances when wind power 
production at such distinct sites will be similar, it could be a 
relatively common occurrence that one wind farm might be at 
maximum power outpu0t with simultaneously little or no wind 
production at the others. Thus while generation expansion 
studies can justifiably use uni-variate statistical models for 
total system wind power production [2], in contrast the 
spatially distributed context of the transmission network 
planning problem requires an effective representation of 
multivariate wind statistical interdependency. Maintaining a 
distinct statistical representation for each potential wind farm 
location will result in a very large number of random variables 
[3]. If a more approximate model can capture the salient 
features of each location’s uni-variate marginal distribution 
(i.e. the statistical behaviour of each wind farm’s power output 
considered alone), as well as the spatial multivariate 
interdependency (i.e. the statistical relationship between power 
production at different sites), then considerable computational 
efficiency and/or model specification simplicity can result in 
wind power transmission study applications.  

Principal component analysis (PCA) is a multivariate 
dimension reduction technique applicable to large statistical 
datasets – for example PCA was used to investigate 
dependency in transmission network flows in [4]. By 
performing eigenvector/eigenvalue analysis of the multivariate 
wind power covariance matrix, an arbitrarily lower number of 
alternative statistical variables (the ‘principal components’) 
could be determined [5]. Interestingly, the resultant variables 
are uncorrelated, and the sum of the eigenvalues corresponding 
to the retained principal components relates to how much of 
the original wind variables’ variance is explained by the lower 
dimension transformation.    

In this paper, the application of PCA to the distributed wind 
power statistical dimension reduction problem is analyzed in 
detail. The utility of PCA combined with multivariate 
probability discretisation to the production costing simulation 
of yearly wind power behaviour is also highlighted. It will be 
shown for this sample application how the capability of PCA 
to reduce the number and prioritise the order of the 
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transformed statistical variables is key to potential simulation 
efficiency gains.  

Section III outlines the relevant PCA theory and related 
investigations for the distributed wind power case. Section IV 
describes the real historical wind power production data from 
multiple locations on the Irish power system that is used along 
with a simple test power system for study – some applications 
of PCA illustrating the computational accuracy/complexity 
trade-offs of dimension reduction and multivariate wind 
probability discretisation are outlined. Section V gives results 
for the PCA study and applications, with discussions and 
conclusions outlined in Sections VI and VII respectively. 

III.       WIND POWER COMPONENT ANALYSIS STUDY 

A.  Principal Component Analysis of Wind Power Data 
For a given t×n matrix X of t observations from n distributed 
wind power random variables, the wind power covariance 
matrix Cx is a symmetric n×n matrix. Any symmetric 
nonsingular matrix such as Cx can be transformed to a diagonal 
matrix L through pre-multiplication and post-multiplication by 
a given orthonormal matrix E as in (1).  l1, l2, .. li .. ln, the 
diagonal values of L, are the eigenvalues of the Cx matrix, and 
can be determined by solution of the classic characteristic 
equation (2), where I is the identity matrix of size n. The 
eigenvectors e1, e2, .. ei .. en comprising the columns of E are 
given by solutions of equations (3a) and (3b). For very large 
values of n, the eigenvalues and eigenvectors are usually 
determined by iterative numerical techniques [5].  

The n× t principal wind power components matrix Q is 
determined by the linear orthonormal transform (4) – the 
original variable set X is first centered by subtracting the 
column mean vector of capacity factor values X , and its 
transpose then pre-multiplied by ET. This essentially 
corresponds to a translation and rotation of the original co-
ordinate axes, with each new axis chosen to explain as much of 
the variance in the original wind power dataset as possible. 
The rows of Q correspond to the resultant uncorrelated 
principal components. 
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It can be shown that the trace of matrix L, Tr(L) is equal to 
Tr(Cx). Each eigenvalue, corresponding to the variance of one 
principal wind component, therefore relates to how much of 
the variance in the original multivariate wind power data 
which that component explains. For highly correlated wind 
datasets, the first few principal components will explain the 
majority of the original variance. The eigenvalues can be 
plotted in order of decreasing size – this approach is 
sometimes used in PCA as an approximate visual technique to 

determine how many principal components should be retained. 
The approximate ‘scree’ or ‘broken-stick’ tests propose the 
decreasing eigenvalue plot corner-point discontinuities as the 
natural number of components to retain, though more 
sophisticated statistical tests have also been proposed [5]. 
Some PCA implementations advise the use of the correlation 
matrix instead of the covariance matrix for Cx, giving different 
resultant principal components [5]. The correlation matrix is 
most useful in situations where the original variables have 
different units of measurement, or when there are other 
significant differences in their variances. For the wind PCA 
study of this paper however, the consistent scaling of the 
nominal 1MW wind power time series in Section IV allows the 
use of the covariance matrix. 
 

