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Statistical Analysis of First-Order Bang-Bang
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Abstract—Bang-bang phase-locked loops (BBPLLS) are inher- Input data
ently nonlinear due to the hard nonlinearity introduced by the UL
binary phase detector (BPD). This paper provides an exact
statistical analysis of the steady-state timing jitter in afirst-
order BBPLL when the reference clock is subject to accumulédte
jitter. By elaborating on the analogy of viewing a first-order
BBPLL as a single-integration delta modulator (DM) in the

Reference clock

phase domain, we are able to relate hunting jitter and slew-ate UL w

limiting in a BBPLL to granular noise and slope overload in a

DM. The stochastic timing-jitter behavior is modeled as a gin- Divided {

dependent random walk, for which we obtain the asymptotic clock —
characteristic function and analytical expressions for tte first N

four cumulants. These expressions are applied to the BBPLLat )
statistically analyze the static timing offset and the RMS iming

jiter, including the effect of a frequency offset. The anaysis Fig 1 BBPLL architecture for (a) CDR and (b) digital frequg synthesis.
shows that the RMS timing jitter is constant for small RMS clock

jitter and grows quadratically with large RMS clock jitter, and
that there exists an optimal bang-bang phase step for minimmun
RMS timing jitter. Computing the kurtosis reveals the effed of (DBBPLL) implementation is shown in Fig. 1(b), which

the BPD nonlinearity: the timing jitter is largely non-Gaussian.  employs a D flip-flop as BPD [4]. Instead of the CP-based
Index Terms—Bang-bang phase-locked loop, delta modulator, LF driving the VCO, a digital LF tunes the frequency of a
timing jitter, sign-dependent random walk, cumulants, kurtosis.  digitally controlled oscillator (DCO) by a digital contralord.
Although the bang-bang loop principle has been success-
|. INTRODUCTION fully applied, a thorough understanding of the loop behavio

ANG-BANG phase-locked loops (BBPLLS) have beelf far from complete. The main reason is that the binary

widely used for clock and data recovery (CDR) in Seriaﬁuantization introduced in the PD makes the loop inherently
nonlinear, thus complicating its analysis. Traditionadywide

data links [1], primarily due to their high-speed capabili- ) : i A
ties and inLgreE)]t sam)p/)Iing phase aIign?‘nenFtJ 2. A E)ypic ass of PLLs can be linearized in steady state, allowingglin

. : ) ' = _transfer functions to be applied in the analysis [6]. In BRBL
implementation based on the charge-pump (CP) architect I(;%Wever, the hard nonlinearity introduced by the BPD causes

is shown in Fig. 1(a). The distinct feature of BBPLLS is. i les in steadv state. In thi i -l
the binary phase detector (BPD) which binary quantizes t gt cycles in steady state. In this case, a nonfinear ansty
as been applied to derive conditions on the loop stability

phase difference between input data and voltage-condrol dtoi tigate s| te limiti hen th ;
oscillator (VCO) clock, generating only early/late phasesr ] and to investigate siew-rate imiting when the reteren
clock is frequency-modulated [8]. In practice, phase noise

information for the loop filter (LF). To suppress patternh lock it the clock ed Ay i

dependent jitter in a CDR application, the BPD is usuall € clock sources causes Jiter on the clock edges, mainly in

a tristate realization such as the Alexander topology [ € form of non-accumulative jitter (white phase noise) and
cumulative jitter (random-walk phase noise) [9], [10hcg

BBPLLs have also been demonstrated for high-bandwi . . i
digital frequency synthesis [4], [5]. A simple digital BBEL Jitter effectively smoothes the binary PD characteristid]|
' it is common to linearize the nonlinear loop [12] and apply
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strongly. The limits of a linear BBPLL analysis were pointed
out in [13], which motivates our nonlinear stochastic arely

A. Contribution of this Paper and Relation to Other Work

Recently, Markov theory has been applied to more accu-
rately model the timing jitter in a first-order BBPLL [15]-
[18], an approach known from early investigations into @ibi
PLLs [19]. For a reference clock with non-accumulativesjitt
Da Dalt [15] modeled the timing jitter as a Markov chain
and derived a general BPD gain expression. By modeling the
loop as a delayed Markov chain, Chun and Kennedy [16]
gave an extension to a DBBPLL with nonzero loop delay arfy. 2. A DM provides a staircase approximation of an anaigga [25].
evaluated the timing-jitter performance. For a refererioekc
with accumulative jitter, our approach in [17] was to modhed t
timing jitter as a discrete-time Markov process. A numdricdVe compare in detail the difference equations of both system
solution of the Chapman-Kolmogorov equation allowed uand use delta modulation terminology [25]-[27] to provide a
to compute the steady-state timing jitter probability dgns intuitive description of the nonlinear BBPLL behavior.
function (PDF) and reveal its hon-Gaussianity. An extemsio
to @ DBBPLL with nonzero loop delay was given in [18]. A pelta Modulation: Principle and Discrete-Time Model

The aim of this paper is to provide an exact statistical
analysis of the steady-state timing jitter in a first-ord&FB L
when the reference clock is subject to accumulative jitters

A DM operates a 1-bit quantizer, a sampler and an integrator
inside a feedback loop to provide a staircase approximation

analytically verifying our results in [17] and complementi O,f an _oversgmpled analog signal, as shpwn n Fig. 2 for a
previous work on the non-accumulative jitter case [15]][16Sinusoidal signak(t) [25]. At every sampling period’, the
The first contribution is to elaborate on the analogy betwedHircase signak(t) that approximates:(t) is increased or

BBPLLs and delta modulation, which has appeared in tﬁi@creased by the q_uantlzanon SteP sizie this ma_nner,aI_DM .
literature [1], [20], [21] but has never been fully explaite tracks an an?log signal by ch_anglng the steps in the directio
In Sec. Il a detailed comparison of the difference equatioﬂg the signal's slope, a behavmr_ als_o gxh|b|ted by a BBPLL.
of both systems shows why and to what extent a first-order! "€ _Performance of a DM is limited by two types of
BBPLL can be viewed as a single-integration delta modulatgStortion [26]. Quantization distortion (granular ngises
(DM) in the phase domain. The analogy provides an intuiti\}:é’j‘usecj by the granularity of the quantizer and occurs when

description of the nonlinear loop behavior, and allows us f?)(t) hu?ts_aroundr(t)._ Slope overload distortion is due to
relate dither/hunting jitter and slew-rate limiting in a BBL the DM's limited tracking speed and occurs when the slope

to granular noise and slope overload in a DM. of z(t) exceeds the slop&/T of i(¢). For a given sampling
The main contribution of this paper is the analysis of aerlodTS, a smally will reduce_granular noise but easily lead
sign-dependent random walk (SDRW) and its application tol@ SloP€ overload; a largé will allow the DM to track a

first-order BBPLL. In Sec. Ill we formally define the spRrw/fast varying signal but at the cost of increased granulaseoi

as a RW whose step distribution depends on the sign of iMinimizing both distortions results in a trade-off in seiag

