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Abstract—Bang-bang phase-locked loops (BBPLLs) are inher-
ently nonlinear due to the hard nonlinearity introduced by the
binary phase detector (BPD). This paper provides an exact
statistical analysis of the steady-state timing jitter in a first-
order BBPLL when the reference clock is subject to accumulative
jitter. By elaborating on the analogy of viewing a first-order
BBPLL as a single-integration delta modulator (DM) in the
phase domain, we are able to relate hunting jitter and slew-rate
limiting in a BBPLL to granular noise and slope overload in a
DM. The stochastic timing-jitter behavior is modeled as a sign-
dependent random walk, for which we obtain the asymptotic
characteristic function and analytical expressions for the first
four cumulants. These expressions are applied to the BBPLL to
statistically analyze the static timing offset and the RMS timing
jitter, including the effect of a frequency offset. The analysis
shows that the RMS timing jitter is constant for small RMS clock
jitter and grows quadratically with large RMS clock jitter, and
that there exists an optimal bang-bang phase step for minimum
RMS timing jitter. Computing the kurtosis reveals the effect of
the BPD nonlinearity: the timing jitter is largely non-Gaussian.

Index Terms—Bang-bang phase-locked loop, delta modulator,
timing jitter, sign-dependent random walk, cumulants, kurtosis.

I. I NTRODUCTION

BANG-BANG phase-locked loops (BBPLLs) have been
widely used for clock and data recovery (CDR) in serial

data links [1], primarily due to their high-speed capabili-
ties and inherent sampling phase alignment [2]. A typical
implementation based on the charge-pump (CP) architecture
is shown in Fig. 1(a). The distinct feature of BBPLLs is
the binary phase detector (BPD) which binary quantizes the
phase difference between input data and voltage-controlled
oscillator (VCO) clock, generating only early/late phase-error
information for the loop filter (LF). To suppress pattern-
dependent jitter in a CDR application, the BPD is usually
a tristate realization such as the Alexander topology [3].
BBPLLs have also been demonstrated for high-bandwidth
digital frequency synthesis [4], [5]. A simple digital BBPLL
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Fig. 1. BBPLL architecture for (a) CDR and (b) digital frequency synthesis.

(DBBPLL) implementation is shown in Fig. 1(b), which
employs a D flip-flop as BPD [4]. Instead of the CP-based
LF driving the VCO, a digital LF tunes the frequency of a
digitally controlled oscillator (DCO) by a digital controlword.

Although the bang-bang loop principle has been success-
fully applied, a thorough understanding of the loop behavior
is far from complete. The main reason is that the binary
quantization introduced in the PD makes the loop inherently
nonlinear, thus complicating its analysis. Traditionally, a wide
class of PLLs can be linearized in steady state, allowing linear
transfer functions to be applied in the analysis [6]. In BBPLLs,
however, the hard nonlinearity introduced by the BPD causes
limit cycles in steady state. In this case, a nonlinear analysis
has been applied to derive conditions on the loop stability
[7], and to investigate slew-rate limiting when the reference
clock is frequency-modulated [8]. In practice, phase noiseon
the clock sources causes jitter on the clock edges, mainly in
the form of non-accumulative jitter (white phase noise) and
accumulative jitter (random-walk phase noise) [9], [10]. Since
jitter effectively smoothes the binary PD characteristic [11],
it is common to linearize the nonlinear loop [12] and apply
linear transfer functions in the analysis [13]. Unlike a linear
PD, the gain in a linearized BPD depends on the timing jitter
at its input. For non-accumulative jitter, initial investigations
considered the BPD as a stand-alone device [14], and only
recently have the loop dynamics been taken into account to
obtain a more accurate BPD gain expression [15].

Despite its widespread use, linearizing the binary loop
precludes a thorough understanding of the nonlinear phase-
jitter behavior. This is true particularly if clock jitter in the
loop is small, in which case limit cycles and jitter interact
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strongly. The limits of a linear BBPLL analysis were pointed
out in [13], which motivates our nonlinear stochastic analysis.

A. Contribution of this Paper and Relation to Other Work

Recently, Markov theory has been applied to more accu-
rately model the timing jitter in a first-order BBPLL [15]–
[18], an approach known from early investigations into digital
PLLs [19]. For a reference clock with non-accumulative jitter,
Da Dalt [15] modeled the timing jitter as a Markov chain
and derived a general BPD gain expression. By modeling the
loop as a delayed Markov chain, Chun and Kennedy [16]
gave an extension to a DBBPLL with nonzero loop delay and
evaluated the timing-jitter performance. For a reference clock
with accumulative jitter, our approach in [17] was to model the
timing jitter as a discrete-time Markov process. A numerical
solution of the Chapman-Kolmogorov equation allowed us
to compute the steady-state timing jitter probability density
function (PDF) and reveal its non-Gaussianity. An extension
to a DBBPLL with nonzero loop delay was given in [18].

The aim of this paper is to provide an exact statistical
analysis of the steady-state timing jitter in a first-order BBPLL
when the reference clock is subject to accumulative jitter,thus
analytically verifying our results in [17] and complementing
previous work on the non-accumulative jitter case [15], [16].

The first contribution is to elaborate on the analogy between
BBPLLs and delta modulation, which has appeared in the
literature [1], [20], [21] but has never been fully exploited.
In Sec. II a detailed comparison of the difference equations
of both systems shows why and to what extent a first-order
BBPLL can be viewed as a single-integration delta modulator
(DM) in the phase domain. The analogy provides an intuitive
description of the nonlinear loop behavior, and allows us to
relate dither/hunting jitter and slew-rate limiting in a BBPLL
to granular noise and slope overload in a DM.

The main contribution of this paper is the analysis of a
sign-dependent random walk (SDRW) and its application to a
first-order BBPLL. In Sec. III we formally define the SDRW
as a RW whose step distribution depends on the sign of the
RW’s current position; a similar model was considered in [22],
[23]. It will be shown that the SDRW is a suitable model for
the loop’s statistical timing-jitter behavior. The analogy with
a DM enables us to apply and generalize existing theory on
delta modulation. In particular, extending Fine’s resultsin [24],
we investigate the limiting behavior of the SDRW by deriving
its asymptotic characteristic function, from which analytical
expressions for the first four cumulants will be obtained. In
Sec. IV the cumulant expressions will be applied to statistically
analyze the timing jitter. We will show how varying the RMS
clock jitter and the frequency offset influences the static timing
offset; that the RMS timing jitter is constant for small RMS
clock jitter and grows quadratically with large RMS clock
jitter; and that there exists an optimal bang-bang phase step for
minimum RMS timing jitter. Computing the kurtosis reveals
that the timing jitter is largely non-Gaussian.

II. F IRST-ORDER BBPLL AS DM IN THE PHASE DOMAIN

This section elaborates on the analogy of viewing a first-
order BBPLL as a single-integration DM in the phase domain.

Granular noise

Slove overload

t

x(t)

x̃(t)

δ

Ts

Fig. 2. A DM provides a staircase approximation of an analog signal [25].

We compare in detail the difference equations of both systems
and use delta modulation terminology [25]–[27] to provide an
intuitive description of the nonlinear BBPLL behavior.

A. Delta Modulation: Principle and Discrete-Time Model

A DM operates a 1-bit quantizer, a sampler and an integrator
inside a feedback loop to provide a staircase approximation
of an oversampled analog signal, as shown in Fig. 2 for a
sinusoidal signalx(t) [25]. At every sampling periodTs, the
staircase signal̃x(t) that approximatesx(t) is increased or
decreased by the quantization step sizeδ. In this manner, a DM
tracks an analog signal by changing the steps in the direction
of the signal’s slope, a behavior also exhibited by a BBPLL.

The performance of a DM is limited by two types of
distortion [26]. Quantization distortion (granular noise) is
caused by the granularity of the quantizer and occurs when
x̃(t) hunts aroundx(t). Slope overload distortion is due to
the DM’s limited tracking speed and occurs when the slope
of x(t) exceeds the slopeδ/Ts of x̃(t). For a given sampling
periodTs, a smallδ will reduce granular noise but easily lead
to slope overload; a largeδ will allow the DM to track a
fast varying signal but at the cost of increased granular noise.
Minimizing both distortions results in a trade-off in selecting
δ, a trade-off that also exists in a BBPLL.