B.  Wind Power Data Reconstruction Residual Effects 
For wind power and transmission system load flow studies 
using any chosen number of retained principal components σ, a 
reconstructed estimation of the original wind power time series 
XREC can be determined in (5) by inverting the PCA transform 
of (4), using only the relevant truncated E and Q matrix rows 
and columns. If less than the overall n principal components 
are used, this will result in a non-zero residual error matrix R 
with respect to the original variables of X, as in (6).  
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C.  Multivariate Wind Probability Discretisation  
Probability discretisation procedures attempt to reduce the 
computational burden of multivariate statistical model 
simulation by grouping similar historical data observations for 
a given set of random variables. A simple example of this 
concept is illustrated for two random statistical variables in 
Fig.1, where one representative case in the centre of each 
square ‘bin’ is probability-weighted by the number of original 
data-point observations contained within it. In this way, the ~ 
130 original random data samples implicitly describing the 
statistical dependency between the two variables are 
effectively represented by a much lower number of cases 
(4×4=16), each then with a modified probability-weighting.  

Note however that if the range of each variable had been 
evenly binned into 5 regions instead of 4, then the positions of 
the representative cases would perhaps map the original data-
sample spread with slightly more precision (i.e. less error 
associated with discretising what is in truth a continuous 
probability distribution). On the other hand there would have 
been a less efficient reduction in case dimensionality however 
(i.e. 5×5=25). Equally critical is the fact that if there was a 
third random statistical variable (and therefore a three-
dimensional statistical dependency space), then the efficiency 
of the discretisation procedure would furthermore be 
considerably less (i.e. 4×4×4=64). The benefit of a 
probability discretisation approach to reducing the cardinality 
of samples used to represent a distribution is therefore 
conditional on the number of statistical variables present, as  



 

 
Fig.1 – Conceptual example of probability discretisation for two random 

variables. 
well as the respective density of discrete bins used to 
categorise the range of their values.  

This type of discretisation procedure was studied for the 
multivariate wind power data case in [6] - individual wind 
power and load demand historical time series samples were 
grouped into uniformly sized multi-dimensional histogram bins 
(analogous to Fig.1). A multidimensional wind volume is 
generally quite ‘full’ with samples however, as even medium-
scale geographical separation of wind locations on the 
transmission network results in little grouping around the main 
multidimensional diagonal. The efficiency/accuracy trade-off 
of such probability discretisation approaches directly applied 
to raw multivariate wind power data is therefore low in most 
cases  - e.g. ~ 20% reduction in model sample size for the 
seven wind farm case study in [6]. Discretisation approaches 
applied directly to the wind data may have greater justification 
for distribution system applications, as later investigated in [7], 
where wind farms are much more closely located than in the 
transmission system case. 

A more refined approach might alternatively try to reduce 
the number of variables prior to probability discretisation with 
an intelligent dimension reduction scheme such as PCA. 
Through analysis of the PCA eigenvalues, the selection of 
which principal components should be retained is decided. 
Equally important however is the fact that in many cases, the 
eigenvalues of even the retained components may have 
different relative importance. Therefore for a subsequent 
probability discretisation in the transformed principal 
component domain, the binning density of each retained 
component can be tailored with respect to its relative 
importance. This will have a significant influence on the 
overall efficiency of the probability discretisation approach, 
and is one illustration of the potential of multivariate 
component analysis procedures.     

 

IV.  MULTIVARIATE DATA AND TEST SYSTEM ANALYSES 

A.  Irish Regional Wind Power Time Series Data 
Fig.2 illustrates the locations of the Irish wind farms used as 
the database for this study. Geographically adjacent wind  

 
Fig.2 - Irish wind power zones used in this study (each with 2-5 wind farms). 
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Fig.3 – Histograms of marginal probability densities for Zones X, Y. 

 
Fig.4 – Scatter plot of nominal wind power output for Zones X, Y. 