RW'’s current position; a similar model was considered iri,[225' a trade-off that also exists in a ,BBPLL' .
[23]. It will be shown that the SDRW is a suitable model for Although implemented mostly with analog circuits and thus

the loop's statistical timing-jitter behavior. The anajogith CP€rated in continuous-time, a DM can be equally described

a DM enables us to apply and generalize existing theory gﬁthe sampli_ng instants by the di§crete-time model shown in
delta modulation. In particular, extending Fine’s resintf24], Fig. 3 [27]. Given the sequence of input sampigs= x(nT})

we investigate the limiting behavior of the SDRW by derivind®" " = 0. taken fromz () every T seconds (oversampling),
its asymptotic characteristic function, from which aniigt a DM generates the staircase approximation recursively by
expressions for the first four. cumu_lants wiII_be obtaineq. In G = Fn_1 + 05gn(2y — Fn1) (1)
Sec. IV the cumulant expressions will be applied to statdiy
analyze the timing jitter. We will show how varying the RMS~herez,, is the staircase value forT, <t < (n 4 1)T, and
clock jitter and the frequency offset influences the statiirty  the quantizer is modeled by the signum function, defined as
offset; that the RMS timing jitter is constant for small RM$gn = = 1forz > Oandsgn x = —1forz < 0.
clock jitter and grows quadratically with large RMS clockThe difference between the current input sampleand the
jitter; and that there exists an optimal bang-bang phagefste previous staircase approximatidp_; is binary quantized into
minimum RMS timing jitter. Computing the kurtosis revealstd, and added t@,,_; to form the approximation for the next
that the timing jitter is largely non-Gaussian. input sample. The accumulation of the quantizer outputaslu
is represented by the discrete-time integrator with tremsf
[l. FIRST-ORDERBBPLL As DM IN THE PHASE DOMAIN  function 271/(1 — z71), the additional delay being part of
This section elaborates on the analogy of viewing a firsathy sampled feedback loop. Viewing the valiig ; that is
order BBPLL as a single-integration DM in the phase domaisubtracted fronx,, as a predictiort;,, = Z,_1, we can define
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Fig. 3. Discrete-time equivalent model of a DM [27]. Fig. 4. Block diagram of a first-order BBPLL.

the prediction error _VCO clock edges. Denoting the time pf thegh sampling
instant byt,,, the sample value taken &t is the BPD output

Cn = Ty — SEn (2) En = Up (tn) = Sgn[SiD(WOtn + er,n)] (7)

Whic.h expresses the ampunt by which the input may laﬂwereéM = 6,(t,) is the sampled reference clock phase.
predicted exactly. Recursively, the sequence of preuhs'uo.l.he BPD output is either1 or —1, indicating whether

{&n} is produced by the reference clock has been sampled late or early with
respect to itsnth rising clock edge; no attempt is made to
measure the actual time deviation from the clock edge, a
and the corresponding prediction error sequeficg by feature significantly different from a linear PD [1]. The BPD
output drives the VCO through the LF galtip, changing the
VCO frequency so as to bring the sampling instants closer
Equation (4) illustrates the dependence of the predictié® the rising reference clock edges. Since the BPD values
error on the discrete-time derivative,, 1 — z,, and thus on are binary, the VCO toggles between the two frequencies
the slope of the analog signa(t). In particular, slope overload fo+/fvb @nd fo—fu, which are set by the bang-bang frequency

Tpt1 = T +0sgne, 3)

Entl = €n + Tpt1 — T — O SEN E. (4)

is prevented if the no-overload condition [26] step fo, = KpKy. During thenth update period—the time
between the consecutive sampling instantsandt¢,,, ;—the
e ‘ dz(t) ’ Kl (5) VCO operates at the frequengy + funen, and so produces
dt T the nonuniform sampling instants
is satisfied, a condition that determines slew-rate lirgitin ; V. 1 V. To ®
the BBPLL. nt+l = on fo+ foven " 1+ (foo/fo)en

for n > 0. In a practical application, the bang-bang frequency
B. Phase-Domain Model of a First-Order BBPLL step fyp is much smaller than the nominal VCO frequerfgy

For a first-order BBPLL, both architectures in Fig. 1 maj/! @ CDR application typically around.1% [2]. Therefore,
1, and with the approximatiot/(1 +z) 21—z

be represented by the block diagram in Fig. 4, assumingf‘d)/fo < X
100% data transition density for the CDR loop in Fig. 1(ajor @ close to zero we can write (8) as
[2]. We now rederive the difference equation governing the ; ~t T Obp 9
phase error in the phase domain [2], [7], following a defosat nt+1 = tn + Jo wo En ©)
similar to the one in [19]. To emphasize its sampling natur
the BPD is represented as a sampler whose input signal (| o Co ;
reference clock) is sampled by the VCO clock. Since the Iocg’q(zpr'e\s/\lljrllttli?ﬁlo(?;)ays;e?dzum’ assuminig = 0, and plugging
is first order, the LF consists of a proportional path withngai
coefficient Kp. The VCO is modeled as a linear block, with ] nol
nominal frequencyf, and frequency gaitkr. €n =580 lsm <9T7“ — Obp Z 51')]
The reference clock signal is a square wave of the form =0

here 6y, = 27 fu/fo is the bang-bang phase step of the

(10)

. The term involving the sum is the VCO pha#g,, during
vr(t) = sgnfsin(wot + 0,(1))] (6) the nth update period. Writing it recursively as

which alternates between1 and —1. We assume that its Ovn+1 = Oy n + Oppen (12)

frequency be equal to the nominal VCO frequengy= 27 f,

(locked loop); any phase and frequency deviations will b’ﬂmws that the BPD output, causes the VCO phase to ramp

incorporated into the excess ph#sét), such as random phaselJp or down by®hy, during every update period. Now define

noise and an actual frequency offset between both clocks. 1€ Phase errop, as
The reference clock is sampled by the VCO clock; the bn =0rp —0Opn (12)

sampling instants are the times of occurrence of the rising
so thate,, = sgn¢, for —7m < ¢, < « from (10). Thus,
IMore precisely, it is the backward-difference of the samptput signal, With (11) and (12) we obtain the difference equation
which may be viewed as the discrete-time approximation éodntinuous-
time derivative of the input signal [26]. Gnt1 = Op + Or g1 — Oy — Oop s P (13)
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A ' or dither jitte? [14], [30], referring to the VCO phase hunting
b = n, :Fl 1_En W or dithering around the reference clock phase. Slope caérlo
rn [] 71 . . e
refers to slewing or slew-rate limiting [20], [31], usualiy
the context of tracking a modulated reference clock. From

VCO the analogy with a DM, slewing in a first-order BBPLL is
= prevented if the derivative of,.(¢t) satisfies condition (5):
1—z1

max ‘ d9r(t)‘ < Oob = 27 fop. (14)

dt To

As an example, consider a sinusoidally phase-modulated

reference clock with excess phadg(t) = Asin(2wf,t),
which governs the phase-error evolution as a function of thehereA is the modulation amplitude anfl, is the modulation
reference clock phase samples. The BBPLL operation in tirequency. Using (14), slewing is preventedAf< fun/ fim.
phase domain, as expressed by (11)-(13), is summarizedwhich is the formula given in [2], [8], [21]. Similar to the
the discrete-time model in Fig. 5. trade-off in selecting the step sizeén a DM, there is a trade-

off in selecting the bang-bang phase stgp. A small 6,

will reduce hunting jitter, but it will also restrict the miaxum
C. First-Order BBPLL as DM in the Phase Domain modulation frequency in order to avoid additional jitteorfr

