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Abstract— We describe the mathematical model of a digitally
controlled buck converter. This model is an autonomous discrete-
time discontinuous piecewise-linear dynamical system in three
dimensions. Investigating this system, we find its equilibrium
points, describe the shape and size of possible limit cycles (i.e.
stable periodic motions), and derive conditions for their existence
and non-existence.

I. INTRODUCTION

DC-DC converters are widely used in a variety of power
electronics applications, including portable electronics devices
and audio amplifiers [1]. The advantages of using digital
control over analog control include re-programmability and
consequently higher system flexibility, better noise immunity
and the possibility of more sophisticated control schemes [1],
[2], [3]. The use of digitally controlled switching power con-
verters has attracted considerable research interest in the last
number of years [2], however, the dynamics of these converters
are not fully understood at present, and the occurrence of limit
cycles in converters of this nature is of considerable interest.

Some basic rules for the elimination of the limit cycles
which may develop in the system have been proposed in [1],
[3], however, these papers use a describing function approach
to the problem, in which the non-linearities associated with the
A/D and DPWM converters are replaced by transfer functions.
Inherent in this approach is the assumption that the signals at
the input of the quantizers are approximately sinusoidal, which
is not always the case for the limit cycles concerned [3]. In
this paper we aim to analyse the behaviour of the system from
a nonlinear dynamics perspective, with no such assumption.

II. MATHEMATICAL MODEL

We consider the digitally controlled dc-dc switching power
converter from [3] (Fig. 1), where the switching converter is
the synchronous buck converter (Fig. 2). The purpose of the
latter is to convert the input voltage Vin to a smaller output
voltage v ≈ Vind, where d is the duty cycle of switch S1,
and is limited to the range (0,1). S1 will be closed for time
Tsd and open for time (1 − d)Ts, where Ts is the switching
period. S2 is switched in a complementary fashion to S1. The
reference voltage Vref is the desired output voltage from the
system. There are two non-linear blocks in the feedback path,
the analog to digital (A/D) converter and the digital pulse-
width modulator (DPWM). The error voltage ve = v−Vref is

Fig. 1: DC-DC switching power converter from [3]

Fig. 2: Synchronous buck converter

sampled and quantized by the A/D converter to give the error
signal vq. The compensator takes the error signal and produces
a corresponding duty-cycle command signal dc. This is in turn
quantized by the DPWM block to give the duty cycle d, which
is applied to the switches in the manner previously described.
We shall assume that the frequency at which ve is sampled is
equal to the switching frequency fs = 1

Ts
, that we sample at

the start of a switching period, that there is no quantization in
the compensator, and that all circuit components are ideal.

In this situation, the buck circuit is described by
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with δ = 1 for the switch S1 closed and δ = 0 for S1 open.
Instead of the current i it is convenient to consider the new
variable u = 1

ωC i−
σ
ωv. Denote W = [v, u]T , and (1) becomes

d

dt
W (t) = AW (t) + δ
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Vin (2)

with the constant matrix A =

[
−σ ω
−ω −σ

]
, where σ = 1

2RC

and ω =
√

1
LC − σ2. It is not hard to derive that after the

equation (2) acts for the time Tsd with δ = 1 and then the



time (1−d)Ts with δ = 0, a starting value W0 gets transformed
into W1 = eATsW0 +N(d)Vin, where

N(d) = (e(1−d)TsA − eTsA)

[
1
σ/ω

]
,

and the matrix exponential is given by

etA = e−σt
[

cosωt sinωt
− sinωt cosωt

]
, t real. (3)

We shall use the following equations, modified from [1], to
model the feedback system, assuming an integral compensator:

d(n) = QDPWM[dc(n)], dc(n) = −Kidi(n), (4)
di(n) = di(n− 1) + vq(n), vq(n) = QA/D[v(n)− Vref ],

where d = QDPWM[dc] and vq = QA/D[ve] are the quantizer
functions, which round up their arguments towards the closest
values of the form jqDPWM and lqA/D respectively, with j
and l integers, for given quantizer steps qDPWM and qA/D.
We assume QDPWM to saturate at some values near 0 and
1, thus there are numbers Jmin and Jmax such that all values
of dc smaller than (Jmin + 1

2 )qDPWM and all values greater
than (Jmax− 1

2 )qDPWM are rounded towards JminqDPWM and
JmaxqDPWM respectively. This forces d to always stay on the
segment [JminqDPWM, JmaxqDPWM] ⊂ (0, 1).