 

farms were arbitrarily grouped into nine wind clusters Zone A, 
B, C, D, E, F, G, H, and I, with each zone cluster based on real 
data from 2 to 5 close-by individual existing wind farms. Each 
wind zone was modeled by summing the respective wind farm 
power time series, and then rescaling by the zone’s total 
capacity to give consistent 1-MW nominal wind power time 
series models for each region. Synchronously recorded 
historical power output data from the year 2008 was used 
(inherently representing the relevant marginal statistics and 
multivariate dependency), arbitrarily taken at 2-hourly 
intervals from the original 15-min recordings, thus giving 4392 
multivariate samples overall. 

The marginal probability density functions (i.e. the 
probability density function for a single site) of power output 
at two typical Irish wind regions, Zones ‘X’ and ‘Y’, are 
illustrated in Fig.3 (X and Y are not linked explicitly to Fig.2 
for commercial sensitivity reasons). Clearly the individual 
wind power output patterns over an extended timeframe 



 

correspond to non-parametric statistical distributions (resulting 
from passing the Weibull wind speed distribution through the 
non-linear turbine power curves). It should be noted that such 
distributions cannot be described by first- and second-order 
statistical moment derived mean and variance information 
alone. The scatter plot of their joint power production, as 
illustrated in Fig.4, furthermore outlines their non-parametric 
bi-variate statistical dependency. Fig.4 also emphasizes the 
unsuitability of naive probability discretisation approaches 
directly applied to a multivariate wind power dataset as in [6]. 
If each of the n wind zones were modeled by d discrete 
binning density, then the spread of the scatter plot in Fig.4 
(each of the (10×10=100) bins contains at least 1 data sample) 
would suggest that dn, the maximum number of 
multidimensional probability-weighted discrete cases, would 
be intolerably large if more than 3 or 4 wind zones are studied 
i.e. the ‘curse of dimensionality’.     

B.  Test Power System Information 
The test power system used for the economic dispatch and 
power flow studies of this paper is illustrated in Fig.5. This has 
a 35-bus, 54-line network, denoted as ‘Area 1’ (based on a 
very simplified model of the Irish ‘All-Island’ 220/275/400KV 
high-voltage transmission system). It contains a mixture of 
base-load and mid-merit fossil-fuel (coal and peat) steam 
turbine generation, combined-heat-and-power gas plants 
(CHP), combined-cycle gas turbines (CCGTs), higher-
efficiency aero-derivative gas turbines (ADGTs), lower- 
efficiency open-cycle gas turbines (OCGTs), as well as a few 
gas/oil-distillate ‘peaking’ units, amounting to 10.4GW 
conventional plant capacity overall. 500MW of HVDC 
interconnection capacity to a much larger separate power 
system denoted as ‘Area 2’ (based on an approximate model of 
the Great Britain generation portfolio) is available at both 
buses 12 and 34, with these interconnectors denoted as ‘IC-1’ 
and ‘IC-2’ in Fig.5. Conventional plants in Area 2 are grouped 
approximately into multiple generation capacity blocks of 
similar plant-type, all connected at a single transmission node. 
Conventional plant performance data, fuel prices, load profile, 
load magnitude (accounting for projected load growth to an 
Area 1 maximum peak value of 9.61GW), and the assumed 
load geographic distribution are mainly consistent with [8]. 
Coincident load profile information for Area 2 was sourced 
from [9]. Additional information on the test network branch 
reactance and thermal capacity parameters, the assumed 
system geographical load spread, and the conventional 
generation portfolio network locations as applied in this 
investigation are given in the Appendix section of [10]. The 
wind power collective Zones A, B, C, D, E, F, G, H, and I are 
modeled in Fig.5 as connected to network buses 3, 4, 9, 17, 12, 
25, 15, 28, and 30 respectively. Wind capacity installation in 
Area 2 was assumed zero – the performance of statistical 
component analysis for wind power output in Area 1 is of 
primary interest. All model development for this paper was 
carried out in MATLAB [11] and GAMS [12], using the 
MATLAB/GAMS interface available at [13]. 

 
Fig.5 - Test power system network schematic and wind zone locations. 

 

TABLE-I 
ZONAL WIND CAPACITY ALLOCATION USED FOR SCOPF ANALYSIS, (MW) 
Zone A B C D E F G H I 

Capacity 1068 422 467 460 1255 1158 0 770 399 
 

C.  Residual Error System Power Flow Case Studies 
The residual error (6) impact of discarding increasing numbers 
of statistical wind components on transmission network power 
flow modeling accuracy was investigated using a linear DC 
time series power flow model. The original wind power output 
time series (i.e. with all 4392 historical samples included and 
no probability discretisation applied) were re-constructed from 
different numbers of retained principal components as in (5). 
Two case study investigations were implemented with the 
zonal wind capacity allocations as given in Table-I, which 
result from an optimal non-firm wind capacity connection 
algorithm (6GW total wind capacity, approx. 33% wind energy 
penetration) as described in [14]: 
 Case-I – A network-unconstrained economic dispatch 
model illustrating the total power flow requirements. 
 Case-II – An ‘N-1’ security constrained optimal                   
power flow model (SCOPF) analysis of network 
congestion indices such as wind farm annual energy 
curtailment. 