Comparing the models in Fig. 3 and Fig. 5 shows thé{ope overload.; alla.rgébb .Wi|| allow a hi.ghe.r. modaulation
for the given approximation, a first-order BBPLL can pdrequency, but it will incur increased hunting jitter duette

viewed as performing single-integration delta modulation CO&rSer phase updates. In Sec. IV-D we will see that thigtrad

the phase domain. In a DM, the sequer{ag,} produced off also exists in a_statisticgl _sense—in chopsin_g the ogdtim
by (3) forms a sequence of predictions for the input samplB§ase step to obtain the minimum RMS timing jitter.
{z,}. Changes in the prediction occur in steps of the step
size §, and the introduced error is the prediction eregr By D. Stochastic Difference Equation
analogy, in a first-order BBPLL, the sequence of VCO phasesHaving elaborated on the analogy between a BBPLL and a
{0,,»} produced by (11) forms a sequence of predictions f@M, we now consider the stochastic difference equation that
the reference clock phase samplgs., }. Changes in the describes the stochastic phase-jitter process in the mress
prediction occur in steps of the bang-bang phase &tgpand accumulative reference clock jitter, complementing prasi
the phase errop,, is the equivalent of the prediction errey  work on the non-accumulative jitter case [15], [16]. As in
in the DM. Furthermore, the sampling frequeryfGyin the DM  these references we assume ideal PLL building blocks, but
corresponds to the nominal VCO frequerygyin the BBPLL. we also consider a frequency offsétf between reference
Since a practical DM contains a zero-order hold circuit inlock and VCO clock, which almost always occurs in practice
its feedback loop [25], the staircase signal in Fig. 2 must Ijg]. Hence, the excess phase of the reference cloék(is =
replaced by a signal with ramps, so that the behavior of bothwt+woa(t), whereAw = 27 A f. The phase-noise term(t)
systems also correspond in continuous-time (compare Figis8a (nonstationary) Wiener process with linearly incregsi
in [2]). variance, which gives rise to the Gaussian accumulatiter jit
Referring to [28], Walker [2] provides an analogy betweef10]. Samplingé,.(t) at the nonuniform time instants yields
a second-order BBPLL and a sigma-delta modulator (SDM)
showing that the proportional path performs first-order sprntt b = Awtniy —tn) +wola(tnir) —altn)) (15)
modulation on the frequency offset. The analogy with a DM/here ¢,.,, = 6,(t,) as before. Althoughy(t) has station-
has previously only been mentioned. Greshishchev et. aty increments [10], the nonuniform sampling instants eaus
[1] point out the similarity of a second-order binary PLLthe increment process(t,.1) — a(t,) to be nonstationary.
to a double-integration DM with prediction. In a slightlyBut since the deviations from the uniform sampling instants
different context, an analogy with a DM has been establishe¢e small, we can use the uniform sampling approximation
for the delay/phase-locked loop with BPD proposed in [20},,,, = t,, + Ty [2] to approximate the increment process by
Interestingly, Muller and Leblebici [21] note that the faika  «(t,,, 1) — a(t,) = a((n + 1)Ty) — a(nTy) = &,, where the
for the onset of slew-rate limiting in a first-order BBPLL jitter random variable (RV),, is Gaussian distributed with
which is known from [2], corresponds to the slope overloaghean zero and varianee (the standard deviation will be
condition in a DM, which we will explicitly show below. called RMS clock jitter) and the sequenigg, } is independent,
Although a SDM and a DM are intimately related [29]identically distributed (1ID). Replacing the incremenbpess
the argument to interpret the BBPLL in favor of a DM isin (15) by &, substituting (9) fort,.; — t, and plugging
the tracking behavior that is fundamental to both systentfe result into (13) gives the stochastic difference eguati
Clearly, tracking performed by a DM in the voltage domaidescribing the phase jitter:
corresponds to tracking performed by a BBPLL in the phase ,
domain. This implies that the distortions due to quantizati Pnt1 = ¢n + AwTh — Oy, 580 dn + woln. (16)
described in Fig. 2 also occur in a BBPLL. Here, granularzyse v yse the term hunting jitter to avoid confusion wittetterm dither
noise is commonly called self-generated hunting jitter [2]] meaning an intentionally applied noise source.

Fig. 5. Phase-domain model of a first-order BBPLL.
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Here 0], = (1 + Af/fo)fu, is the modified bang-bangfor n > 0. The sequence of RV§U,} is called a sign-
phase step; neglected in [2], [7], it accounts for the phadependent RW starting at the origin because the RV realizing
update due to the frequency offs&tf and was consideredthe next step depends on the sigsf U,,. Accordingly, &,
by Hsieh and Yang [32] (see also [19] for the zero-crossirapd £ are called the positive and negative step RVs and
DPLL). Nonetheless, sincA f is typically much smaller than correspond to the steps taken in the positive and negatifre ha
fo [6] we assumd;, = 6y, in the following. line, respectively. Throughout this section we assumettiet

To be consistent with the aforementioned literature, thdistribution functionsfF'+
remainder of this paper treats the equivalent timingyjitte
model. Since the timing jitter at theth sampling instant is
At, = ¢, /wo, We obtain from (16) the stochastic difference
equation

(i) are continuous, and satisfy < F*(0) < 1 so that the
steps taken in either half-line may be both positive and
negative;

(i) possess moments of sufficiently high order so that the

Atypi1 = At, + AT — Ksgn Aty + &, (17) cumulants derived later exist;

(iii) have mean values satisfying, < 0 and u— > 0 (drift

with AT = Af/fg being the period deviation. The period conditions) so that the SDRW exhibits a convergent
quantization of the VCO clock ig¢ = Kp Ky (loop gain), limiting behavior.

where the VCO period gairkr = Ky/f3 [7], [9]. For o
convenience we use the terminology introduced for the phase/Although no proof for the statement in (iii) is given, the
domain model and calAT the frequency offset and the assumed drift conditions may be intuitively justified asdais.
bang-bang phase step. A RW has the property (see Theorem 1 in Appendix A) that
Given the stability conditiofAT| < K [7], we assume if the mean of the_;te@ is _po_sitive @ > 0), the RW will drift_
without loss of generality thah\T is positive and irrational; {© oo with probability 1. Similarly, if the mean of the step is
the latter assumption is justified because the naturaldots Negative (o < 0), the RW will drift to —oo with probability 1.
in an implementation make the exact frequency of the refethis behavior implies for the SDRW that ji, < 0 and
ence clock and the free-running VCO clock unknown, and with- > 0, the SDRW will drift to —oo when in the positive hal-
probability 1 they will be irrational [6], [7]. For simplicity we line, and toco when in the negative half-line, so that it will

take AT € [0, K) and letAT = 0 denote the case when botreventually fluctuate around the origin, exhibiting a cogesit

clock frequencies are practically identical, i.e., whaf is a limiting behavior. o o .
small irrational number. We mention that two similar models emphasizing the sign

Given the stochastic difference equation (17), the staist dependency have recently been treated in the literatum. Ca

analysis of the steady-state timing jitter will be based fo& t sund [22] considers a random walk on the integers with sign-
SDRW theory developed in the following section. dependent transition probabilities. In a similar work [23]
Lefebvre treats a Wiener process with infinitesimal paranset

(mean and variance) depending on the sign of the process,
a model he calls an asymmetric or sign-dependent Wiener
The SDRW studied in this section is defined as a RW whopeocess. Both models are different from the SDRW defined
transition probability (or step distribution) depends ba sign above, and only the first-passage time problem is studied.
of the RW’s current position. To investigate the asymptotic Finally, to place the BBPLL in the context of the SDRW,
behavior of the SDRW, we derive its limiting characteristiconsider the timing-jitter model (17) and split the signum
function (CF), from which analytical expressions for thestfir function according to whethekt,, is nonnegative or negative:
four cumulants will be obtained.

