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Abstract—In this paper, we derive linearized discrete-time

models of higher order Charge-Pump Phase-Locked Loops (CP- Ref [ EsM I-P x=Ax+Bu | ]
PLLs). The behaviour of CP-PLLs in the steady state is analysed S y=C"x+Du °

. . . A
and an important feature is developed. The nonlinear state

equations of CP-PLLs are linearized around the equilibrium veo |f0
point. The linearized discrete-time model is finally verified using
behavioral simulations in Matlab and PSpice. Fig. 1. A block diagram of charge-pump phase-locked loops.

I. INTRODUCTION

Charge-Pump Phase Locked Loops (CP-PLLs) are impor-This paper is organized in the following manner. Section I
tant component blocks which are used in a wide variety @fiefly describes the behavior of CP-PLLs in the steady state
applications, such as clock generation, frequency syistheshe complete analysis of the linearized discrete-time rhotle
and clock data recovery. The popularity of CP-PLLs is dueP-PLLs around the equilibrium point is presented in sectio
to the fact that they provide flexible design parametershsugl. Section IV presents some simulation results from Matla
as loop bandwidth, damping factor and locking range. knd PSpice.

Gardner’s pioneering work on CP-PLLs [1], he develops what

has become the standard linear model and provides some !l ANALYSIS OF CP-PLLS IN THE STEADY STATE
empirical design rules. Subsequently many analytic modelsCharge-Pump Phase-locked Loops (CP-PLLs) are composed
for CP-PLLs have been proposed. Van Paemel [2], Acco [3]f a phase and frequency detector (PFD), a charge pump (CP),
Hedayat [4] and Co [5] have given nonlinear models faa loop filter (LPF) and a voltage-controlled oscillator (VIEO
second order loops. Hedayat [6], Hanumolu [7], Wang [8]he PFD is treated as a finite state machine (FSM) which
and Daniels [9] have analysed third order CP-PLLs whileompares the phase and frequency of the VCO signal and the
Guermandi [10] and Yao [11] have studied fourth order CRxternal reference signal. The state transitions aredragjby
PLLs. In the present work we consider quite genethal order the rising edge of the VCO signal’CO 1) and the reference
CP-PLLs. signal (Ref 1). The states of the FSM are denoted (iy0),

The work of Van Paemel [2] in particular is of interes{0,0) and(0,1). The PFD outputs Up and Down signals which
here. Van Paemel establishes that for first order loop filtere proportional to the phase error. The CP circuit is cdietto
the system permits a model which is of second order abg the Up and Down signal and generates oufpud or —1,,,
discrete-time, although not in fact linear. Van Paemel showhere I, is the charge pump current. The LPF is described
that, close to equilibrium, the system behaves according lig the state-space equation
one of four particular modes determined by the patterns of .
transitions of the VCO and the PFD. We establish that in @ = Az + Bu @)
the more general case of higher order filters the system is y=CT2 + Du )
again described by a discrete-time system of order equal to
one plus the order of the filter and that the behaviour clogéerer is ann x 1 vector (» > 1), u is an input scalar, which
to equilibrium is again described by four modes, indeed th@1I,, 0 or —1I,,, andy is an output scalaid, B, C* andD are,
same four modes discussed by Van Paemel. As stated, t@gpectivelyn x n, n x 1, 1 x n, and1 x 1 constant matrices.
system described by Van Paemel is not in fact linear or The input of the VCO is the output of the LPk, and
even linearizable. It transpires that, given a first ordeerfil changes the frequency of the VCO. So the frequency of the
the designer must choose between having a capacity to 106kO is given by fyco(t) = fo + K,y(t) , where K, is the
or being linearizable, they cannot have both. In the case \WWEO gain, expressed iffz/V and f; is the initial frequency
higher order filters however the designers can, and estgnti®@f the VCO. The associated phase of the VCQig:o (t) =
do, choose to design systems which can lock and which aﬁ(tpfvco(r)dr.
linearizable. Since engineers are particularly intecestethe Van Paemel [2] categorized the dynamic behavior of CP-
local dynamics around the equilibrium point, they gengrallPLLs into six cases, depending on the relationship between
develop linearized discrete-time models of CP-PLLs and it the phase and frequency of the VCO and reference signals. We
therefore of some comfort to know that such models exist aadsume that the CP-PLL is close to locking state. We consider
are valid. four cases for the local dynamics around the equilibriunmpoi



as shown in Fig. 2. We define that the rising edges of the ~ Ref| || [ Ref__ [ ]
reference signal occur at the times= kT for all integers Voo [ veo

k, whereT = 1/f,.s is the period of the reference signal. v i i 7 A

Similarly, we denote that the times at which the falling exige Y~ Ne—" N t
of VCO occur byt = t;, and introduce the variable, = o (kH)T-M= — - ](kf])T
t, — kT. Another variable is the voltage across the capacitors () ‘ (b)h