D.  Probability Discretisation Application Study 
The SCOPF analyses of Section IV-C above are carried out 
with the full 4392 historical data samples, for completeness, to 
investigate the PCA residual error impacts alone. A further 
study is proposed in this subsection where the probability-
discretisation procedure is applied to the lower numbers of 
retained principal components, to investigate if a potentially 
much smaller number of probability-weighted SCOPF cases 
may be solved for similar resulting accuracy. Again, as 
outlined in Section III-C, the benefit of discretising the 
principal components instead of the original wind variables (as 
was applied in [6]) is that fewer variables may need to be 



 

discretised (depending on what dimension reduction is 
appropriate), and equally importantly the binning-density of 
the retained components can be tailored with respect to the 
relative importance of their associated eigenvalues.  

For example, if the 9 original wind zones and the customer 
demand profile were equally and arbitrarily discretised with 
10-bin marginal variable binning density, then there would be 
a maximum of 1010 possible discrete cases in the multi-
dimensional probability dependency space (though of course 
most of these bins would be un-occupied as there is a much 
lesser length of time series data). If on the other hand 3 
principal components are deemed appropriate to be retained, 
and the first principal component and load demand variable 
are binned with 10-bin density while all other subsequent 
components are binned with 5-bin density (for example), then 
a maximum of 10×10×5×5 = 2500 possible probability-
weighted discrete cases would be relevant. The objective of 
the studies in this sub-section is thus to establish the trade-off 
between any computational-time advantage (i.e. comparing the 
lower number of probability-weighted SCOPF solver 
implementations required) with any accuracy degradations 
from such PCA discretisation models.  To determine spatial 
wind power inputs to the SCOPF model, the inverse transform 
of (5) is applied to the representative set of discretised 
principal component cases.   

V.  RESULTS  

A.  Principal Components and Residual Error Investigation 
The correlation matrix for the nine wind zones is given in 
Table-II. Clearly the inter-zonal correlation reduces from Zone 
A to Zone I, as might be suggested by the geographical 
separation in Fig.2. As Fig.4 suggests, these linear-dependency 
metrics explain only part of the overall dependency structure 
however. The covariances of the PCA results are given in 
Table-III. As the covariance matrix is diagonal, clearly the 
resultant principal components have been de-correlated.  

A plot of the eigenvalues given in decreasing order, as per 
the diagonal of Table-III, is illustrated in Fig.6. Clearly there is 
a rapid reduction in the amount of the original wind variance 
explained by retention of more than 3 or 4 principal 
components. Also the first principal component and its 
associated eigenvalue is significantly more important than the 
others, due to the relatively high linear correlations in Table-II. 
On the basis of the arbitrary ‘scree’ test alone, retaining 
principal components 6-9 would seem to add very little value. 
The first principal component corresponds to the common 
power production patterns in the original multivariate set. The 
other components do not have such a tangible explanation. 

A time series plot of the nine principal components is given 
in Fig.7. The residual error analysis of (6) for wind Zone A is 
illustrated in Fig.8 with different numbers of retained principal 
components. Retaining a few components alone leads to 
significant residual error in this statistical variable. Retaining 
more principal components results in a better estimation of the 
original Zone A variable, but as Fig.6 might suggest, the  

TABLE-II 
ZONAL CORRELATION COEFFICIENTS BEFORE PCA TRANSFORMATION 

ZONE A B C D E F G H I 
A 1.00 0.89     0.84     0.81     0.65     0.64     0.64     0.65     0.55 
B 0.89     1.00 0.88     0.86     0.67     0.70     0.71     0.70     0.62 
C 0.84     0.88     1.00 0.88     0.69     0.69     0.73     0.69     0.63 
D 0.81     0.86     0.88     1.00 0.75     0.74     0.76     0.74     0.68 
E 0.65     0.67     0.69     0.75     1.00 0.65     0.63     0.70     0.63 
F 0.64 0.70     0.69     0.74     0.65     1.00 0.84     0.82     0.85 
G 0.64     0.71 0.73     0.76     0.63     0.84     1.00 0.76     0.82 
H 0.65 0.70     0.69     0.74 0.70     0.82     0.76     1.00 0.78 
I 0.55 0.62     0.63     0.68     0.63     0.85     0.82     0.78     1.00 