Although implemented mostly with analog circuits and thus
operated in continuous-time, a DM can be equally described
at the sampling instants by the discrete-time model shown in
Fig. 3 [27]. Given the sequence of input samplesxn = x(nTs)
for n ≥ 0, taken fromx(t) everyTs seconds (oversampling),
a DM generates the staircase approximation recursively by

x̃n = x̃n−1 + δ sgn(xn − x̃n−1) (1)

wherex̃n is the staircase value fornTs ≤ t < (n + 1)Ts and
the quantizer is modeled by the signum function, defined as
sgn x = 1 for x ≥ 0 and sgn x = − 1 for x < 0.
The difference between the current input samplexn and the
previous staircase approximationx̃n−1 is binary quantized into
±δ, and added tõxn−1 to form the approximation for the next
input sample. The accumulation of the quantizer output values
is represented by the discrete-time integrator with transfer
function z−1/(1 − z−1), the additional delay being part of
any sampled feedback loop. Viewing the valuex̃n−1 that is
subtracted fromxn as a prediction̂xn = x̃n−1, we can define
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Fig. 3. Discrete-time equivalent model of a DM [27].

the prediction error

en = xn − x̂n (2)

which expresses the amount by which the input may be
predicted exactly. Recursively, the sequence of predictions
{x̂n} is produced by

x̂n+1 = x̂n + δ sgn en (3)

and the corresponding prediction error sequence{en} by

en+1 = en + xn+1 − xn − δ sgn en. (4)

Equation (4) illustrates the dependence of the prediction
error on the discrete-time derivative1 xn+1 − xn and thus on
the slope of the analog signalx(t). In particular, slope overload
is prevented if the no-overload condition [26]

max
∣

∣

∣

dx(t)

dt

∣

∣

∣
<

δ

Ts
(5)

is satisfied, a condition that determines slew-rate limiting in
the BBPLL.

B. Phase-Domain Model of a First-Order BBPLL

For a first-order BBPLL, both architectures in Fig. 1 may
be represented by the block diagram in Fig. 4, assuming a
100% data transition density for the CDR loop in Fig. 1(a)
[2]. We now rederive the difference equation governing the
phase error in the phase domain [2], [7], following a derivation
similar to the one in [19]. To emphasize its sampling nature,
the BPD is represented as a sampler whose input signal (the
reference clock) is sampled by the VCO clock. Since the loop
is first order, the LF consists of a proportional path with gain
coefficientKP . The VCO is modeled as a linear block, with
nominal frequencyf0 and frequency gainKF.

The reference clock signal is a square wave of the form

vr(t) = sgn[sin(ω0t + θr(t))] (6)

which alternates between+1 and −1. We assume that its
frequency be equal to the nominal VCO frequencyω0 = 2πf0

(locked loop); any phase and frequency deviations will be
incorporated into the excess phaseθr(t), such as random phase
noise and an actual frequency offset between both clocks.

The reference clock is sampled by the VCO clock; the
sampling instants are the times of occurrence of the rising

1More precisely, it is the backward-difference of the sampled input signal,
which may be viewed as the discrete-time approximation to the continuous-
time derivative of the input signal [26].
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Fig. 4. Block diagram of a first-order BBPLL.

VCO clock edges. Denoting the time of thenth sampling
instant bytn, the sample value taken attn is the BPD output

εn = vr(tn) = sgn[sin(ω0tn + θr,n)] (7)

where θr,n = θr(tn) is the sampled reference clock phase.
The BPD output is either+1 or −1, indicating whether
the reference clock has been sampled late or early with
respect to itsnth rising clock edge; no attempt is made to
measure the actual time deviation from the clock edge, a
feature significantly different from a linear PD [1]. The BPD
output drives the VCO through the LF gainKP , changing the
VCO frequency so as to bring the sampling instants closer
to the rising reference clock edges. Since the BPD values
are binary, the VCO toggles between the two frequencies
f0+fbb andf0−fbb which are set by the bang-bang frequency
stepfbb = KP KF. During thenth update period—the time
between the consecutive sampling instantstn and tn+1—the
VCO operates at the frequencyf0 + fbbεn, and so produces
the nonuniform sampling instants

tn+1 = tn +
1

f0 + fbbεn
= tn +

T0

1 + (fbb/f0)εn
(8)

for n ≥ 0. In a practical application, the bang-bang frequency
stepfbb is much smaller than the nominal VCO frequencyf0,
in a CDR application typically around0.1% [2]. Therefore,
fbb/f0 ≪ 1, and with the approximation1/(1 + x) ∼= 1 − x
for x close to zero we can write (8) as

tn+1
∼= tn + T0 −

θbb

ω0
εn (9)

where θbb = 2πfbb/f0 is the bang-bang phase step of the
loop. Writing (9) as a sum, assumingt0 = 0, and plugging
the result into (7) yields

εn = sgn

[

sin

(

θr,n − θbb

n−1
∑

i=0

εi

)]

. (10)

The term involving the sum is the VCO phaseθv,n during
the nth update period. Writing it recursively as

θv,n+1 = θv,n + θbbεn (11)

shows that the BPD outputεn causes the VCO phase to ramp
up or down byθbb during every update period. Now define
the phase errorφn as

φn = θr,n − θv,n (12)

so thatεn = sgnφn for −π ≤ φn ≤ π from (10). Thus,
with (11) and (12) we obtain the difference equation

φn+1 = φn + θr,n+1 − θr,n − θbb sgnφn (13)
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Fig. 5. Phase-domain model of a first-order BBPLL.

which governs the phase-error evolution as a function of the
reference clock phase samples. The BBPLL operation in the
phase domain, as expressed by (11)–(13), is summarized by
the discrete-time model in Fig. 5.

C. First-Order BBPLL as DM in the Phase Domain

Comparing the models in Fig. 3 and Fig. 5 shows that
for the given approximation, a first-order BBPLL can be
viewed as performing single-integration delta modulationin
the phase domain. In a DM, the sequence{x̂n} produced
by (3) forms a sequence of predictions for the input samples
{xn}. Changes in the prediction occur in steps of the step
sizeδ, and the introduced error is the prediction erroren. By
analogy, in a first-order BBPLL, the sequence of VCO phases
{θv,n} produced by (11) forms a sequence of predictions for
the reference clock phase samples{θr,n}. Changes in the
prediction occur in steps of the bang-bang phase stepθbb, and
the phase errorφn is the equivalent of the prediction erroren

in the DM. Furthermore, the sampling frequencyfs in the DM
corresponds to the nominal VCO frequencyf0 in the BBPLL.
Since a practical DM contains a zero-order hold circuit in
its feedback loop [25], the staircase signal in Fig. 2 must be
replaced by a signal with ramps, so that the behavior of both
systems also correspond in continuous-time (compare Fig. 8
in [2]).

Referring to [28], Walker [2] provides an analogy between
a second-order BBPLL and a sigma-delta modulator (SDM),
showing that the proportional path performs first-order SD
modulation on the frequency offset. The analogy with a DM
has previously only been mentioned. Greshishchev et. al.
[1] point out the similarity of a second-order binary PLL
to a double-integration DM with prediction. In a slightly
different context, an analogy with a DM has been established
for the delay/phase-locked loop with BPD proposed in [20].
Interestingly, Muller and Leblebici [21] note that the formula
for the onset of slew-rate limiting in a first-order BBPLL,
which is known from [2], corresponds to the slope overload
condition in a DM, which we will explicitly show below.