IIl. SIGN-DEPENDENTRANDOM WALK THEORY

_ (20)

Ap AL EAT K46, AL 20
T At AT+ K 4 &, Aty < 0.

A. Sign-Dependent Random Walk Model

First, we recall the definition of a RW [33]. L&t &1, &o, . ..

be a sequence of IID RVs with distribution functidn Let Since the jitter RV, has zero mean, the model (20)
So = 0, and consider thenth partial sum of the RVS, can pe obtained from the SDRW model (19) by setting
recursively defined as py = AT—K, u_ = AT+ K ando? = o2, where the latter
Spit = S, +& (18) is the variance of the Gaussian reference clock jitter. Give
n+l — Pn Sn—+1 . . ..
these parameters, we may therefore view the timing-jitter
for n > 0. The sequence of RVES,,} is called a RW starting process as performing a sign-dependent Gaussian randdm wal
at the origin, andt is called the step RV (or step) with the(SDGRW)—that is, a SDRW with Gaussian step distributions.
step distribution?'. This relation leads us to investigate the limiting behawibr
Now let &y, &5, &5, ... be two sequences of IID RVs withthe SDRW in the following, and apply the obtained results to
respective distribution functionB*. Let Uy = 0, and define the steady-state behavior of the timing jitter in Sec. IV.
in accordance with (18) a sequence recursively as

(19) positive argument; no complications arise whef are continuous, as in our

U U, + §:{+1’ U,>0 3According to (19), the definition of the sign includes the aify in the
+1 = _
" Un+&n115 U, <0 assumption (i).



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS - | 6

B. Limiting CF An illustrative interpretation ofX can be given i have

The limiting behavior of the SDRW is obtained from théde_r_ﬂical distribution functions up to a shift of mean. Thbg
convergence of the sequence of R¥S, } to some limiting Wrting ¢¢, = exp(izu+)¢e, where the step R\ has zero
RV U asn — oo. Given the various modes of convergencdnean, the Ckpx in (28) becomes
we will consider convergence in distribution. Denoting the eizmy _ gizp—
distribution of U,, as Fy;,, the sequencglU,} is said to ¢x = m¢s- (30)
converge in distribution td/ if the sequence of distributions i o ) o
{Fy,} converges to some limiting distributicf; [33]. As in Since the fraction is the CF of_ a uniform dlstr|but|on_ [34,
[24], it is more convenient to investigate the convergenice B-1880], we have the decompositidh = 7 + &, where is
the sequence of CF&py, } to some limiting CFoy, where uniformly distributed onu4, 1], so that finally

the CF ¢y, of the SDRW at epoch is defined as U=n+&+ M+ M- (31)
bu, (z) = Ee#Un :/ e dFy, (u) (21) If, in addition, we assumeg:;, = —K andp_ = K
—00 where K > 0, thenn is uniformly distributed on[—K, K]

with 2 being a real variable an8 denoting statistical expec-and we obtain Fine’s (31) (after subtractigy[24]. Besides
tation. (For notational simplicity, the argumenbf a CF will providing insight into the limiting behavior of the SDRW,eth
be omitted throughout.) We now derive the limiting @ by decomposition into a sum of independent RVs simplifies the
extending Fine’s result for a DM [24]. In the following, RVscomputation of the cumulants in the sequel.

with subscript’+" ("—"") will refer to a RW with step RV .

(&2). (For example,Mjrr is the maximum of a RW with step ¢ cumulants of the SDRW

RV &+). To obtain a recursion fopy, , write (19) as Moments and cumulants describe the statistical properties

Unt1=Un + & 1 110,00)(Un) + &1l (—00,0)(Un)  (22) of a RV or, equivalently, its distribution. Given a RY with

. . . i CF ¢y, its kth momentEX* is defined as
where 14 is the indicator function of the sef. Using the 0x, | ! I

decomposition/,, = U, + U,, whereU,, = max 0,U,} is E_ —k d*
the positive part of/,, with the CF { } EXT =i W¢X(2)‘z: (32)
o and itskth cumulantc;, x as
U = / e’ dFy, (u) (23) i
0 &
andU,, = min{0, U,,} is the negative part df/,, with the CF A log ¢X(z)‘z:0 (33)
0 wherelog ¢ x is the cumulant generating function [34, p.370].
by, = / e dFy, (u) (24) Cumulants enjoy the additivity property: tih¢h cumulant of a
—o0 sum of independent RVs equals the sum of tkie cumulants
we have of the single RVs [34, p.371]. Applying this property to the
Unsr = (Un +§:+1)1[0700)(Un) (O, e )y (Un): decomposition (29) gives the simple relation
(25) Cr,U = Ck,X + Cp pp+ + Cpoag (34)
Multiplying both sides byiz, exponentiating and taking _ . o T
expectation gives for which we now derive general expressmnsko_t 1,...,4.
The cumulantsc, ,,+ and ¢, ,,~ can be directly ob-
BV = ber, 0, + 6=, bu, (26)  tained from their cumulant generating functions. Indeeait

a recursion forpy, . Because we are interested in the Iimitingfp'tzer,s identity _(71) (seg Theorem 2 in Appentilx_ A), the
behavior of the Sequencl, }, we letn — oo in (26) to cumulant generating function of the maximum RV is

obtain the limiting CF¢y. As shown in Appendix A, the ® 1
limiting CF is given by log o+ = > —(bgy —1) (35)
n=1

OU = OX Pary Pu (27) " and hence, by the cumulant definition (33),

where > - N
- Cp o+ = —E(SHF = —/ 2" dET (z). (36)
px = Do 0 R ST IR Y (
iz(pg — p-)

As in [24], becausepy is a product of CFs, the limiting Here, the last equality is due to the fact thiag (5;7)")

RV U can be decomposed into the sum of independent Rv§ the kth moment of ST ({57} being a RW with step RV
&+) whose distribution is concentrated ¢t co). Similarly,

U=X+M]+M" (29) from (72) the cumulant generating function of the minimum
where M is distributed as the maximum of a RW with ste[ﬁv M_is ~
RV &,, and M~ is distributed as the minimum of a RW with l0g 6~ = Z g(%; —1) (37)

step RVE_ (see Appendix A).

n=1
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from which we find the cumulants following. The Gaussianity of the step distributions alsg-s
} > 0 gests the name SDGRW introduced above, in analogy with the
G- = —E(S)H) =" —/ 2* dF7 (z). (38) widely used Gaussian random walk [33].
o n n=1 1t J—o0 To derive the cumulants of the SDGRW, lat &, ... be a

Here, the last equality is due to the fact tria(c(S‘*)k) is Sequence of 1ID RVs with Qaussian distribution functi_En
the kth moment ofS- ({5} being a RW with ste;;l R¢) Given the mean and the var|an<_:62, then_-fold _convolutlon
whose distribution is concentrated ¢ oo, 0]. Fn(z) = P(& Fet én < o) Is Gaussian with meany:

The cumulants;, x will be obtained from the correspond—and varianceo”, and so the integrals in (36) and (38) can be

ing momentsE X*. In particular, evaluating theth derivative evaluated explicitly. Sincé” has the density