We obtain the autonomous three-dimensional discrete-time
piece-wise linear discontinuous dynamical system given by:

W (n+ 1) = eTsAW (n) +N(d(n))Vin, (5)
dc(n+ 1) = dc(n)−Kivq(n+ 1), (6)

with the quantized quantities d(n) and vq(n) given by (4).
Notice that in this form of the system, the three parameters
R, C and L are replaced with only two, namely σ and ω.

The dynamics of this system can be understood as follows.
In every particular space layer defined by the quantization level
dc ∈ ((j− 1

2 )qDPWM, (j+
1
2 )qDPWM), Jmin < j < Jmax, the

value of d is equal to dj = jqDPWM. The equation (5) can be
re-written as W (n+ 1)−W ∗

j = eTsA(W (n)−W ∗
j ), where

W ∗
j = (I − eTsA)−1N(dj)Vin, (7)

so a trajectory in W is a logarithmic spiral winding clockwise
towards W ∗

j as long as d = dj . Every trajectory thus consists
of consecutive spiral segments in W , which are switching
their centres (7) in accordance with dc passing from one
quantization level to another. The rate of change of dc is
determined by the quantization level currently occupied by
v: dc is constant as long as v stays inside the zero error bin
defined by |v−Vref | <

qA/D
2 , or increases (decreases) as long

as v lies to the left (to the right) of that bin.
Obviously, if for some Jmin ≤ j ≤ Jmax the point W ∗

j

lies in the zero error bin, then it represents a fixed point of
the system with any dc ∈ (dj− 1

2qDPWM, dj+
1
2qDPWM), and

there are no other fixed points. It is of key importance that, due
to (3), our system locally uniformly contracts the (v, u)-plane
with the coefficient of contraction e−Tsσ . It follows that all
fixed points and periodic trajectories are asymptotically stable

Fig. 3: The crosses show the smallest values of Ki for which
a generic trajectory of (5), (6) diverges towards the saturation
bounds, the solid line is KiVin = 2σTs. Other parameters are
ω = 98.3 krad s-1, Ts = 10−6 s, qDPWM = 0.002, qA/D =
0.101V, Vin = 5V and Vref = 2.525V.

in W . In the sections IV and V we will investigate the fixed
points and periodic trajectories of this system in detail. In
what follows we assume that the three frequencies involved
satisfy the ordering σ � ω � 2πfs, which is the case for
common applications. In particular, this assumption implies
the asymptotical equality W ∗

j ≈ qDPWMVin[1, σ/ω]
T j.

III. CONTINUOUS SYSTEM

As the first approximation to the system (5), (6) let us
consider a linear autonomous system of differential equations

d

dt
v(t) = −σv + ωu, (8)

d

dt
u(t) = −ωv − σu+

ω2 + σ2

ω
Vindc, (9)

d

dt
dc(t) = −Ki

Ts
v +

KiVref
Ts

, (10)

which is obtained from (4), (5) and (6) by removing quan-
tization and linearizing. The system (8)–(10) has a unique
fixed point [Vref , σωVref ,

Vref

Vin
]T . One of its eigenvalues is real

negative and two others are complex conjugate. In order to be
stable, the real parts of all eigenvalues have to be negative.
An easy calculation results in the global convergence bound

KiVin < 2σTs. (11)

This bound is useful to express the most general information
about the system, namely whether v(n) is attracted to some
neighborhood of Vref or repelled from that neighborhood. The
numerical comparison of the two systems shows that their
dynamics are indeed similar in the large scale. Fig. 3 shows
that the bound (11) works well for the discrete system (5), (6).

IV. FIXED POINTS AND THEIR REGIONS OF ATTRACTION

As previously stated, the discrete system (5), (6) possesses
fixed points of the form [v∗j , u

∗
j , dc]

T , where [v∗j , u
∗
j ]
T = W ∗

j

is given by (7), under the conditions |dc − dj | < 1
2qDPWM,

|v∗j − Vref | < 1
2qA/D, Jmin ≤ j ≤ Jmax. Now we would like

to find a region inside the zero error bin in the (v, u)-plane



Fig. 4: Attraction to an equilibrium. The parameters are Vref =
2.5275 V, σ = 5000 s-1, Ki = 0.00182 V-1, others as in
Fig. 3. Shown are the equilibrium W ∗

253 (triangle), its region of
attraction (bounded by solid line), the zero error bin (bounded
by dashed lines) and a piece of trajectory approaching W ∗

253.