Although a SDM and a DM are intimately related [29],
the argument to interpret the BBPLL in favor of a DM is
the tracking behavior that is fundamental to both systems.
Clearly, tracking performed by a DM in the voltage domain
corresponds to tracking performed by a BBPLL in the phase
domain. This implies that the distortions due to quantization
described in Fig. 2 also occur in a BBPLL. Here, granular
noise is commonly called self-generated hunting jitter [2], [21]

or dither jitter2 [14], [30], referring to the VCO phase hunting
or dithering around the reference clock phase. Slope overload
refers to slewing or slew-rate limiting [20], [31], usuallyin
the context of tracking a modulated reference clock. From
the analogy with a DM, slewing in a first-order BBPLL is
prevented if the derivative ofθr(t) satisfies condition (5):

max
∣

∣

∣

dθr(t)

dt

∣

∣

∣
<

θbb

T0
= 2πfbb. (14)

As an example, consider a sinusoidally phase-modulated
reference clock with excess phaseθr(t) = A sin(2πfmt),
whereA is the modulation amplitude andfm is the modulation
frequency. Using (14), slewing is prevented ifA < fbb/fm,
which is the formula given in [2], [8], [21]. Similar to the
trade-off in selecting the step sizeδ in a DM, there is a trade-
off in selecting the bang-bang phase stepθbb. A small θbb

will reduce hunting jitter, but it will also restrict the maximum
modulation frequency in order to avoid additional jitter from
slope overload; a largeθbb will allow a higher modulation
frequency, but it will incur increased hunting jitter due tothe
coarser phase updates. In Sec. IV-D we will see that this trade-
off also exists in a statistical sense—in choosing the optimal
phase step to obtain the minimum RMS timing jitter.

D. Stochastic Difference Equation

Having elaborated on the analogy between a BBPLL and a
DM, we now consider the stochastic difference equation that
describes the stochastic phase-jitter process in the presence of
accumulative reference clock jitter, complementing previous
work on the non-accumulative jitter case [15], [16]. As in
these references we assume ideal PLL building blocks, but
we also consider a frequency offset∆f between reference
clock and VCO clock, which almost always occurs in practice
[6]. Hence, the excess phase of the reference clock isθr(t) =
∆ωt+ω0α(t), where∆ω = 2π∆f . The phase-noise termα(t)
is a (nonstationary) Wiener process with linearly increasing
variance, which gives rise to the Gaussian accumulative jitter
[10]. Samplingθr(t) at the nonuniform time instants yields

θr,n+1 − θr,n = ∆ω(tn+1 − tn)+ω0(α(tn+1)−α(tn)) (15)

where θr,n = θr(tn) as before. Althoughα(t) has station-
ary increments [10], the nonuniform sampling instants cause
the increment processα(tn+1) − α(tn) to be nonstationary.
But since the deviations from the uniform sampling instants
are small, we can use the uniform sampling approximation
tn+1 = tn + T0 [2] to approximate the increment process by
α(tn+1) − α(tn) ∼= α((n + 1)T0) − α(nT0) = ξn, where the
jitter random variable (RV)ξn is Gaussian distributed with
mean zero and varianceσ2 (the standard deviationσ will be
called RMS clock jitter) and the sequence{ξn} is independent,
identically distributed (IID). Replacing the increment process
in (15) by ξn, substituting (9) fortn+1 − tn and plugging
the result into (13) gives the stochastic difference equation
describing the phase jitter:

φn+1 = φn + ∆ωT0 − θ′bb sgn φn + ω0ξn. (16)

2We will use the term hunting jitter to avoid confusion with the term dither
meaning an intentionally applied noise source.
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Here θ′bb = (1 + ∆f/f0)θbb is the modified bang-bang
phase step; neglected in [2], [7], it accounts for the phase
update due to the frequency offset∆f and was considered
by Hsieh and Yang [32] (see also [19] for the zero-crossing
DPLL). Nonetheless, since∆f is typically much smaller than
f0 [6] we assumeθ′bb

∼= θbb in the following.
To be consistent with the aforementioned literature, the

remainder of this paper treats the equivalent timing-jitter
model. Since the timing jitter at thenth sampling instant is
∆tn = φn/ω0, we obtain from (16) the stochastic difference
equation

∆tn+1 = ∆tn + ∆T − K sgn∆tn + ξn (17)

with ∆T = ∆f/f2
0 being the period deviation. The period

quantization of the VCO clock isK = KP KT (loop gain),
where the VCO period gainKT = KF/f2

0 [7], [9]. For
convenience we use the terminology introduced for the phase-
domain model and call∆T the frequency offset andK the
bang-bang phase step.

Given the stability condition|∆T | < K [7], we assume
without loss of generality that∆T is positive and irrational;
the latter assumption is justified because the natural tolerances
in an implementation make the exact frequency of the refer-
ence clock and the free-running VCO clock unknown, and with
probability1 they will be irrational [6], [7]. For simplicity we
take∆T ∈ [0, K) and let∆T = 0 denote the case when both
clock frequencies are practically identical, i.e., when∆T is a
small irrational number.

Given the stochastic difference equation (17), the statistical
analysis of the steady-state timing jitter will be based on the
SDRW theory developed in the following section.

III. S IGN-DEPENDENTRANDOM WALK THEORY

The SDRW studied in this section is defined as a RW whose
transition probability (or step distribution) depends on the sign
of the RW’s current position. To investigate the asymptotic
behavior of the SDRW, we derive its limiting characteristic
function (CF), from which analytical expressions for the first
four cumulants will be obtained.

A. Sign-Dependent Random Walk Model

First, we recall the definition of a RW [33]. Letξ, ξ1, ξ2, . . .
be a sequence of IID RVs with distribution functionF . Let
S0 = 0, and consider thenth partial sum of the RVs,
recursively defined as

Sn+1 = Sn + ξn+1 (18)

for n ≥ 0. The sequence of RVs{Sn} is called a RW starting
at the origin, andξ is called the step RV (or step) with the
step distributionF .

Now let ξ±, ξ±1 , ξ±2 , . . . be two sequences of IID RVs with
respective distribution functionsF±. Let U0 = 0, and define
in accordance with (18) a sequence recursively as

Un+1 =

{

Un + ξ+
n+1, Un ≥ 0

Un + ξ−n+1, Un < 0
(19)

for n ≥ 0. The sequence of RVs{Un} is called a sign-
dependent RW starting at the origin because the RV realizing
the next step depends on the sign3 of Un. Accordingly, ξ+

and ξ− are called the positive and negative step RVs and
correspond to the steps taken in the positive and negative half-
line, respectively. Throughout this section we assume thatthe
distribution functionsF±

(i) are continuous, and satisfy0 < F±(0) < 1 so that the
steps taken in either half-line may be both positive and
negative;

(ii) possess moments of sufficiently high order so that the
cumulants derived later exist;

(iii) have mean values satisfyingµ+ < 0 andµ− > 0 (drift
conditions) so that the SDRW exhibits a convergent
limiting behavior.

Although no proof for the statement in (iii) is given, the
assumed drift conditions may be intuitively justified as follows.
A RW has the property (see Theorem 1 in Appendix A) that
if the mean of the stepξ is positive (µ > 0), the RW will drift
to ∞ with probability1. Similarly, if the mean of the step is
negative (µ < 0), the RW will drift to −∞ with probability1.
This behavior implies for the SDRW that ifµ+ < 0 and
µ− > 0, the SDRW will drift to−∞ when in the positive half-
line, and to∞ when in the negative half-line, so that it will
eventually fluctuate around the origin, exhibiting a convergent
limiting behavior.

We mention that two similar models emphasizing the sign
dependency have recently been treated in the literature. Carl-
sund [22] considers a random walk on the integers with sign-
dependent transition probabilities. In a similar work [23],
Lefebvre treats a Wiener process with infinitesimal parameters
(mean and variance) depending on the sign of the process,
a model he calls an asymmetric or sign-dependent Wiener
process. Both models are different from the SDRW defined
above, and only the first-passage time problem is studied.