1

n=1

\(,)Jecbg(thn(ZS) at zero and using the moment definition (32), f(.’L';/L,Uz) _ ;ﬂae_(m_u)z/(gm) (44
Exk E¢htl — pektt (39) we have from (36) that
Hie = 1) L[ 2)d (45)
Note that the firsk moments ofX exist if the firstk + 1 M T ; E/O T (@i, 0 ) de

moments off. exist (see also assumption (ii)). Inserting (39

into the moment-cumulant transformations [34, p.371], thued ‘)j‘nd from (38), after the change of variable— —z, that

result into (34), gives the following expressions for thestfir . © 1 [ .
four cumulants of the SDRW: - = (—1) Z 5/0 a¥ fr(z;—p—,0” ) dx  (46)
o First cumulant (mean): =t
EE — B¢ where f,(x;p,0?) = f(x;nu,no?). Formal integration
+ — B _
U = HCoapr o (40) shows that fork =1,...,4
2(M+ — o) 1,M7 1,M™ N N
« Second cumulant (variance): Z l / ;ckfn(g;; i, 02) dr = o* G, (_ﬁ) (47)
el n Jo g

2
oy = where

B¢ B 1 (Eﬁ - E§2)2

3(ug —p—) AN pg—p— 00

+ o nrt F Cop (41) Gi(x) = gr(n, ) (48)
n=1

o Third cumulant (third central moment): and

_Bel- Bl (B - BE)(BE} - BEY) L, 1 -
M Huy — ) s — i) g1(n.2) = <=2 = Saerfc (\/;x) (49)

1 Egi—Eg%)g n n
+o | ———=) +ecgyyt tCaay--  (42) = Z(nz? L I L
1 ( oy — 3,M7 T C3,M- g2(n, ) (nx® + 1) erfe ( 2:6) 5 L€ (50)

¥

[\]

. Fo:jr;: cug;ant: gs(n,z) = \/g(”ﬁ N 2)6_7”2/2
_ 26— BE
e Skt — pi-) — 1na:(n:cQ + 3) erfc L™ (51)
 3(B&E — EC)(ES — E¢Y) +2(EE — EE)? 2 2
6(ps — po-)? . ga(n,z) = %n(n2x4 + 6nz? + 3) erfc (\/g:c)
| (BE - BEPwe —Be) 3 (Eé“i - Eﬁ) _ 2
(g — p—)? 8\ py —p— ) _ /2_m(m2 4 5)e /2 (52)
+C4aMI + ¢y 43 Q

with erfc being the complementary error function. The Gaus-
Yan distribution has the property that higher-order masien
can be expressed in terms of the mgarand the variance
o2 since the latter two uniquely describe the distribution. In
particular, the first five moments of the Gaussian distriute
RV ¢ are given byE¢? = p? + 0%, EE = u® + 3uo?,

D. Cumulants of the SDGRW E&t = p*4-6p202+30* andEES = P +10p0? +15u0* [34,

In general, given arbitrary step distributios", it appears P-713]- Substitution of these moments together with (463
difficult to further simplify (40)—(43) because the-fold into (40)—(43) yields the following expressions for the ffirs
convolutionF (z) = P(¢X +... + &+ < z) in (36) and (3g) four cumulants of the SDGRW.
may not be expressible in simple terms. For Gaussian step
distributions, however, the convolution is easily perfedn
leading to the explicit cumulant expressions derived in the

Equations (40)—(43) express the first four cumulants
terms of the moments of the step R¢s and the cumulants
of the maximum and minimum RVMjf and M, which are
given by (36) and (38).
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o First cumulant (mean):
+pu_ 102 -0?
_H+TH + 22

2 2 g — p—

e (—%) e <5—_> . (53)

Second cumulant (variance):

y (e —p)? oA 402 1(0% -0\’
Orr = — — T =

v 12 2 4\ pg — p

+o1Ga (-2 ot (1), (54)

+

Hu

e Third cumulant (third central moment):

(s —p-)(0% —02) 1 <£>3

c3,.U = + -
’ 4 4\ py — p—

+ 003Gy (—g—Jr) — 032G (ﬁ—) . (55)

+

Fourth cumulant:

_ (py —p)*t  (0F —o2 3
v = 120 " 1 3

+ 04 Gy (—Z—+) +0Gy ('Z—_) . (56)

+

These expressions generalize those in [24], [29], [35].

IV. STATISTICAL ANALYSIS OF FIRST-ORDERBBPLL
USING SIGN-DEPENDENTRANDOM WALK THEORY

A. Decomposition of the Steady-State Timing Jitker

We begin the analysis by recalling that (31) decomposes
the limiting behavior of the SDRW into a sum of statistically
independent contributions. Applying this decompositiothe
steady-state timing jitter provides valuable insight irte
nonlinear statistical behavior. More specifically, theasle
state timing jitterAt can be decomposed as

At=n+&+o (57)

where the RV is uniformly distributed odAT — K, AT+ K]
and the jitter RV¢ is Gaussian distributed with mean zero and
varianceo?. The RV o is distributed (in the sense of equality
in distribution) as the sum of the maximum and minimum
of a RW as discussed above. Similar to the interpretation
for a DM given in [24] and [29], the decomposition (57)
suggests interpreting the timing jitter in terms of the Gaaus
reference clock jitter and additionally introduced stadicd
dynamic jitter components, as further discussed in Se€. II-
In particular, due to its uniform distribution we refer teetRV
n as self-generated hunting jitter (static component), enter
which was used by Walker [2] but without giving a precise
definition. Hunting jitter is introduced by the coarsene$s o
the binary PD characteristic and is characterized by the VCO
phase hunting randomly around the jittered reference clock
phase. In line with the term overload noise used in DM
theory [25], we refer to the RV as overload jitter (dynamic
component). Overload jitter is introduced by the inabiltfy
the VCO phase to track the reference clock phase faster than
in steps of K, and is characterized by a sequence of equal
VCO phase updates.

Note also that the hunting jittey does not depend o8,
whereas the overload jitter does depend og (via the RW

The SDRW theory developed in the previous section W%aximum and minimum, both of which depend 6p This

now be applied to statistically analyze the steady-stateng

jitter in a first-order BBPLL. As mentioned above, the timing
jitter model (20) can be recovered from the SDRW model (1
by assuming the step R\&. to be Gaussian distributed with
means:y = AT — K andu_ = AT+ K and equal variances

o2 = o%. Assuming ideal PLL blocks, the timing-jitter process

may therefore be viewed as a SDGRW, and the requiremeijr?tser is uniformly distributed onAT — K, AT + K]. In the

py < 0andu_ > 0 for the SDGRW to exhibit a convergen
limiting behavior agree with the conditiolAT| < K for

the loop to be stable. Hence, we can immediately apply t
cumulant expressions (53)—(56) in the analysis. In pdgicu

implies that the timing jitterA¢ will be dominated by hunting
jitter for smallo and by overload jitter for large. Moreover,
being independent of also means that

At =7 for o = 0. (58)

In other words, for a jitter-free reference clock, the timin

following we will repeatedly refer to the decomposition 5@
ﬁ(tetribute observed statistical properties to the undeghRVs.

the first cumulant (mean) and the second cumulant (varian&) Static Timing Offsef\ .