 

TABLE-III 
PRINCIPAL COMPONENT COVARIANCE AFTER PCA TRANSFORMATION 

PC 1 2 3 4 5 6 7 8 9 
1 0.61 0     0     0     0     0     0     0     0 
2 0 0.072 0     0     0     0     0     0     0 
3 0     0     0.041 0     0     0     0     0     0 
4 0     0     0     0.022 0     0     0     0     0 
5 0     0     0     0     0.015 0     0     0     0 
6 0 0     0     0     0     0.013 0     0     0 
7 0     0 0     0     0     0     0.011 0     0 
8 0 0     0     0 0     0     0     0.01 0 
9 0 0     0     0     0     0     0     0     0.009 
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Fig.6 – Ordered eigenvalue plot associated with each principal component. 

 
 

incremental benefit reduces somewhat for the higher-number 
principal components. The reduction in the root-mean-square 
(rms) of the residual error in (6) for a selection of the wind 
zones is given in Fig.9. Clearly, retaining additional principal 
components gives a much greater reduction in the rms error for 
some variables more than others – see the disproportionate 
reduction in the rms error for Zone E with the retention of 
principal component 3. This illustrates an occasionally 
observed effect in PCA, where the discarded principal 
components such as in Fig.6 can sometimes correspond to 
specific individual variables in the original multivariate set, 
rather than being shared amongst all. Thus careful residual 
error analysis must always be performed for XREC when using 
PCA to ensure that no single wind zone is overwhelmingly 
impacted by the dimension reduction process. 

The impact of residual errors on the network power flow 
modeling of the test system in Fig.5 is illustrated in Fig.10 and 
Fig.11. As a typical example, histograms of the Case-I 
dispatch model power flows in network branch 15-25 over the 
extended reconstructed multivariate time series are given in 
Fig.10. Wind capacity at zone F is connected to bus 25. 
Clearly there are some non-negligible power flow model 
differences associated with the multivariate reconstruction 
residual error (6) for different numbers of retained  



 

 

 
Fig.7 – The resulting principal component time series. 

 

 
Fig.8 – Zone A residual error for 1, 3, 5, 7, 9 retained principal components. 

 

components. Interestingly however, viewing the results in 
Fig.11 for the SCOPF analysis applied in Case-II, the selected 
wind zone energy curtailments due to network congestion were 
not as significantly influenced as might be initially expected 
from the magnitude of the residual errors observed. One 
possible reason is that the types of residual errors in Fig.8 are 
at least somewhat symmetric, and thus there may be as many 
hours when the curtailment is overestimated incorrectly as  
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Fig.9 – Reduction in zonal rms reconstruction error for additional components 

 
Fig.10 – Case-I : Transmission network power flow modeling residual error 

(line 15-25). 
 
 

underestimated incorrectly, giving approximately the same net 
overall yearly percentage value.  

A scatter plot illustrating the dependency between the first 
two principal components resulting from the wind data PCA 
study is given in Fig.12. While Table-III does prove these 
components to be de-correlated, one can clearly see that there 
is still some general statistical dependency present. For 
example choosing samples of principal component 1 at both 
the lower and upper values of its domain will limit the range of 
values given by principal component 2 relative to samples 
chosen in the middle of the domain of principal component 1. 
This emphasizes the drawbacks of wind component analysis 
based on second order moment statistics information (i.e. 
covariance) alone. 

B.  Probability Discretisation Application Results 
The results of the principal component discretisation study, as 
outlined in Section IV-D, are presented in Fig.13 and Table-
IV. Fig.13 illustrates the number of discrete probability-
weighted representative cases that need a separate SCOPF 
analysis (i.e. the number of multidimensional bins with more 
than one sample), for different numbers of discretised 
components retained. Clearly, by applying the principal 
component analysis first (i.e. reducing multivariate 
dimension), to be subsequently followed by the discretisation 
step (with binning density tailored by eigenvalue size – 10 bins  
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Fig.11 – Case-II : Wind energy curtailment % with respect to number of 

retained components’ residual errors (for 4392 time series samples). 
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Fig.12 – scatter plot of retained principal components 1 and 2. 