Finally, to place the BBPLL in the context of the SDRW,
consider the timing-jitter model (17) and split the signum
function according to whether∆tn is nonnegative or negative:

∆tn+1 =

{

∆tn + ∆T − K + ξn, ∆tn ≥ 0

∆tn + ∆T + K + ξn, ∆tn < 0.
(20)

Since the jitter RVξn has zero mean, the model (20)
can be obtained from the SDRW model (19) by setting
µ+ = ∆T −K, µ− = ∆T +K andσ2

± = σ2, where the latter
is the variance of the Gaussian reference clock jitter. Given
these parameters, we may therefore view the timing-jitter
process as performing a sign-dependent Gaussian random walk
(SDGRW)—that is, a SDRW with Gaussian step distributions.
This relation leads us to investigate the limiting behaviorof
the SDRW in the following, and apply the obtained results to
the steady-state behavior of the timing jitter in Sec. IV.

3According to (19), the definition of the sign includes the equality in the
positive argument; no complications arise whenF± are continuous, as in our
assumption (i).
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B. Limiting CF

The limiting behavior of the SDRW is obtained from the
convergence of the sequence of RVs{Un} to some limiting
RV U as n → ∞. Given the various modes of convergence,
we will consider convergence in distribution. Denoting the
distribution of Un as FUn

, the sequence{Un} is said to
converge in distribution toU if the sequence of distributions
{FUn

} converges to some limiting distributionFU [33]. As in
[24], it is more convenient to investigate the convergence of
the sequence of CFs{φUn

} to some limiting CFφU , where
the CFφUn

of the SDRW at epochn is defined as

φUn
(z) ≡ EeizUn =

∫ ∞

−∞

eizu dFUn
(u) (21)

with z being a real variable andE denoting statistical expec-
tation. (For notational simplicity, the argumentz of a CF will
be omitted throughout.) We now derive the limiting CFφU by
extending Fine’s result for a DM [24]. In the following, RVs
with subscript′′+′′ (′′−′′) will refer to a RW with step RVξ+

(ξ−). (For example,M+
+ is the maximum of a RW with step

RV ξ+). To obtain a recursion forφUn
, write (19) as

Un+1 = Un + ξ+
n+11[0,∞)(Un) + ξ−n+11(−∞,0)(Un) (22)

where1A is the indicator function of the setA. Using the
decompositionUn = Ûn + Ǔn, whereÛn = max{0, Un} is
the positive part ofUn with the CF

φ+
Un

=

∫ ∞

0

eizu dFUn
(u) (23)

andǓn = min{0, Un} is the negative part ofUn with the CF

φ−
Un

=

∫ 0

−∞

eizu dFUn
(u) (24)

we have

Un+1 = (Ûn + ξ+
n+1)1[0,∞)(Un) + (Ǔn + ξ−n+1)1(−∞,0)(Un).

(25)
Multiplying both sides byiz, exponentiating and taking

expectation gives

φUn+1
= φξ+

n+1

φ+
Un

+ φξ−

n+1

φ−
Un

(26)

a recursion forφUn
. Because we are interested in the limiting

behavior of the sequence{Un}, we let n → ∞ in (26) to
obtain the limiting CFφU . As shown in Appendix A, the
limiting CF is given by

φU = φXφM+

+

φM−

−

(27)

where

φX =
φξ+

− φξ−

iz(µ+ − µ−)
. (28)

As in [24], becauseφU is a product of CFs, the limiting
RV U can be decomposed into the sum of independent RVs

U = X + M+
+ + M−

− (29)

whereM+
+ is distributed as the maximum of a RW with step

RV ξ+, andM−
− is distributed as the minimum of a RW with

step RVξ− (see Appendix A).

An illustrative interpretation ofX can be given ifξ± have
identical distribution functions up to a shift of mean. Then, by
writing φξ± = exp(izµ±)φξ, where the step RVξ has zero
mean, the CFφX in (28) becomes

φX =
eizµ+ − eizµ−

iz(µ+ − µ−)
φξ. (30)

Since the fraction is the CF of a uniform distribution [34,
p.1880], we have the decompositionX = η + ξ, whereη is
uniformly distributed on[µ+, µ−], so that finally

U = η + ξ + M+
+ + M−

− . (31)

If, in addition, we assumeµ+ = −K and µ− = K
where K > 0, then η is uniformly distributed on[−K, K]
and we obtain Fine’s (31) (after subtractingξ) [24]. Besides
providing insight into the limiting behavior of the SDRW, the
decomposition into a sum of independent RVs simplifies the
computation of the cumulants in the sequel.

C. Cumulants of the SDRW

Moments and cumulants describe the statistical properties
of a RV or, equivalently, its distribution. Given a RVX with
CF φX , its kth momentEXk is defined as

EXk = i−k dk

dzk
φX(z)

∣

∣

∣

z=0
(32)

and itskth cumulantck,X as

ck,X = i−k dk

dzk
log φX(z)

∣

∣

∣

z=0
(33)

wherelog φX is the cumulant generating function [34, p.370].
Cumulants enjoy the additivity property: thekth cumulant of a
sum of independent RVs equals the sum of thekth cumulants
of the single RVs [34, p.371]. Applying this property to the
decomposition (29) gives the simple relation

ck,U = ck,X + ck,M+

+

+ ck,M−

−

(34)

for which we now derive general expressions fork = 1, ..., 4.
The cumulantsck,M+

+

and ck,M−

−

can be directly ob-
tained from their cumulant generating functions. Indeed, from
Spitzer’s identity (71) (see Theorem 2 in Appendix A), the
cumulant generating function of the maximum RVM+

+ is

log φM+

+

=

∞
∑

n=1

1

n
(φŜ+

n

− 1) (35)

and hence, by the cumulant definition (33),

ck,M+

+

=

∞
∑

n=1

1

n
E((Ŝ+

n )k) =

∞
∑

n=1

1

n

∫ ∞

0

xk dF+
n (x). (36)

Here, the last equality is due to the fact thatE((Ŝ+
n )k)

is the kth moment ofŜ+
n ({S+

n } being a RW with step RV
ξ+) whose distribution is concentrated on[0,∞). Similarly,
from (72) the cumulant generating function of the minimum
RV M−

− is

log φM−

−

=

∞
∑

n=1

1

n
(φŠ−

n

− 1) (37)
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from which we find the cumulants

ck,M−

−

=
∞
∑

n=1

1

n
E((Š−

n )k) =
∞
∑

n=1

1

n

∫ 0

−∞

xk dF−
n (x). (38)

Here, the last equality is due to the fact thatE((Š−
n )k) is

the kth moment ofŠ−
n ({S−

n } being a RW with step RVξ−)
whose distribution is concentrated on(−∞, 0].

The cumulantsck,X will be obtained from the correspond-
ing momentsEXk. In particular, evaluating thekth derivative
of φX in (28) at zero and using the moment definition (32),
we obtain

EXk =
Eξk+1

+ − Eξk+1
−

k(µ+ − µ−)
. (39)

Note that the firstk moments ofX exist if the firstk + 1
moments ofξ± exist (see also assumption (ii)). Inserting (39)
into the moment-cumulant transformations [34, p.371], andthe
result into (34), gives the following expressions for the first
four cumulants of the SDRW:

• First cumulant (mean):

µU =
Eξ2

+ − Eξ2
−

2(µ+ − µ−)
+ c1,M+

+

+ c1,M−

−

. (40)

• Second cumulant (variance):

σ2
U =

Eξ3
+ − Eξ3

−

3(µ+ − µ−)
− 1

4

(

Eξ2
+ − Eξ2

−

µ+ − µ−

)2

+ c2,M+

+

+ c2,M−

−

. (41)

• Third cumulant (third central moment):

c3,U =
Eξ4

+ − Eξ4
−

4(µ+ − µ−)
− (Eξ2

+ − Eξ2
−)(Eξ3

+ − Eξ3
−)

2(µ+ − µ−)2

+
1

4

(

Eξ2
+ − Eξ2

−

µ+ − µ−

)3

+ c3,M+

+

+ c3,M−

−

. (42)

• Fourth cumulant:

c4,U =
Eξ5

+ − Eξ5
−

5(µ+ − µ−)

− 3(Eξ2
+ − Eξ2

−)(Eξ4
+ − Eξ4

−) + 2(Eξ3
+ − Eξ3

−)2

6(µ+ − µ−)2

+
(Eξ2

+ − Eξ2
−)2(Eξ3

+ − Eξ3
−)

(µ+ − µ−)3
− 3

8

(

Eξ2
+ − Eξ2

−

µ+ − µ−

)4

+ c4,M+

+

+ c4,M−

−

. (43)

Equations (40)–(43) express the first four cumulants in
terms of the moments of the step RVsξ± and the cumulants
of the maximum and minimum RVsM+

+ andM−
− , which are

given by (36) and (38).