correspond to the static timing offset and the RMS timin
jitter, respectively, and quantify the timing-jitter perfance;

g A PLL synchronizes, in both phase and frequency, the
feedback clock with the reference clock by bringing thedrckl

the fourth cumulant is used in the definition of the kurtosiedges in close alignment. The average time (phase) differen

and quantifies the non-Gaussianity of the timing-jitter PDF

between the two clocks in the locked state is the static min

The analytical cumulant expressions will be compareaffset (static phase error). A static timing offset is a #igant

against Monte-Carlo simulation of (17), verifying also ou
numerical results in [17]. For the each simulatidm, re-

problem in a BBPLL-based CDR circuit because it results in
the incoming data no longer being sampled at the center of

alizations of length100 were generated and the statisticthe data eye, thus increasing the bit error rate [3].
(histogram and cumulants) were computed for the last timeln our first-order loop, a static timing offset is caused by
instant. The mean, variance and kurtosis were computed usinfrequency differencé\T" > 0 between the reference clock

the corresponding MATLAB built-in functions. To illusteat
the following discussion, Fig. 6 plots several timinggitt

and the VCO clock; the LF needs to have a nonzero output
to tune the VCO to its correct average frequency. When an

PDFs obtained from the numerical method described in [1§nalog LF is used, a static timing offset may be caused by a
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Fig. 6. Steady-state timing-jitter PDF for variousT ando (K = 1) [17]. Fig. 7. Static timing offsefAtstat versus frequency offsehT for K = 1.

mismatch between the two charge-pump currents, which dantransferred from the reference clock, how much jitter is
be considered as an additional frequency offset. Moreovgenerated by the loop itself and what is the minimum RMS
the presence of reference clock jitter causes any statiogimtiming jitter. An answer to these questions is given by (54),
offset to increase from its zero-jitter level [6]. We defifet from which we obtain the expression
static timing offsetAtg,; as the statistical expectation of the ) A A
timing jitter in steady state, for which we obtain from (58t 2 — K~ + 0%+ 062Gy K- AT + 062Gy K+AT
expression ' 3 g g

(60)

K- AT K+ AT where G, is given by (48) and (50). Although this formula
Atgtat = AT+ 0G| ———— | —0G1 | ——— ) (B9) . 2 y ) 9 .
tat totn < ) o1 < o ) (59) is exact, its dependency on the paramef€tsAT ando via
where G, is given by (48) and (49). Figure 7 plott..a: the infinite seriess, complicates an intuitive explanation. An

of (59) as a function oAT with parameter. The agreement approxim_ate formula proyiding a simple rule of_thumb f_or_th_e
between theory and simulation verifies the obtained aralyti 1°0P design can be derived by upper bounding the infinite
expression. series. As shown in Appendix B, the result is

For AT = 0, the static timing offset is zero independent ) K , ot 1 1
of ; the VCO clock samples the reference clock equally likelyoa: = 3 +o” + T ((K TAT)? + K + AT)2> (61)
before and after the reference clock edges. The correspgndi
timing-jitter PDFs(0; o) in Fig. 6 are symmetric about zerowhich yields
and thus have zero mean. 9 4

For AT > 0 ando = 0, the static timing offset equals the oA~ K +o02 4 0—2 for AT = 0. (62)
frequency offset, as shown by the dashed lXg,, = AT 3 2K
a larger frequency offset requires a larger average BPDubutp A comparison of the exact expression (60) with the approx-
to tune the VCO to its correct average frequency. The resittation (61) and the simulation results is shown in Fig. 88 Th
for Atsat also follows from (58) since the mean of a RVagreement between theory and simulation verifies the addain
uniformly distributed onAT — K, AT + K] is AT. analytical expressions, and suggests the use of (61) for the

For AT > 0 ando > 0, the combined effect of frequencyfollowing explanations.
offset and clock jitter causes the static timing offset wé&ase The timing-jitter behavior in different regions of the plot
from its jitter-free level, as seen by the curves exceedirgg tcan be interpreted using the decomposition (57). For small
dashed line. For small-enough though, the static timing the hunting jitter dominates so thata; is approximately
offset does not increase notably, even for a moderate freyueconstant. Indeed, as tends to zerooa; approaches the
offset; this may be attributed to the dominant huntingjjitte smallo asymptoteK/v/3 which corresponds to the standard
this case. Note that sindé = 1 in the figure, the loop is stable deviation of the uniformly distributed RV in (58). Increagio
for |AT| < 1, which explains the increase of the curves asausesra; to rise, since the effect of the Gaussian clock jitter
AT tends tol. and the resulting overload jitter becomes gradually apgare
For largeo, overload jitter dominates, anth; shows a linear
increase withc on the logarithmic scale. Because the last

C. RMS timing jitteroa, , ) ' . ' :
. . o ) .. term in (61) is dominant in this case, we obtain the large-
For the loop design, a quantity of main interest is the timing_ asymptote

jitter varianceo%,; in practice, it is common to consider
the standard deviatiooan; and speak of the RMS timing ot ( 1 1 ) (63)

2 _
jitter. Design questions to be addressed are how much jitter Tar Ty (K — AT)? + (K + AT)?
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Fig. 8. RMS timing jitteroa+ versus RMS clock jittew for K = 1. Fig. 9. Trade-off between hunting jitter and overload jiteads to an optimal
bang-bang phase step for minimum RMS timing jitter (symbatkers).

which is shown by the dashed lines. Interestingty,; in-
creases proportional to the clock jitter variangg with the for small o, the minima are more sensitive to changesiin
proportionality factor depending o and AT In particular, than for largeo; this may be crucial in a DBBPLL where
zero frequency offset gives the asymptote/ (/2K ) reported Changes ink" due to quantization of the DLF gaif(p can
in [18]. Contrasting this asymptote with the asymptotéor degrade the timing-jitter performance. Notice finally thize
the non-accumulative jitter case [16] shows that the nealin Minima become independent @¥7" with increasingo, in
loop reacts differently to different clock jitter. In eithgtter Which caseoa¢ min is limited only by the clock jitter and
case, however, the RMS timing jittera, is independent of not by a frequency offset.
the loop delay in this large-regime (compare Fig. 7 in [16] 10 further illustrate the ultimate limits to the timing#gr
with Fig. 6 in [18]). In other words, even in the presence dterformance, we can derive an approximate closed-form for-
a loop delay, the SDRW model does capture the stochagdilla for Ko which allows us to analytically prediota s min-
timing jitter dynamics in this regime, and the timing jittedn particular, setting the derivative of (61) with respesti
performance can be predicted using (63). to zero yields
_ N R = AT+ (36T 4 (68/(240AT7))

D. Optimal BB Phase Step for Minimum RMS Timing Jitter o .

In Fig. 8 the RMS timing jitteto o, was plotted as function vv_here/\ =1+ v 1= 04/§72.AT4)' SUbStItUt.mg .(64) Into (61)
of o for a normalized bang-bang phase stdp & 1). In JVesan analytical prediction f@fa mi, Which is not explic-
practice, the RMS clock jitter is given, and the designerItIy expressed her_e but which is plotted in Fig. 1.0 as af_unm:n
has to choosd< such that the loop fulfills the timing-jitter of 7. The nume_rlcal (exact) .re_sults were again obtained by
specifications, possibly achieving minimal jitter. Fora61) numerically sc_)lvmg for the minimum of (6.0)’ and show good
demonstrates the limits to the minimum RMS timing jittem: foagreement with the theory. The figure illustrates thatoas

any fixedo and AT, there is a fundamental trade-off betweeﬁecgmeitsma(;leriAgmi“ attat[lnts theT%/alueﬁlT/ V3 OJ tzz .
hunting jitter and overload jitter. Clearly, a smal will yield unting jitter (dashed asymptotes). This value can be aeriv

L - ; by settingoc = 0 in (64) and plugging the resulting optimal
small hunting jitter but large overload jitter, while a larég’ ) = _ g
will yield small overload jitter but large hunting jitter. step sizeKop: = AT into the hunting jitter formulak'/ /3.