 

for the load demand and principal component 1 random 
variables, with 5 bins for each additional retained component), 
will significantly reduce the number of SCOPF 
implementations from the original 4392 time series samples. If 
the multi-year high-frequency 15-minute data had initially 
been proposed instead of the reduced 4392 samples in Section 
IV-A, then the relative value of the discretisation efficiency 
would obviously be correspondingly multiplied.  

The accuracy degradation associated with component 
discretisation would appear to be relatively mild for this test 
system data-set, as suggested by the wind energy curtailment 
estimates in Table-IV – note the last row of Table-IV 
corresponds to the ‘correct’ wind energy curtailment value 
given by the full 4392 time series samples and all 9 
components retained (i.e. neither PCA residual nor 
multivariate discretisation error). Rows 1-8 of Table-IV are 
influenced by both residual error (as in Fig.11) as well as any 
additional error related to probability discretisation. Even for 
relatively few components, and less than 1000 SCOPF runs, 
there is only small deviation from the correct values suggested 
by the original 4392-sample model. 

VI.  DISCUSSION  
Using a sample wind time series SCOPF application, this 
paper has illustrated the utility of PCA to wind power 
transmission models based on multivariate probability 
discretisation. By performing a component analysis and  

 

 
Fig.13 – The number of probability-weighted discrete cases for different 

numbers of retained components. 
 

TABLE-IV 
IMPACT OF PROBABILITY DISCRETISATION - WIND ENERGY CURTAILMENT 

ESTIMATES, (%) 
No. of Discretised 

Components Zone A Zone D Zone E Zone F 

1 0.055 0.696 1.823 0.431 
2 0.195 0.455 1.653 0.614 
3 0.312 0.408 2.655 0.794 
4 0.298 0.439 2.703 0.728 
5 0.311 0.497 2.601 0.718 
6 0.316 0.457 2.627 0.821 
7 0.268 0.386 2.628 0.772 
8 0.307 0.373 2.643 0.835 
9 0.261 0.524 2.690 0.757 

‘Correct’ Value  0.227 0.495 2.526 0.617 
 

dimension reduction prior to the multivariate discretisation 
step, the design of which can subsequently be tailored with 
respect to the importance of the respective component 
eigenvalues, a significantly fewer number of probability-
weighted discrete cases approximated the spatial wind power 
diversity with a reasonably good degree of end-result 
accuracy. This type of modeling strategy may have relevance 
for future wind/transmission optimization models solved 
through decomposition strategies, where a large number of 
sub-problem implementations based on time-series samples 
would otherwise be required to model different wind power 
flow conditions [14]. A very desirable characteristic of the 
PCA technique is that it is performed on zero-mean centered 
data (4), and therefore the precise wind zone capacity factor 
values can be preserved for the original variable 
reconstructions in (5). Combined wind/transmission 
optimization problem solutions are quite sensitive to wind 
resource quality differences in the power system geographical 
area [14]. Preservation of the capacity factor characteristics, in 
addition to the reasonably stable wind energy curtailment 
results in Fig.11 (relative to the impact of other general 
modeling uncertainties [15]), could indicate that optimization 
solution quality with a few retained components describing the 
wind variations might still be reasonably accurate, though 
further study is required. 

The data used in this study was sourced from wind farms on 
the Irish power system, though generality to other similar wind 
regimes should apply. Note that the real Irish ‘All-Island’ 
power system has approximately 100 wind farms at present, 
which on the basis of the results in this paper might be 
reasonably accurately represented by many fewer random 



 

statistical variables. It must be acknowledged however that the 
efficiency of the discretisation study reported here in part 
stems from the fact that the wind power pattern in a reasonably 
small-to-medium sized geographical area such as the test-
system in Section IV has a strong degree of correlation, and 
thus the first few principal components were far more 
significant than the others. Furthermore, using a probability 
discretisation approach to combine separate time series 
samples with no regard for their sequential dependencies might 
not be appropriate for certain power systems with a significant 
amount of short-term energy storage capacity [10].    

PCA, which is based on the principle of de-correlation, will 
be of greatest relevance for multivariate Gaussian datasets, as 
the linear PCA transformation will then still give Gaussian 
principal components, and uncorrelated multivariate Gaussian 
random variables also have the desirable property of statistical 
independence. As was illustrated in Fig.12 however, this 
property does not necessarily extend to other more generally 
dependent multivariate distributions such as in the distributed 
wind power case. For more general multivariate distributions, 
the covariance which is determined by second-order statistical 
moment information is but one measure statistical dependency 
only, and zero correlation does not necessarily imply 
independence [16]. Higher-order statistical moments are 
required to fully describe the non-parametric marginal 
statistical and multivariate dependency distributions that apply 
to the distributed wind power generation case. A different 
approach may therefore be required to find fully independent 
wind components.  