D. Cumulants of the SDGRW

In general, given arbitrary step distributionsF±, it appears
difficult to further simplify (40)–(43) because then-fold
convolutionF±

n (x) = P (ξ±1 + . . . + ξ±n < x) in (36) and (38)
may not be expressible in simple terms. For Gaussian step
distributions, however, the convolution is easily performed,
leading to the explicit cumulant expressions derived in the

following. The Gaussianity of the step distributions also sug-
gests the name SDGRW introduced above, in analogy with the
widely used Gaussian random walk [33].

To derive the cumulants of the SDGRW, letξ1, ξ2, . . . be a
sequence of IID RVs with Gaussian distribution functionF .
Given the meanµ and the varianceσ2, then-fold convolution
Fn(x) = P (ξ1 + . . . + ξn < x) is Gaussian with meannµ
and variancenσ2, and so the integrals in (36) and (38) can be
evaluated explicitly. SinceF has the density

f(x; µ, σ2) =
1√
2πσ

e−(x−µ)2/(2σ2) (44)

we have from (36) that

ck,M+

+

=

∞
∑

n=1

1

n

∫ ∞

0

xkfn(x; µ+, σ2
+) dx (45)

and from (38), after the change of variablex → −x, that

ck,M−

−

= (−1)k
∞
∑

n=1

1

n

∫ ∞

0

xkfn(x;−µ−, σ2
−) dx (46)

where fn(x; µ, σ2) ≡ f(x; nµ, nσ2). Formal integration
shows that fork = 1, ..., 4

∞
∑

n=1

1

n

∫ ∞

0

xkfn(x; µ, σ2) dx = σkGk

(

−µ

σ

)

(47)

where

Gk(x) ≡
∞
∑

n=1

gk(n, x) (48)

and

g1(n, x) =
1√
2πn

e−nx2/2 − 1

2
x erfc

(
√

n

2
x

)

(49)

g2(n, x) =
1

2
(nx2 + 1) erfc

(
√

n

2
x

)

−
√

n

2π
xe−nx2/2 (50)

g3(n, x) =

√

n

2π
(nx2 + 2)e−nx2/2

− 1

2
nx(nx2 + 3) erfc

(
√

n

2
x

)

(51)

g4(n, x) =
1

2
n(n2x4 + 6nx2 + 3) erfc

(
√

n

2
x

)

−
√

n

2π
nx(nx2 + 5)e−nx2/2 (52)

with erfc being the complementary error function. The Gaus-
sian distribution has the property that higher-order moments
can be expressed in terms of the meanµ and the variance
σ2 since the latter two uniquely describe the distribution. In
particular, the first five moments of the Gaussian distributed
RV ξ are given byEξ2 = µ2 + σ2, Eξ3 = µ3 + 3µσ2,
Eξ4 = µ4+6µ2σ2+3σ4 andEξ5 = µ5+10µ3σ2+15µσ4 [34,
p.713]. Substitution of these moments together with (45)–(47)
into (40)–(43) yields the following expressions for the first
four cumulants of the SDGRW:
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• First cumulant (mean):

µU =
µ+ + µ−

2
+

1

2

σ2
+ − σ2

−

µ+ − µ−

+ σ+G1

(

−µ+

σ+

)

− σ−G1

(

µ−

σ−

)

. (53)

• Second cumulant (variance):

σ2
U =

(µ+ − µ−)2

12
+

σ2
+ + σ2

−

2
− 1

4

(

σ2
+ − σ2

−

µ+ − µ−

)2

+ σ2
+G2

(

−µ+

σ+

)

+ σ2
−G2

(

µ−

σ−

)

. (54)

• Third cumulant (third central moment):

c3,U =
(µ+ − µ−)(σ2

+ − σ2
−)

4
+

1

4

(

σ2
+ − σ2

−

µ+ − µ−

)3

+ σ3
+G3

(

−µ+

σ+

)

− σ3
−G3

(

µ−

σ−

)

. (55)

• Fourth cumulant:

c4,U = − (µ+ − µ−)4

120
+

(σ2
+ − σ2

−)2

4
− 3

8

(

σ2
+ − σ2

−

µ+ − µ−

)4

+ σ4
+G4

(

−µ+

σ+

)

+ σ4
−G4

(

µ−

σ−

)

. (56)

These expressions generalize those in [24], [29], [35].

IV. STATISTICAL ANALYSIS OF FIRST-ORDER BBPLL
USING SIGN-DEPENDENTRANDOM WALK THEORY

The SDRW theory developed in the previous section will
now be applied to statistically analyze the steady-state timing
jitter in a first-order BBPLL. As mentioned above, the timing-
jitter model (20) can be recovered from the SDRW model (19)
by assuming the step RVsξ± to be Gaussian distributed with
meansµ+ = ∆T −K andµ− = ∆T +K and equal variances
σ2
± = σ2. Assuming ideal PLL blocks, the timing-jitter process

may therefore be viewed as a SDGRW, and the requirements
µ+ < 0 andµ− > 0 for the SDGRW to exhibit a convergent
limiting behavior agree with the condition|∆T | < K for
the loop to be stable. Hence, we can immediately apply the
cumulant expressions (53)–(56) in the analysis. In particular,
the first cumulant (mean) and the second cumulant (variance)
correspond to the static timing offset and the RMS timing
jitter, respectively, and quantify the timing-jitter performance;
the fourth cumulant is used in the definition of the kurtosis
and quantifies the non-Gaussianity of the timing-jitter PDF.

The analytical cumulant expressions will be compared
against Monte-Carlo simulation of (17), verifying also our
numerical results in [17]. For the each simulation,107 re-
alizations of length100 were generated and the statistics
(histogram and cumulants) were computed for the last time
instant. The mean, variance and kurtosis were computed using
the corresponding MATLAB built-in functions. To illustrate
the following discussion, Fig. 6 plots several timing-jitter
PDFs obtained from the numerical method described in [17].

A. Decomposition of the Steady-State Timing Jitter∆t

We begin the analysis by recalling that (31) decomposes
the limiting behavior of the SDRW into a sum of statistically
independent contributions. Applying this decomposition to the
steady-state timing jitter provides valuable insight intoits
nonlinear statistical behavior. More specifically, the steady-
state timing jitter∆t can be decomposed as

∆t = η + ξ + o (57)

where the RVη is uniformly distributed on[∆T−K, ∆T +K]
and the jitter RVξ is Gaussian distributed with mean zero and
varianceσ2. The RV o is distributed (in the sense of equality
in distribution) as the sum of the maximum and minimum
of a RW as discussed above. Similar to the interpretation
for a DM given in [24] and [29], the decomposition (57)
suggests interpreting the timing jitter in terms of the Gaussian
reference clock jitter and additionally introduced staticand
dynamic jitter components, as further discussed in Sec. II-C.
In particular, due to its uniform distribution we refer to the RV
η as self-generated hunting jitter (static component), a term
which was used by Walker [2] but without giving a precise
definition. Hunting jitter is introduced by the coarseness of
the binary PD characteristic and is characterized by the VCO
phase hunting randomly around the jittered reference clock
phase. In line with the term overload noise used in DM
theory [25], we refer to the RVo as overload jitter (dynamic
component). Overload jitter is introduced by the inabilityof
the VCO phase to track the reference clock phase faster than
in steps ofK, and is characterized by a sequence of equal
VCO phase updates.