consisting of points that spiral directly towards W ∗
j without

any switching. If we assume operation at one duty cycle level
dj , then it is easy to find that W̃ (n+p) = epTsAW̃ (n), where
W̃ (n) =W (n)−W ∗

j . This relation can be re-arranged into:

ũ sin pωTs + ṽcos pωTs = ṽbounde
pσTs , (12)

where we consider satisfying a bound ṽbound in place of
ṽ(n + p) as p varies. Once a bound is satisfied for a single
turn of a spiral, it will always be satisfied afterwards due to
the contraction in W . The sought for region is therefore a
polygon bounded by the lines (12) for integer p ∈ [0, 2πfs/ω]
and ṽbound = ṽ±bound = Vref ± 1

2qA/D − v
∗
j . This region can

be approximated by the one bounded by the zero error bin
boundaries and two spiral envelopes of the lines (12) given by

ṽ = epσTs

[
cos pωTs −

σ

ω
sin pωTs

]
ṽbound, (13)

ũ = epσTs

[
sin pωTs +

σ

ω
cos pωTs

]
ṽbound (14)

with real p ∈ [0, 2πfs/ω] and ṽbound = ṽ±bound (see Fig. 4).

V. LIMIT CYCLES

Assuming that qDPWMVin � qA/D, so that there are several
fixed points W ∗

j inside the zero error bin, the only different
kind of limit structures observed in the system (5), (6) are limit
cycles, i.e. periodic trajectories, which are locally attracting in
the (v, u)-plane, going in an almost circular motion around the
fixed point of the continuous system (8)-(10) (which is v =
Vref , u = σ

ωVref), clockwise at a distance of the order of qA/D.
The rotation number of such a limit cycle (i.e. the average
number of full rotations in one step) is a rational number close
to the ratio of the frequencies ω

2πfs
� 1. Limit cycles with

different rotation numbers can coexist in the same system (see
Fig. 5), similarly to the case studied in [4]. In dc, these limit
cycles exhibit oscillations over two or more duty-cycle levels.

A. Exact Analysis of Periodic Trajectories

Suppose that from the step n = n0 onwards a trajectory
undergoes the sequence s = (s1, . . . , sK) of switchings

Fig. 5: Co-existing limit cycles and equilibria. Parameters as
in Fig. 3, with σ and Ki as in Fig. 4. Shown are the equilibria
(triangles in the zero error bin), a single-loop limit cycle on
two duty-cycle levels (circles), and a 7-loop limit cycle on four
levels (solid points). Switching points are marked by arrows.

Fig. 6: The single-loop limit cycle on two duty-cycle levels
from Fig. 5 in the (v, dc)-coordinates. The horizontal dashed
line divides the d = d252 and d = d253 duty-cycle levels.

between duty-cycle levels, spending sk steps at the duty-cycle
level d = djk , 1 ≤ k ≤ K. If we put P =

∑K
k=1 sk, then

W (n0 + P ) = ePTsAW (n0) +NsVin, where

Ns = (I − eTsA)−1
K∑
k=1

eTsA
∑K
m=k+1 sm(I − esmTsA)N(dsm).

Clearly, for this trajectory to be P -periodic, the condition∑P
n=1 vq(n0 + n) = 0 must be satisfied, and also the actual

value of d(n0 + n) has to equal djk for
∑k−1
m=1 sm < n ≤∑k

m=1 sm, 1 ≤ k ≤ K. However, due to the complexity
of the system, it is impractical to check this large number of
conditions. In the next subsections we switch to more informal
analysis in order to obtain some practical bounds.

B. Limit Cycles on Two Duty-Cycle Levels

A single-loop limit cycle on two duty-cycle levels (see Fig. 5
and 6) consists (in the (v, u)-coordinates) of two connected
pieces of logarithmic spirals, one of which winds around
the equilibrium value W ∗

j , and the other around its neighbor
W ∗
j+1. Both of these equilibria lie inside the zero error bin,

while the two points of switching from one spiral piece to
another lie outside. The whole trajectory can be described as



follows. Starting from the left switching point (the one with
v < Vref − 1

2qA/D, d = dj+1), the trajectory in the (v, u)-
plane goes along the upper spiral piece winding towards W ∗

j+1,
while dc gradually increases until v exceeds Vref − 1

2qA/D,
at which point dc stops changing. With constant dc, the
trajectory in (v, u) continues along the upper spiral piece until
v exceeds Vref + 1

2qA/D, at which point dc starts to decrease,
and further to the right switching point, at which dc falls
below (j+1/2)qDPWM so that d becomes dj . Then the similar
dynamics carry the trajectory back to the left switching point
along the lower spiral piece winding towards W ∗

j . The period
of this trajectory is an integer close to 2πfs

ω . A multiple-loop
limit cycle differs from a single-loop one in that the above-
described dynamics do not carry the trajectory to its starting
point after just one loop, so it switches again at a different
point to the left of the zero error bin and then proceeds to yet
another switching point to the right, returning to the starting
point after making several loops close to each other.