This trade-off is illustrated in Fig. 9, which plots,, of (60) I-rot\:\llzrrﬁr?ijtltoilfr?esr:?r:,ivrf\L}rrhalt?’%I\jll; ?rr?ijnngcfilggro?:zziglct)ﬂ :itr?e d
functi fK f d f ffset ) S .
as a mneton o O Zero and nonzero frequency ofise from the caseAT = 0. Setting the derivative of (62) with

Recall from Sec. II-D that a zero frequency offset means a . .
( q y espect toK to zero givesK,p, ~ 1.1070, which means that

small irrational number close to zero). It can be seen thatf?) ¢ Heot th iimal b b haseist
any fixedo and AT, there exists an optimal bang-bang phasé’r £€ro frequency ofiset, the optimal bang-bang phaseistep

step K.y, that gives the minimum RMS timing jittef s i approximately equal to the RMS clock jitter. Substitutihgst

(symbol markers); the minima were obtained by numericalgs_UIt into (62) gives the lower limita¢,min ~ 1.3480, which

finding the minimum of (60). Predominance of hunting jitte just the lineAT = 0 in the figure.

and overload jitter can be ascribed to different regionshef t )

plot. For K > Ky, the timing jitter is dominated by hunting E- Kurtosis ofAt

jitter, the fundamental lower bound of which#§//3 (dashed  To provide further insight into the loop’s nonlinear sttitial
asymptote). Fork < Ky, the timing jitter is dominated behavior, we now compute the kurtosis of the timing jitter.

by overload jitter and increases rapidly Asapproaches the The kurtosis measures the degree by which a PDF deviates
stability boundary at\T" (vertical dashed lines), obtained fromfrom Gaussianity, and is positive for a pointy PDF and negati
the stability conditioN AT| < K. The figure also shows thatfor a flat-topped PDF. Since the clock jitter is assumed to be

1/3 (64)
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Fig. 10. Minimum RMS timing jitteroas min Versus RMS clock jittew.  Fig. 11. Kurtosis of the timing jitterkurt o+, versus RMS clock jitter for

K =1.

Gaussian distributed, a nonzero kurtosis”of means a non-

Gaussian timing-jitter PDF, and thus reveals the influerfce BU99ing the result into (60) gives" ~ 0.83K" and the RMS
the BPD nonlinearity. timing jitter oA, ~ 1.02K. As a rule, the timing-jitter PDF is

For the timing jitter, the kurtosis is defined as [34, p.1009Ye!l approximated by a Gaussian PDF forclose tos™, but
c it differs significantly for all other values of.
4,AL
kurtay = (65)

1
OAt

where the fourth cumulant, a. is obtained from (56) as

2K*4 K — AT K+ AT
o AL (K5T) o (K220)
g g
6)

V. CONCLUSIONS

Viewing a first-order BBPLL as a single-integration DM
in the phase domain allows us to explain the bang-bang
15 loop behavior using existing delta-modulation termingiagd

( theory, linking hunting jitter and slew-rate limiting in 8BBLL

with G4 given by (48) and (52). The kurtosisurta: @s to granular noise and slope overload in a DM.
a function of o is plotted in Fig. 11, showing again good \hen the reference clock is contaminated by accumulative
agreement with the simulation results. _ jitter, the stochastic evolution of the timing jitter can be

For smallo, the kurtosis is negative and independent Gfodeled as a SDRW. Analytical expressions for the first four
AT this is due to the uniform-like (flat-topped) PDF causegy,mylants of the SODRW have been obtained and applied to the

by the dominant hunting jitter. Indeed, astends to zero, the ggp| | to statistically quantify the steady-state timings.
kurtosis tends to the valuel.2 for a uniform distribution [34, The main results can be summarized as follows:

p.1881]. The slight dependence of the kurtosisoois due to
the Gaussian jitter smoothing the edges of the uniform-like
PDF, as shown by the PD; 0.2) in Fig. 6.

For largeo, intuition suggests that the large reference clock
jitter will linearize the binary PD characteristic so thaétioop
behaves linearly. The positive kurtosis in this region pov
the opposite: the loop dynamics is still nonlinear, making t
timing-jitter PDF non-Gaussian (see the POE3) in Fig. 6).
Contrast this with the non-accumulative jitter case in [15]
[16], for which it can be shown that the timing-jitter PDF
is indeed Gaussian in this regime, leading to a lifhdaop
behavior.

Since the timing-jitter PDF is symmetric foAT = 0,
it also follows from the figure that for one particular value
co*, the timing-jitter PDF will in fact be Gaussian, namely
for the value ofo giving zero kurtosis (the zero crossing
of the corresponding curve). In this case, the loop behaves
effectively linearly, the Gaussian clock jitter with RM&*
being transformed into the Gaussian timing jitter with RMS

o The steady-state timing jitter can be decomposed into
three statistically independent components: accumalativ
jitter of the reference clock, hunting jitter and overload
jitter. The latter two are static and dynamic components
that are due to the binary phase-error quantization and
that also occur in a DM [24].

o The static timing offset described by (59) equals the
frequency offset for a jitter-free reference clock. Altlgbu
the presence of clock jitter causes the timing offset to
exceed its jitter-free value, the increased timing offset
stays within limits, even for a moderate frequency offset,
when the clock jitter is not too large; this behavior is due
to the self-generated hunting jitter.

o Formula (61) explains intuitively how the RMS timing

jitter depends on the bang-bang phase step, the RMS

clock jitter and the frequency offset. For a fixed bang-
bang phase step, the RMS timing jitter is constant for
small RMS clock jitter and grows quadratically with
large RMS clock jitter. For fixed RMS clock jitter, the

o, For AT = 0, finding the zero of (66) numerically and

4Recall that a linear system transforms a Gaussian PDF intthan
Gaussian PDF.

hunting jitter is proportional to the bang-bang phase step,
while the overload jitter is inversely proportional to it—a
behavior also displayed by a DM [24].
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« The opposing dependence of hunting jitter and overloadhich the RW first enters the non-negative half-line, and the
jitter on the bang-bang phase step entails a trade-ifst ascending ladder heighif = = S;+ marks the point of
in choosing the optimal phase step for minimum RMS8rst entry. Similarly, define the first descending ladderdapo
timing jitter. For zero frequency offset, the optimal phas&~ = min{n > 0 : S,, < 0} and the first descending ladder
step is approximately equal to the RMS clock jitter.  height H— = S;—, with the analogous interpretation of entry

« Computing the kurtosis has revealed the effect of the BABto the negative half-line. Because either half-line does
nonlinearity: the timing-jitter PDF is Gaussian-like for need to be entered at all, the above defined RVs are possibly
close to some value* (for which it is in fact Gaussian), defective, with the defects defined as
but it is distinctively non-Gaussian for all othervalues.