Note also that the hunting jitterη does not depend onξ,
whereas the overload jittero does depend onξ (via the RW
maximum and minimum, both of which depend onξ). This
implies that the timing jitter∆t will be dominated by hunting
jitter for smallσ and by overload jitter for largeσ. Moreover,
η being independent ofξ also means that

∆t = η for σ = 0. (58)

In other words, for a jitter-free reference clock, the timing
jitter is uniformly distributed on[∆T − K, ∆T + K]. In the
following we will repeatedly refer to the decomposition (57) to
attribute observed statistical properties to the underlying RVs.

B. Static Timing Offset∆tstat

A PLL synchronizes, in both phase and frequency, the
feedback clock with the reference clock by bringing their clock
edges in close alignment. The average time (phase) difference
between the two clocks in the locked state is the static timing
offset (static phase error). A static timing offset is a significant
problem in a BBPLL-based CDR circuit because it results in
the incoming data no longer being sampled at the center of
the data eye, thus increasing the bit error rate [3].

In our first-order loop, a static timing offset is caused by
a frequency difference∆T > 0 between the reference clock
and the VCO clock; the LF needs to have a nonzero output
to tune the VCO to its correct average frequency. When an
analog LF is used, a static timing offset may be caused by a
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Fig. 6. Steady-state timing-jitter PDF for various∆T andσ (K = 1) [17].

mismatch between the two charge-pump currents, which can
be considered as an additional frequency offset. Moreover,
the presence of reference clock jitter causes any static timing
offset to increase from its zero-jitter level [6]. We define the
static timing offset∆tstat as the statistical expectation of the
timing jitter in steady state, for which we obtain from (53) the
expression

∆tstat = ∆T + σG1

(

K − ∆T

σ

)

− σG1

(

K + ∆T

σ

)

(59)

where G1 is given by (48) and (49). Figure 7 plots∆tstat
of (59) as a function of∆T with parameterσ. The agreement
between theory and simulation verifies the obtained analytical
expression.

For ∆T = 0, the static timing offset is zero independent
of σ; the VCO clock samples the reference clock equally likely
before and after the reference clock edges. The corresponding
timing-jitter PDFs(0; σ) in Fig. 6 are symmetric about zero
and thus have zero mean.

For ∆T > 0 andσ = 0, the static timing offset equals the
frequency offset, as shown by the dashed line∆tstat = ∆T ;
a larger frequency offset requires a larger average BPD output
to tune the VCO to its correct average frequency. The result
for ∆tstat also follows from (58) since the mean of a RV
uniformly distributed on[∆T − K, ∆T + K] is ∆T .

For ∆T > 0 andσ > 0, the combined effect of frequency
offset and clock jitter causes the static timing offset to increase
from its jitter-free level, as seen by the curves exceeding the
dashed line. For small-enoughσ, though, the static timing
offset does not increase notably, even for a moderate frequency
offset; this may be attributed to the dominant hunting jitter in
this case. Note that sinceK = 1 in the figure, the loop is stable
for |∆T | < 1, which explains the increase of the curves as
∆T tends to1.

C. RMS timing jitterσ∆t

For the loop design, a quantity of main interest is the timing-
jitter varianceσ2

∆t; in practice, it is common to consider
the standard deviationσ∆t and speak of the RMS timing
jitter. Design questions to be addressed are how much jitter
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20

∆T

∆t
stat

 

 

Analytical (59) (exact)
Simulation

σ=2

1.5

1
0.6

0.3

Fig. 7. Static timing offset∆tstat versus frequency offset∆T for K = 1.

is transferred from the reference clock, how much jitter is
generated by the loop itself and what is the minimum RMS
timing jitter. An answer to these questions is given by (54),
from which we obtain the expression

σ2
∆t =

K2

3
+ σ2 + σ2G2

(

K − ∆T

σ

)

+ σ2G2

(

K + ∆T

σ

)

(60)
whereG2 is given by (48) and (50). Although this formula
is exact, its dependency on the parametersK, ∆T andσ via
the infinite seriesG2 complicates an intuitive explanation. An
approximate formula providing a simple rule of thumb for the
loop design can be derived by upper bounding the infinite
series. As shown in Appendix B, the result is

σ2
∆t ≈

K2

3
+ σ2 +

σ4

4

(

1

(K − ∆T )2
+

1

(K + ∆T )2

)

(61)

which yields

σ2
∆t ≈

K2

3
+ σ2 +

σ4

2K2
for ∆T = 0. (62)

A comparison of the exact expression (60) with the approx-
imation (61) and the simulation results is shown in Fig. 8. The
agreement between theory and simulation verifies the obtained
analytical expressions, and suggests the use of (61) for the
following explanations.

The timing-jitter behavior in different regions of the plot
can be interpreted using the decomposition (57). For smallσ,
the hunting jitter dominates so thatσ∆t is approximately
constant. Indeed, asσ tends to zero,σ∆t approaches the
small-σ asymptoteK/

√
3 which corresponds to the standard

deviation of the uniformly distributed RV in (58). Increasingσ
causesσ∆t to rise, since the effect of the Gaussian clock jitter
and the resulting overload jitter becomes gradually apparent.
For largeσ, overload jitter dominates, andσ∆t shows a linear
increase withσ on the logarithmic scale. Because the last
term in (61) is dominant in this case, we obtain the large-
σ asymptote

σ2
∆t →

σ4

4

(

1

(K − ∆T )2
+

1

(K + ∆T )2

)

(63)
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Fig. 8. RMS timing jitterσ∆t versus RMS clock jitterσ for K = 1.

which is shown by the dashed lines. Interestingly,σ∆t in-
creases proportional to the clock jitter varianceσ2, with the
proportionality factor depending onK and∆T . In particular,
zero frequency offset gives the asymptoteσ2/(

√
2K) reported

in [18]. Contrasting this asymptote with the asymptoteσ for
the non-accumulative jitter case [16] shows that the nonlinear
loop reacts differently to different clock jitter. In either jitter
case, however, the RMS timing jitterσ∆t is independent of
the loop delay in this large-σ regime (compare Fig. 7 in [16]
with Fig. 6 in [18]). In other words, even in the presence of
a loop delay, the SDRW model does capture the stochastic
timing jitter dynamics in this regime, and the timing jitter
performance can be predicted using (63).

D. Optimal BB Phase Step for Minimum RMS Timing Jitter

In Fig. 8 the RMS timing jitterσ∆t was plotted as function
of σ for a normalized bang-bang phase step (K = 1). In
practice, the RMS clock jitterσ is given, and the designer
has to chooseK such that the loop fulfills the timing-jitter
specifications, possibly achieving minimal jitter. Formula (61)
demonstrates the limits to the minimum RMS timing jitter: for
any fixedσ and∆T , there is a fundamental trade-off between
hunting jitter and overload jitter. Clearly, a smallK will yield
small hunting jitter but large overload jitter, while a large K
will yield small overload jitter but large hunting jitter.

This trade-off is illustrated in Fig. 9, which plotsσ∆t of (60)
as a function ofK for zero and nonzero frequency offset.
(Recall from Sec. II-D that a zero frequency offset means a
small irrational number close to zero). It can be seen that for
any fixedσ and∆T , there exists an optimal bang-bang phase
stepKopt that gives the minimum RMS timing jitterσ∆t,min

(symbol markers); the minima were obtained by numerically
finding the minimum of (60). Predominance of hunting jitter
and overload jitter can be ascribed to different regions of the
plot. ForK > Kopt, the timing jitter is dominated by hunting
jitter, the fundamental lower bound of which isK/

√
3 (dashed

asymptote). ForK < Kopt, the timing jitter is dominated
by overload jitter and increases rapidly asK approaches the
stability boundary at∆T (vertical dashed lines), obtained from
the stability condition|∆T | < K. The figure also shows that
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Fig. 9. Trade-off between hunting jitter and overload jitter leads to an optimal
bang-bang phase step for minimum RMS timing jitter (symbol markers).

for small σ, the minima are more sensitive to changes inK
than for largeσ; this may be crucial in a DBBPLL where
changes inK due to quantization of the DLF gainKP can
degrade the timing-jitter performance. Notice finally thatthe
minima become independent of∆T with increasingσ, in
which caseσ∆t,min is limited only by the clock jitter and
not by a frequency offset.