sampled at the later of the two times= kT andt = t, i.e. I
xp = x(max{kT,t;}). Firstly, we consider the case when Ref | - | Ret o
the CP-PLL is in the steady state and the system is at the  VCO VCO |

equilibrium point. The FSM is in the stat@®,0) for all the VA i VA
timet andt, = kT for all k. The LPF inputu, equals). The /\——k K N—1
state equations (1) and (2) become KTt o DT LT DT 1
b= A ®) © @
y = Ty (4) Fig. 2.  Waveforms for the four cases.
We obtain the solution of (3) and (4) f&f” <t < (k+1)T
as follows: When time is from(k + 1)T to ¢;1, the state of the FSM
z(t) = e g (kT (5) is (1,0) andu equals tol, and the solution of the equation
1) is
t
Ovcolt)= / (fo + K,CTeAT+D) g (kT))dr T(tpgr) = z((k+ )T+ (11)
kT (Az((k 4+ 1)T) + BL)T 7411

t—kT
=fo(t — kT) + KUCT(/ eA7dr)z(kT) (6) We put the equation (10) into the equation (11) and obtain
0

At the equilibrium point, we define:(kT) = «* for all ~ @(tk+1) = ATy (AT BI) Ty (12)
k and putt = (k + 1)T into the equations (5) and (6). We
obtain an important feature of the system at the equilibriugﬂ
point from the equation (6):

T(fo+ K,CTz*) =1 )

Using the equation (8) and neglecting the higher order terms
the equilibrium point, we obtain the difference equafion
Zr+1 from the equation (12)

Zp1 = €T iy + B, T4 (13)
From the equation (5), we obtairi = eA”z* and conclude

that eA” has an eigenvalue dt with the associated eigen-
vector, z* and A has an eigenvalue &t with the associated
eigenvectorc*.

Now we define another functioby ¢ (t) which is a function
of Byco(t) mod 2w, The k'" rising edge of the VCO occur
at the timet, when ®y o (t;) equalsl.
As shown in Fig. 2 (a), the rising edge of the VCO occurs
[1l. LINEARIZED DISCRETETIME MODELS OFCP-PLLs  at the timet;,, SO we can get
In this section we derive the linearized discrete-time nhode th1
for the higher order CP-PLLs based on the Van Paeme%/co(tkﬂ):/ (fo+ K,CTx((k +1)T) + K,DI,)dt
paper [2]. In order to conveniently obtain linearized diter (
time models of CP-PLLs, we firstly introduce the following +Pvoo((k+1)T) = 1 (14)
normalized variables:

k+1)T

Tr+1 IS computed as

T =1/T and &y, = xp — 2™, (8) - 1—®yool(k+1)T)
A 7 >0, g1 >0 7 foT + K,DI,T + K,TCTz((k + 1)T)

We definex), = x(ty) and w411 = z(tr41) in the case  On the other handPy co((k + 1)T) is given by
A, as shown in Fig. 2 (a). The rising edge of the VCO lags ()T
behind the rising edge of the reference signal and the sfate o _ T A(t—ty)
the FSM is(1,0) when the time is fromkT to ¢;. The input Proo((k+1)T)= (fo+ KoCT ey )dt
of LPF,u, equalsl,. The equation (1) becomés= Ax+ BI,

and the solution is
B . whereq¢” = K,CT fOT eATdr.
w(te) = 2(kT) + (Az(kT) + BI,) Ty ©) We put the equations (16) and (8) into the equation (15)
When time is fromé, to (k + 1)T, the state of the FSM is and get

(0,0) andu equals to0. The equation (1) becomes= Ax
and the solution is

(k4 1)T) = eATO" gy, (10)

(15)

ty

=1 — 7 +q g (16)

A T

— Tk —q Tk
ol + K,DI,T + K,TCTeAT—7) (3 + 2* 2
17)

Tht1



Using the equation (7) and neglecting the higher order terfds 7, < 0, 7+1 > 0
at the equilibrium point, we obtairi;; from the equation  \ye definex; = z(kT) andzj1 = z(tx41) in the caseD