_ _ pT=1-P(TT <o0)=1-P(H" < x) (67)
The advantage of having treated the SDRW in the general _ _ _

form (19) is that non-ideal factors can be considered in the pm=1-P(I" <o0)=1-P(H" <o0). (68)
analysis. Mismatches between the two charge-pump currentgyrthermore, letM+ = maxg<n<oo Sn be the (possibly
or between the two output levels of the BPD can be accounig@nite) maximum of the RW, and/~ = ming<,<o S, the
for by assuming appropriate mean values for the step R\(ossibly infinite) minimum. The following two types of RWs
Different reference clock jitter distributions can be taketo zre of interest to us.
account by choosing appropriate step distributions. Elick -
noise, which corresponds to accumulative jitter with corrd N€orem 1. (Classification of RWs [33, p.379], [36, p.224])
lation [9], can be modeled by assuming each sequence of Sfgh@ RW with steg and step distributiort”, if 0 < E¢ < oo,
RVs to be correlated, but separate cumulant expressiorts nEEen
to be derived in this case. Non-zero loop delay cannot bg full (i) with probability 1,5, drifts to oo and reaches a finite
modeled by the SDRW, but as was pointed in Sec. IV-C, the =~ minimumM —;
model does give a good prediction of the RMS timing jitter (i) 7F and H* are proper, 7~ and H~ defective;
when the RMS reference clock jitter is large. To conclude(iii) ET* and EH* are finite, and by Wald’s identity

although the obtained analytical expressions enable aat exa 1 EH+
statistical loop analysis, the SDRW model is limited in that ETT = — = EE (69)
it only applies to a first-order loop subject to accumulative ) p
reference clock jitter. Similarly, if —oo < E{ <0, then

The analysis of the present paper and of [15], [16], [18] (i) with probability 1,5, drifts to —co and reaches a finite
may be extended into several directions. First, since dipedc maximum t;

oscillator exhibits both non-accumulative and accumwéati (i) 7~ and H~ are proper, 7" and H+ defective;
jitter [9], a more accurate loop analysis needs to consiger t (i) E7~ and EH~ are finite, and by Wald'’s identity
combined effect of both types of jitter, as well as the jiftem 1 EH-
the VCO. Second, since BBPLLs are typically implemented ET™ = —= Fe
as second-order loops [4], [5], the dynamics due to the LF p
integral path must be taken into account, particularly when Finally, two identities for the CF of the maximui? * and
the loop stability factor [2] is small. Further to this paintthe minimuma/~ will be required.
eIaboraFing on t_he analogy betwegn sepond-orgier BBPLLs a'Weorem 2. (Spitzer's identity [36, p.230]) Provided the
double-integration delta modulation with prediction [1yn : +

. . L . maximumM * < oo, we have
turn out to be fruitful, in that existing delta-modulatidrebry
[25] could also be applied to second-order loops. Despite th 1
current restriction to first-order BBPLLS, the applicatioh Par+ = exp {Z 5(%” - 1)} (71)
Markov theory has demonstrated a more accurate timirgy-jitt n=l
description by revealing statistical features that renfididen where S,, = max{0, S,}. Similarly, provided the minimum
from a linear analysis. M~ > —o0, we have

(70)

= 1
APPENDIX A ¢rr- = exp {Z (g, — 1)} (72)
n=1

DERIVATION OF THE CHARACTERISTIC FUNCTION (27)

The CF (27) derived in the following generalizes the cwhereS,, = min{0, S,}.
given by Fine in [24]. Because the derivation largely folow 1o pegin the derivation, consider the recursion for the CF
his approach, we present only those parts that lead to §H9(26). Using¢u, ,, = ¢?}n+] + .., and assuming thaty,

generalization. exists and thaty;; + and ¢;; - as we
We begin by recalling some facts about the RW defingg .. Yo, = 9u ¢u, = ¢y asn — o,

tain
in (18) [33], [36]. To introduce the RVs used in the derivatio + -
consider the sequence of poirfis S,,) for n > 1, and define (1= ¢, )¢y + (1= ¢ )y = 0. (73)
the first ascending ladder poifif'*, H*) as the first term in  This equation reduces to Fine’s (20}, = exp(—izK)de
this sequence for whicl$,, > 0. Then, the first ascendingand¢: = exp(izK)¢,, corresponding to the model (20) with
ladder epoc’* = min{n > 0 : S,, > 0} marks the epoch at AT = 0. Since (73) is a Wiener-Hopf equation, the general
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procedure for its solution is the product factorization bét  SinceGs in (48) is of the form (80), we can upper bound the
factors 1 — ¢¢,. As in [24], by applying the Wiener-Hopf varianceo?, in (60) by applying the integral test as follows:
decomposition [33, p.571], these factors can be written as

| e, = (1_¢H+) (1_%7) (74) ZQQ(n,x) < gg(l,x)—i-/loogQ(t,x)dt:Hg(x). (82)

where¢H+ and ¢H7 are the CFs of the first ascending and To show thatgs (¢, z) is monotonlcally decreasing ihon
descending ladder heights of a RW with steps respectively. [1, o) for everya > 0, definey = \/n/2z > 0 and write (50)

Defining the complex functions as 1 y
Y —y°
1— ¢, 1— ¢, 92(y) = (y +—) erfc (y) — —=e . (83)
xt—— "% ad x =— (75 2 VT
2(1- (bHI) z(1- ¢’H:) Differentiating this equation with respect {o(denoted by

where X+ = X*(z), the CF¢y can be expressed as [24] prime) and usingrfe’(y) = —2exp(~y?)/ /T gives
Xt -X- 95(y) = 2y (erfc (y) - ie‘yz) : (84)
X0 X0 (7 N
The bounderf < — for y > 0 [34,
where X*(0) = —iEH*/pt and X~(0) = —iEH; /p", underfc (y) < yexp(~y )/yr for y [

: N -/ : _ p.562] implies thatg,(y) < 0 and thus thatgs(t,z) is
with the defectp andp” defined in (67) and (68). For themonotonically decreasing in on (0,00) for everyz > 0.
denominator in (76), the latter two equations yield

Formal integration in (82) yields

pu =

- i(ptEH, —p_EH™) 2 _ )
XH0) - x(0) = P - (W)EM@Z—LM&C£)+£HEC£) A W
jav 422 V2 4 V2 2\/ﬂx
Consider now a RW with step RY,, for which p, < 0. (85)

By Theorem 1, the RW drifts to- oo andpiEH; —F¢, = so that the variance (60) can be upper bounded by

uy from (69). Similarly, a RW with step R\¢_, for which K? 9 9 K- AT 9 K+ AT
4 > 0, drifts to oo andp~ EH* — B¢ — i from (70), CAt < 3~ +o" +o 2 +o"Hy :
6)

Thus, we can write (77) as (
. Simulations show that this upper bound is very tight; it is
XT(0)-X(0) = Z(Nii_fL) (78) therefore convenient to simplify (86) further. The simpfe a
PP proximate formula for%, is obtained by using the asymptotic
For the numerator in (76), substitute the decompositioi (7@xpansion [34, p.562]
into (75) to obtain - 1 3
Xt-X" = Pes — Pt : (79) eriel) ~ VT (1 22 " dat ) ' 80
(1= (bHi)(l ~bu-) Replacing the seconetfc in (85) by the first two terms of

Finally, plugging (78) and (79) into (76) gives the limitingthis expansion shows thdf, can be approximated by

CF of the SDRW in (27), which generalizes Fine’s (28) [24]. 1 x
The fact that the second and third term in (27) are the CFs H(z) ~ 122 erfc (\/5) : (88)
of the RW maximumMjrr and minimumM — follows from ] ) . )
Theorem 2. ReplacingHs in (86) by (88) and omitting:rfc gives the
approximation for the variance in (61).
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