To further illustrate the ultimate limits to the timing-jitter
performance, we can derive an approximate closed-form for-
mula forKopt which allows us to analytically predictσ∆t,min.
In particular, setting the derivative of (61) with respect to K
to zero yields

K2
opt = ∆T 2 +

(

3σ4λ∆T 2
)1/3

+
(

σ8/(24λ∆T 2)
)1/3

(64)

whereλ = 1+
√

1 − σ4/(72∆T 4). Substituting (64) into (61)
gives an analytical prediction forσ∆t,min, which is not explic-
itly expressed here but which is plotted in Fig. 10 as a function
of σ. The numerical (exact) results were again obtained by
numerically solving for the minimum of (60), and show good
agreement with the theory. The figure illustrates that asσ
becomes smaller,σ∆t,min attains the value∆T/

√
3 of the

hunting jitter (dashed asymptotes). This value can be derived
by settingσ = 0 in (64) and plugging the resulting optimal
step sizeKopt = ∆T into the hunting jitter formulaK/

√
3.

This result also shows that, as a function ofσ, the ultimate
lower limit on the minimum RMS timing jitter can be obtained
from the case∆T = 0. Setting the derivative of (62) with
respect toK to zero givesKopt ≈ 1.107σ, which means that
for zero frequency offset, the optimal bang-bang phase stepis
approximately equal to the RMS clock jitter. Substituting this
result into (62) gives the lower limitσ∆t,min ≈ 1.348σ, which
is just the line∆T = 0 in the figure.

E. Kurtosis of∆t

To provide further insight into the loop’s nonlinear statistical
behavior, we now compute the kurtosis of the timing jitter∆t.
The kurtosis measures the degree by which a PDF deviates
from Gaussianity, and is positive for a pointy PDF and negative
for a flat-topped PDF. Since the clock jitter is assumed to be
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Fig. 10. Minimum RMS timing jitterσ∆t,min versus RMS clock jitterσ.

Gaussian distributed, a nonzero kurtosis of∆t means a non-
Gaussian timing-jitter PDF, and thus reveals the influence of
the BPD nonlinearity.

For the timing jitter, the kurtosis is defined as [34, p.1009]

kurt∆t =
c4,∆t

σ4
∆t

(65)

where the fourth cumulantc4,∆t is obtained from (56) as

c4,∆t = −2K4

15
+ σ4G4

(

K − ∆T

σ

)

+ σ4G4

(

K + ∆T

σ

)

(66)
with G4 given by (48) and (52). The kurtosiskurt∆t as
a function of σ is plotted in Fig. 11, showing again good
agreement with the simulation results.

For small σ, the kurtosis is negative and independent of
∆T ; this is due to the uniform-like (flat-topped) PDF caused
by the dominant hunting jitter. Indeed, asσ tends to zero, the
kurtosis tends to the value−1.2 for a uniform distribution [34,
p.1881]. The slight dependence of the kurtosis onσ is due to
the Gaussian jitter smoothing the edges of the uniform-like
PDF, as shown by the PDF(0; 0.2) in Fig. 6.

For largeσ, intuition suggests that the large reference clock
jitter will linearize the binary PD characteristic so that the loop
behaves linearly. The positive kurtosis in this region proves
the opposite: the loop dynamics is still nonlinear, making the
timing-jitter PDF non-Gaussian (see the PDF(0; 3) in Fig. 6).
Contrast this with the non-accumulative jitter case in [15],
[16], for which it can be shown that the timing-jitter PDF
is indeed Gaussian in this regime, leading to a linear4 loop
behavior.

Since the timing-jitter PDF is symmetric for∆T = 0,
it also follows from the figure that for one particular value
σ∗, the timing-jitter PDF will in fact be Gaussian, namely
for the value ofσ giving zero kurtosis (the zero crossing
of the corresponding curve). In this case, the loop behaves
effectively linearly, the Gaussian clock jitter with RMSσ∗

being transformed into the Gaussian timing jitter with RMS
σ∗

∆t. For ∆T = 0, finding the zero of (66) numerically and

4Recall that a linear system transforms a Gaussian PDF into another
Gaussian PDF.
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plugging the result into (60) givesσ∗ ≈ 0.83K and the RMS
timing jitter σ∗

∆t ≈ 1.02K. As a rule, the timing-jitter PDF is
well approximated by a Gaussian PDF forσ close toσ∗, but
it differs significantly for all other values ofσ.

V. CONCLUSIONS

Viewing a first-order BBPLL as a single-integration DM
in the phase domain allows us to explain the bang-bang
loop behavior using existing delta-modulation terminology and
theory, linking hunting jitter and slew-rate limiting in a BBPLL
to granular noise and slope overload in a DM.

When the reference clock is contaminated by accumulative
jitter, the stochastic evolution of the timing jitter can be
modeled as a SDRW. Analytical expressions for the first four
cumulants of the SDRW have been obtained and applied to the
BBPLL to statistically quantify the steady-state timing jitter.
The main results can be summarized as follows:

• The steady-state timing jitter can be decomposed into
three statistically independent components: accumulative
jitter of the reference clock, hunting jitter and overload
jitter. The latter two are static and dynamic components
that are due to the binary phase-error quantization and
that also occur in a DM [24].

• The static timing offset described by (59) equals the
frequency offset for a jitter-free reference clock. Although
the presence of clock jitter causes the timing offset to
exceed its jitter-free value, the increased timing offset
stays within limits, even for a moderate frequency offset,
when the clock jitter is not too large; this behavior is due
to the self-generated hunting jitter.

• Formula (61) explains intuitively how the RMS timing
jitter depends on the bang-bang phase step, the RMS
clock jitter and the frequency offset. For a fixed bang-
bang phase step, the RMS timing jitter is constant for
small RMS clock jitter and grows quadratically with
large RMS clock jitter. For fixed RMS clock jitter, the
hunting jitter is proportional to the bang-bang phase step,
while the overload jitter is inversely proportional to it—a
behavior also displayed by a DM [24].
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• The opposing dependence of hunting jitter and overload
jitter on the bang-bang phase step entails a trade-off
in choosing the optimal phase step for minimum RMS
timing jitter. For zero frequency offset, the optimal phase
step is approximately equal to the RMS clock jitter.

• Computing the kurtosis has revealed the effect of the BPD
nonlinearity: the timing-jitter PDF is Gaussian-like forσ
close to some valueσ∗ (for which it is in fact Gaussian),
but it is distinctively non-Gaussian for all otherσ values.

The advantage of having treated the SDRW in the general
form (19) is that non-ideal factors can be considered in the
analysis. Mismatches between the two charge-pump currents
or between the two output levels of the BPD can be accounted
for by assuming appropriate mean values for the step RVs.
Different reference clock jitter distributions can be taken into
account by choosing appropriate step distributions. Flicker
noise, which corresponds to accumulative jitter with corre-
lation [9], can be modeled by assuming each sequence of step
RVs to be correlated, but separate cumulant expressions need
to be derived in this case. Non-zero loop delay cannot be fully
modeled by the SDRW, but as was pointed in Sec. IV-C, the
model does give a good prediction of the RMS timing jitter
when the RMS reference clock jitter is large. To conclude,
although the obtained analytical expressions enable an exact
statistical loop analysis, the SDRW model is limited in that
it only applies to a first-order loop subject to accumulative
reference clock jitter.

The analysis of the present paper and of [15], [16], [18]
may be extended into several directions. First, since a practical
oscillator exhibits both non-accumulative and accumulative
jitter [9], a more accurate loop analysis needs to consider the
combined effect of both types of jitter, as well as the jitterfrom
the VCO. Second, since BBPLLs are typically implemented
as second-order loops [4], [5], the dynamics due to the LF
integral path must be taken into account, particularly when
the loop stability factor [2] is small. Further to this point,
elaborating on the analogy between second-order BBPLLs and
double-integration delta modulation with prediction [1] may
turn out to be fruitful, in that existing delta-modulation theory
[25] could also be applied to second-order loops. Despite the
current restriction to first-order BBPLLs, the applicationof
Markov theory has demonstrated a more accurate timing-jitter
description by revealing statistical features that remainhidden
from a linear analysis.