(17). . T A shown in Fig. 2 (d). The input of LPF;, equalsO from kT
Fppy = k4 Tk (18) to(k+1)T andl, from (k+1)T to ¢4 1. The solution of the
1+ K, DI,T state equation (1) are expressed at tirfles- 1)T" and ;1
for 7, > 0, 7% > q" iy as follows:
t § g z((k+1)T) = ey, (29)
B. 7A'k <0, 7A'k+1 <0
In this case (Fig. 2 (b)), we defing, = x(kT) and @(tyr1) =z((k +1)T)+ (30)
2141 = x((k + 1)T). The input of LPF,u, equalsO from (Az((k+1)T) + BI,)(tkq1 — (K +1)T)

kT to ty41 and—1I, from ¢, to (k+1)T. According to the Usin . .
; g the equations (7), (8), (29) and (30) and neglecting
%ﬁg\a,viguatlons (1)(tr+1) andz((k +1)T) are expressed aSyq nigher order terms at the equilibrium point, we can get th
B(tpar) = €At =kT) 5 (19) same result forz,; as in caseA:
w((k+1)T) = x(tpr1) + (Az(tprr) = Blp) ((k+1)T —try1)
_ . (20)  Fig. 2 (d) shows that the rising edge of VCO occurs at the
Using the equations (7), (8), (19) and (20) and neglectingne ¢, ,,. We obtain
the higher order terms at the equilibrium point, we can get th

ipy1 = a4+ BL, T4 (31)

same result fort as in cased: wr
k+1 A ’ (I)VCO(tk+1):/ (.fO + K?)CTx(t) - KUDIp)dt
dpy1 = e 3y + BL, T4 (21) t o
We know the rising edge of the VCO occurs at the time +/ (fo + K,CTx(t))dt
kT

try1 from Fig. 2 (b). We obtain t
k+1
. +/ (fo+ K,C"x(t) + K,DI,)dt
Pvco(ti+1)= / (fo+ K,CTa(t) - K,DI,)dt . v
=1 (32)

te+1
+/k (fo+ K,CTx(t))dt = 1 (22) e put the equations (7), (8), (29) and (30) into the equation

T . .
32) and compute; in this case as
We put the equations (7), (8), (19) and (20) into the equaticgn ) PUIk+1
(1— K,DI,)# — q* 3y

(22) and computey; in this case as

Tht1 = (33)
a1 = (1 — K,DLT)#, — ¢y, (23) 1+ K, DI,T
for 4, < 0, (1 — KyDLT)#, < ¢T s for 7 < 0, (1 — K,DI,T)%, > ¢'&. Finally, linearized
R . b discrete-time models of higher order CP-PLLs are presented
C. 7% >0, 7kt1 <0 by the equations (34) and (35):
We definexy, = z(t;) andxy1 = z((k+1)T) in the case . AT .
C shown in Fig. 2 (c). The input of LPR, equals) from ¢, Tpt1 = €7 T + BI,TTery (34)
to tx41 and —1I, from t,44 to (k+ 1)T. The solution of the Fe—qT in N . T4
state equation (1) are expressed at times and (k + 1)T 1+K,DI,T tor Tk T>AO’ Tk > 4" Tk
as follows: (1 - K,DI,T)%, — q" 2y .
x(tkH) = eA(tk+l—tk)xk (24) Feaq = ) . for 7:'k < 0, 7:'k < %
((k+1)T) = w(tpsr) + (Az(hsr) = BLp) ((k+1)T —tr41) Th—q @y JOr 7 >0, 7 < q
25) (1-K,DIp,)7—q" &k
. . 1+K,DI, T
Using the equations (7), (8), (24) and (25), we can get the for 7 < 0. 7 > — L
same result for, ., as in caseA: k Tk 1*K'UDIPT(35)
ipp1 = iy 4+ BI, Ty (26)

IV. BEHAVIORAL SIMULATION
In this case, we know that the rising edge of the VCO occurs

at the timet,. . , as shown in Fig. 2 (). We obtain The linearized discrete-time model in the previous sedson

now verified in Pspice. Though the linearized model is slgtab
Kar for higher order CP-PLLs, we choose the third order CP-PLL
_ T A(t—ty) _ '
(I)VCO(tk’H)_/t (fo+ K.C e Hap)dt = 127) a5 an example in this section because of the popularity of
i the third order CP-PLL frequency synthesizer in the prattic
rHgsign.
Consider the second-order LPF, we can get

Tyt =T — ¢ B (28)
A [

Using the equation (7) and neglecting the higher order ter
at the equilibrium point7;; is computed in this case as

1
—T2 T2 _ o™ T _ _
fOI”IA'k>0,7A'k-<qT:f7k. :|5B—|: 03:|,C —[1,0],D_[O]
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Fig. 3. Simulation circuit for charge-pump phase-locked ®opPspice.
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Fig. 4. Simulation results obtained from linearized disesine model and PSpice simulation. (a) the capacitor voltdnehe control voltage; (c) the phase
error.

wherer; = VYN o ——= and Ry, Cy, C3 are the circuit Matlab and PSpice simulation to verify the validity of this
parameters of 'i_PF as shown in Fig. 3. Then we put thelieearized model. We have investigated the local dynamics
constant matrices into the equations (34) and (35) to get thwund equilibrium when the CP-PLL is close to the locking
linearized discrete-time model of the third order CP-PLbr F state, which engineers are particularly interested in.
this particular case wheP = [0], the equation (35) becomes
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