Further investigation of alternative multivariate component 
analysis techniques for the distributed wind power case was 
also carried out as part of this paper’s study. The classic 
‘independent component analysis’ (ICA) model, based on the 
assumption of a linear mixing-matrix [17] was applied to the 
multivariate wind data-set of Section IV for example. This 
‘Fast-ICA’ algorithm [18],[19] is a negentropy-maximization 
based optimization technique, with the PCA de-correlation 
step of this paper as an initialization stage. It was found 
however that the application of this rather advanced statistical 
source separation technique had little additional impact on 
reducing the retained dependence in the results of the PCA 
stage, and thus it is not reported in detail in this paper.  
 Statistical transformation of the individual (marginal) 
random wind variables to Gaussian marginal densities, using 
their marginal cumulative distribution followed by the inverse 
Gaussian cumulative distribution, was reported in [20] with the 
aim of designing a multivariate wind time series synthesis 
model. Such transforms could be relevant in order to generate 
independent wind components in the transformed domain 
using a subsequent PCA de-correlation step. The implicit 
assumption of multivariate Gaussianity in the transformed 
domain (only the marginals are transformed in [20], with no 
specific treatment of any multivariate dependency information) 
would need to be carefully tested before assuming such PCA 
results are completely independent though (as a set of marginal 
Gaussian variables is not necessarily multivariate Gaussian). 

The significant non-linearity of the combined statistical 
transform in [20] could also be analytically unwieldy for some 
applications. Analysis of multivariate dependency in 
distributed wind speed data as opposed to wind power data 
may also be worthy of investigation, though retention of the 
piecewise non-linear wind turbine speed/power curves in 
power system study formulations could be a significant 
practical drawback.   Investigating such alternative approaches 
to the distributed multivariate wind data dimension and 
dependence reduction problem is an interesting future research 
topic.  

VII.  CONCLUSIONS 
This paper presents a multivariate dimension reduction study 
as applied to spatially distributed wind power historical data. 
Using principal component analysis, it is shown that the strong 
dependency in the distributed wind power data allows a 
reasonably significant dimension reduction to retain a large 
proportion of the original statistical behaviour. Careful 
residual analysis should always be performed for the discarded 
components though, as they may sometimes correspond 
directly to specific wind zones only. A lower number of 
statistical variables combined with an effective probability 
discretisation approach could also reduce model 
dimensionality for computationally efficient power system 
study applications. Even though they are shown to be de-
correlated, the retained wind power components from a linear 
mixing model cannot be guaranteed to have the stronger 
statistical property of independence however. 
 

VIII.  REFERENCES 
[1] T. Ackermann, (Editor) Wind Power in Power Systems, Wiley, 2005. 
[2] R. Doherty, H. Outhred, M.J. O’Malley ‘Establishing the Role That 

Wind Generation May Have in Future Generation Portfolios’, IEEE 
Transactions on Power Systems, Vol. 21, No.3, August 2006.  

[3] G. Papaefthymiou, A. Tsanakas, D. Kurowicka, P. H. Schavemaker, and 
L van der Sluis, "Probabilistic Power Flow Methodology for the 
Modeling of Horizontally-Operated Power Systems," International 
Conference on Future Power Systems, Amsterdam, Nov. 2005. 

[4] S. Deladreue, F. Brouaye, P. Bastard, L. Peligry ‘Using Two 
Multivariate Methods for Line Congestion Study in Power Systems 
Under Uncertainty’, IEEE Trans. Power Systems, Vol. 18, No.1, 
February 2003. 

[5] J.E. Jackson, A Users Guide to Principal Component Analysis, Wiley 
New York 1991.  

[6] D. Burke and M.J. O’Malley ‘Optimal Wind Power Location on 
Transmission Systems – A Probabilistic Approach’, presented at the 
IEEE PMAPS Conference, Puerto Rico, May 2008.  

[7] L.F. Ochoa, C.J. Dent, G.P. Harrison ‘Distribution Network Capacity 
Assessment: Variable DG and Active Networks’, IEEE Trans. Power 
Systems, Vol. 25, No.1, February 2010. 