APPENDIX A
DERIVATION OF THE CHARACTERISTIC FUNCTION (27)

The CF (27) derived in the following generalizes the CF
given by Fine in [24]. Because the derivation largely follows
his approach, we present only those parts that lead to the
generalization.

We begin by recalling some facts about the RW defined
in (18) [33], [36]. To introduce the RVs used in the derivation,
consider the sequence of points(n, Sn) for n ≥ 1, and define
the first ascending ladder point(T +, H+) as the first term in
this sequence for whichSn ≥ 0. Then, the first ascending
ladder epochT + = min{n > 0 : Sn ≥ 0} marks the epoch at

which the RW first enters the non-negative half-line, and the
first ascending ladder heightH+ = ST+ marks the point of
first entry. Similarly, define the first descending ladder epoch
T− = min{n > 0 : Sn < 0} and the first descending ladder
heightH− = ST− , with the analogous interpretation of entry
into the negative half-line. Because either half-line doesnot
need to be entered at all, the above defined RVs are possibly
defective, with the defects defined as

p+ ≡ 1 − P (T + < ∞) = 1 − P (H+ < ∞) (67)

p− ≡ 1 − P (T− < ∞) = 1 − P (H− < ∞). (68)

Furthermore, letM+ = max0≤n<∞ Sn be the (possibly
infinite) maximum of the RW, andM− = min0≤n<∞ Sn the
(possibly infinite) minimum. The following two types of RWs
are of interest to us.

Theorem 1. (Classification of RWs [33, p.379], [36, p.224]):
For a RW with stepξ and step distributionF , if 0 < Eξ < ∞,
then

(i) with probability 1,Sn drifts to ∞ and reaches a finite
minimumM−;

(ii) T + and H+ are proper,T− and H− defective;
(iii) ET + and EH+ are finite, and by Wald’s identity

ET + =
1

p−
=

EH+

Eξ
. (69)

Similarly, if −∞ < Eξ < 0, then

(i) with probability 1,Sn drifts to−∞ and reaches a finite
maximumM+;

(ii) T− and H− are proper,T + and H+ defective;
(iii) ET− and EH− are finite, and by Wald’s identity

ET− =
1

p+
=

EH−

Eξ
. (70)

Finally, two identities for the CF of the maximumM+ and
the minimumM− will be required.

Theorem 2. (Spitzer’s identity [36, p.230]): Provided the
maximumM+ < ∞, we have

φM+ = exp

{

∞
∑

n=1

1

n
(φŜn

− 1)

}

(71)

where Ŝn = max{0, Sn}. Similarly, provided the minimum
M− > −∞, we have

φM− = exp

{

∞
∑

n=1

1

n
(φŠn

− 1)

}

(72)

whereŠn = min{0, Sn}.

To begin the derivation, consider the recursion for the CF
in (26). UsingφUn+1

= φ+
Un+1

+φ−
Un+1

and assuming thatφU

exists and thatφ+
Un

→ φ+
U and φ−

Un

→ φ−
U as n → ∞, we

obtain
(1 − φξ+

)φ+
U + (1 − φξ−)φ−

U = 0. (73)

This equation reduces to Fine’s (20) ifφξ+
= exp(−izK)φξ

andφξ− = exp(izK)φξ, corresponding to the model (20) with
∆T = 0. Since (73) is a Wiener-Hopf equation, the general
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procedure for its solution is the product factorization of the
factors 1 − φξ± . As in [24], by applying the Wiener-Hopf
decomposition [33, p.571], these factors can be written as

1 − φξ± =
(

1 − φH+

±

)(

1 − φH−

±

)

(74)

whereφH+

±

and φH−

±

are the CFs of the first ascending and
descending ladder heights of a RW with stepsξ±, respectively.
Defining the complex functions

X+ =
1 − φH+

−

z(1 − φH+

+

)
and X− =

1 − φH−

+

z(1 − φH−

−

)
(75)

whereX± ≡ X±(z), the CFφU can be expressed as [24]

φU =
X+ − X−

X+(0) − X−(0)
(76)

where X+(0) = −iEH+
−/p+

+ and X−(0) = −iEH−
+/p−−,

with the defectsp+
+ andp−− defined in (67) and (68). For the

denominator in (76), the latter two equations yield

X+(0) − X−(0) =
i(p+

+EH−
+ − p−−EH+

− )

p+
+p−−

. (77)

Consider now a RW with step RVξ+, for which µ+ < 0.
By Theorem 1, the RW drifts to−∞ andp+

+EH−
+ = Eξ+ =

µ+ from (69). Similarly, a RW with step RVξ−, for which
µ− > 0, drifts to ∞ and p−−EH+

− = Eξ− = µ− from (70).
Thus, we can write (77) as

X+(0) − X−(0) =
i(µ+ − µ−)

p+
+p−−

. (78)

For the numerator in (76), substitute the decomposition (74)
into (75) to obtain

X+ − X− =
φξ+

− φξ−

z(1 − φH+

+

)(1 − φH−

−

)
. (79)

Finally, plugging (78) and (79) into (76) gives the limiting
CF of the SDRW in (27), which generalizes Fine’s (28) [24].
The fact that the second and third term in (27) are the CFs
of the RW maximumM+

+ and minimumM−
− follows from

Theorem 2.

APPENDIX B
DERIVATION OF THE APPROXIMATION FOR THERMS

TIMING JITTER IN (61)

The idea to obtain the approximation (61) is to use an
integral test.

Theorem 3. (Integral test [37, p.139]): Let f be a continuous,
positive and monotonically decreasing function on[1,∞). The
series

∞
∑

n=1

f(n) (80)

converges if and only if the improper integral
∫ ∞

1

f(t) dt = L (81)

is finite, in which case the series is upper bounded byf(1)+L.

SinceG2 in (48) is of the form (80), we can upper bound the
varianceσ2

∆t in (60) by applying the integral test as follows:
∞
∑

n=1

g2(n, x) < g2(1, x) +

∫ ∞

1

g2(t, x) dt ≡ H2(x). (82)

To show thatg2(t, x) is monotonically decreasing int on
[1,∞) for everyx > 0, definey =

√

n/2x > 0 and write (50)
as

g2(y) =

(

y2 +
1

2

)

erfc (y) − y√
π

e−y2

. (83)

Differentiating this equation with respect toy (denoted by
prime) and usingerfc′(y) = −2 exp(−y2)/

√
π gives

g′2(y) = 2y

(

erfc (y) − y√
π

e−y2

)

. (84)

The bounderfc (y) < y exp(−y2)/
√

π for y > 0 [34,
p.562] implies thatg′2(y) < 0 and thus thatg2(t, x) is
monotonically decreasing int on (0,∞) for every x > 0.
Formal integration in (82) yields

H2(x) =
1

4x2
erfc

(

x√
2

)

+
x2

4
erfc

(

x√
2

)

− x2 − 1

2
√

2πx
e−x2/2

(85)
so that the variance (60) can be upper bounded by

σ2
∆t <

K2

3
+ σ2 +σ2H2

(

K − ∆T

σ

)

+ σ2H2

(

K + ∆T

σ

)

.

(86)
Simulations show that this upper bound is very tight; it is

therefore convenient to simplify (86) further. The simple ap-
proximate formula forσ2

∆t is obtained by using the asymptotic
expansion [34, p.562]

erfc(x) ∼ e−x2

√
πx

(

1 − 1

2x2
+

3

4x4
− + · · ·

)

. (87)

Replacing the seconderfc in (85) by the first two terms of
this expansion shows thatH2 can be approximated by

H2(x) ≈ 1

4x2
erfc

(

x√
2

)

. (88)

ReplacingH2 in (86) by (88) and omittingerfc gives the
approximation for the variance in (61).
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