Three conditions are necessary for such a limit cycle to be
realizable in a particular system. First of all, the total excursion
of this limit cycle in v has to be greater than the width of the
zero error bin, so that the switching points on both sides can
lie outside that bin. Assuming that the switching points as well
as the equilibria W ∗

j and W ∗
j+1 lie approximately on the same

horizontal line in the (v, u)-plane, one can estimate that the
excursion of the limit cycle in v is given by

1 + e−
πσ
ω

1− e−πσ
ω
qDPWMVin ≈

2ω

πσ
qDPWMVin. (15)

Generically, the excursion is slightly smaller than (15), since
the four points do not lie exactly on the same horizontal line.
This estimate is close to the one obtained in [3]. Thus, one
necessary condition for a limit cycle on two duty-cycle levels
to exist is that the excursion in v is greater than qA/D, i.e.

qDPWMVin
qA/D

>
πσ

2ω
. (16)

The second condition is some degree of symmetry in the
system, although it does not have to be exact. As the equilibria
are proportional to Vin, a small change in that value would
easily break or create such a symmetry. Therefore, if our
aim is to avoid the limit cycles without knowing the input
voltage exactly, we have to assume the worst case, i.e. that
the symmetry is present.

The third condition is an upper bound on the gain Ki. It is
necessary because the excursion of dc cannot exceed 2qDPWM,
otherwise there would be more than two duty-cycle levels
involved. The greatest possible value of Ki for a given shape
of the limit cycle in the (v, u)-plane depends on how many
steps are spent by the trajectory beyond the zero error bin. If
there are Nm steps on the mth quantization level, m ≥ 1, then
the bound Ki < 2 qDPWM

qA/D
(
∑
mmNm)−1 has to hold.

C. Limit Cycles on More Than Two Duty-Cycle Levels
Limit cycles on D ≥ 3 duty-cycle levels look similar to the

two-level ones in that their trajectory in (v, u) rotates clock-
wise around (Vref ,

σ
ωVref) with somewhat greater amplitude.

In fact its circular shape consists of spiral pieces having more
than two switching points along each loop. In order to find a
rough bound on the minimum value of Ki for which a limit
cycle on D > 2 levels may occur, we consider a limit cycle
confined to the ±1 and 0 error bins. In this case, there will be
(D−1) switching points in each of the ±1 error bins, and we
assume that the angle spent in each of these bins is given by
(D−2)αD. For a limit cycle on D levels to exist, its excursion
in dc must be at least (D − 2)qDPWM, yielding

Ki >
qDPWM

qA/D

ωTs
αD

(17)

Omitting the calculations, we find the following approximate
relation
sin
(
(D − 1) αD

2

)
cos
(
(D − 2) αD

2

)
sin
(
αD

2

) =
qA/D

qDPWMVin

πσ

2ω
(18)

Considering the curves from the LHS of (18) for different
values of D, αD will be the largest angle in the range

π
2(D−2) < αD < π

2(D−1) . Correspondingly, we have

1√
2

cos
(
D−2
D−1

π
4

)
sin
(

1
D−1

π
4

) <
qA/D

qDPWMVin

πσ

2ω
<

1√
2

sin
(
D−1
D−2

π
4

)
sin
(

1
D−2

π
4

)
(19)

D. No-Limit-Cycles Condition
The main objective of this work is establishing conditions

which would guarantee that no limit cycles exist in the system.
A sufficient no-limit-cycles condition is for the two bounds

qDPWMVin
qA/D

<
πσ

2ω
, Ki <

qDPWM

qA/D

ωTs
αD

, (20)

to hold simultaneously, where αD is the angle from (18), with
D, qDPWM, qA/D and ω satisfying the relation in (19).

VI. CONCLUSIONS

A mathematical model of a digitally controlled buck con-
verter was presented. A continuous model of the system
was described and a bound for global convergence of the
system was derived. The steady-state dynamical patterns of
the system, fixed points and limit cycles, were investigated
and conditions for the existence of limit cycles were derived.
A no-limit-cycle condition for the system was then discussed.
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