[8] ‘All Island Grid Study, Workstream 4 – Analysis of Impacts and 
Benefits’, Irish Government Department of Communications, Energy 
and Natural Resources/United Kingdom Department of Enterprise, 
Trade and Investment, Jan. 2008. Available online  - 
http://www.dcenr.gov.ie/Energy/North-South+Co-
operation+in+the+Energy+Sector/All+Island+Electricity+Grid+Study.ht
m 

[9] http://www.nationalgrid.com/uk/Electricity/Data/   
[10] D.J. Burke ‘Accommodating Wind Energy Characteristics in Power 

Transmission Planning Applications’, PhD Thesis, University College 
Dublin, Ireland, 2010.   

http://www.dcenr.gov.ie/Energy/North-South+Co-operation+in+the+Energy+Sector/All+Island+Electricity+Grid+Study.htm�
http://www.dcenr.gov.ie/Energy/North-South+Co-operation+in+the+Energy+Sector/All+Island+Electricity+Grid+Study.htm�
http://www.dcenr.gov.ie/Energy/North-South+Co-operation+in+the+Energy+Sector/All+Island+Electricity+Grid+Study.htm�
http://www.nationalgrid.com/uk/Electricity/Data/�


 

[11] MATLAB, available at http://www.mathworks.com/  
[12] General Algebraic Modeling System, GAMS – available online 

http://www.gams.com/  
[13] ‘Matlab and GAMS – Interfacing Optimization and Visualization 

Software’, by M.C. Ferris – available online at 
http://www.cs.wisc.edu/math-prog/matlab.html  

[14] D.J. Burke, M.J. O’Malley ‘A Study of Optimal Non-Firm Wind 
Capacity Connection to Congested Transmission Systems’, IEEE 
Transactions on Sustainable Energy (Accepted, In Press 2010). 

[15] D.J. Burke, M.J. O’Malley ‘Factors Influencing Wind Energy 
Curtailment’, IEEE Transactions on Sustainable Energy (Accepted, In 
Press 2010). 

[16] G. Papaefthymiou, D. Kurowicka ‘Using Copulas for Modeling 
Stochastic Dependence in Power System Uncertainty Analysis’, IEEE 
Trans. Power Systems, Vol. 24, No.4, Feb. 2009. 

[17] A. Hyvarinen J. Karhunen and Erkki Oja, Independent Component 
Analysis, Wiley New York 2001.   

[18] A. Hyvarinen ‘Fast and Robust Fixed-Point Algorithms for Independent 
Component Analysis’, IEEE Trans. Neural Networks, Vol. 10, No.3, 
May 1999.  

[19] http://www.cis.hut.fi/projects/ica/fastica/   
[20] B. Klockl ‘Multivariate Time Series Models Applied to the Assessment 

of Energy Storage in Power Systems’, presented at the IEEE PMAPS 
Conference, Puerto Rico, May 2008.   

I.  BIOGRAPHIES 

Daniel Burke (M 2007) graduated from University College Cork, 
Ireland with a BEEE in Electrical and Electronic Engineering in 
2006. He is currently conducting research for a PhD in power 
systems at the Electricity Research Centre in University College 
Dublin, Dublin, Ireland. He is a postgraduate student member of the 
IEEE.  
 
 
Mark O’Malley (F’07) received B.E. and Ph. D. degrees from 
University College Dublin in 1983 and 1987, respectively. He is the 
professor of Electrical Engineering in University College Dublin and 
is director of the Electricity Research Centre with research interests 
in power systems, grid integration of renewable energy, control 
theory and biomedical engineering. He is a fellow of the IEEE. 

http://www.mathworks.com/�
http://www.gams.com/�
http://www.cs.wisc.edu/math-prog/matlab.html�
http://www.cis.hut.fi/projects/ica/fastica/�

	I.   Nomenclature
	II.   Introduction 
	III.        Wind Power Component Analysis Study
	A.   Principal Component Analysis of Wind Power Data
	B.   Wind Power Data Reconstruction Residual Effects
	C.   Multivariate Wind Probability Discretisation 

	IV.   Multivariate Data and Test System Analyses
	A.   Irish Regional Wind Power Time Series Data
	B.   Test Power System Information
	C.   Residual Error System Power Flow Case Studies
	D.   Probability Discretisation Application Study

	V.   Results 
	A.   Principal Components and Residual Error Investigation
	B.   Probability Discretisation Application Results

	VI.   Discussion 
	VII.   Conclusions
	VIII.   References
	I.   Biographies

