
Mining the Real-Time Web: A Novel Approach to

Product Recommendation

Sandra Garcia Esparza⇤, Michael P. O’Mahony, Barry Smyth

CLARITY: Centre for Sensor Web Technologies, School of Computer Science and

Informatics,

University College Dublin, Ireland.

Abstract

Real-time web (RTW) services such as Twitter allow users to express their
opinions and interests, often expressed in the form of short text messages
providing abbreviated and highly personalized commentary in real-time. Al-
though this RTW data is far from the structured data (movie ratings, prod-
uct features, etc.) that is familiar to recommender systems research, it can
contain useful consumer reviews on products, services and brands. This pa-
per describes how Twitter-like short-form messages can be leveraged as a
source of indexing and retrieval information for product recommendation.
In particular, we describe how users and products can be represented from
the terms used in their associated reviews. An evaluation performed on four
di↵erent product datasets from the Blippr service shows the potential of this
type of recommendation knowledge, and the experiments show that our pro-
posed approach outperforms a more traditional collaborative-filtering based
approach.

Keywords: Real-Time Web, Micro-blogging, Recommender Systems,
Information Retrieval

1. Introduction

Recommender systems have proven to be an important way for people
to discover information, products and services that are relevant to their

⇤Principal corresponding author
Email addresses: sandra.garcia-esparza@ucd.ie (Sandra Garcia Esparza),

michael.omahony@ucd.ie (Michael P. O’Mahony), barry.smyth@ucd.ie (Barry Smyth)

Preprint submitted to Knowledge-Based Systems June 30, 2011

needs. Recommender systems complement the more conventional query-
based search services by o↵ering more proactive information discovery, often
based on a profile of users’ short-term or long-term preferences. These sys-
tems can now be found in many applications to provide users with a list of
recommended items that they might like. For instance, the popular online re-
tailer Amazon1, provides users with a list of product recommendations from
di↵erent categories, while Last.fm2 does so for music and Netflix3 for movies.

Recommendater systems typically fall into two basic categories: collab-
orative filtering (CF) [9, 21, 18] versus content-based (CB) [29, 33, 35] ap-
proaches. In collaborative filtering approaches, users are recommended items
that users with similar interests have liked in the past [46]. The key source
of recommendation knowledge used in collaborative filtering approaches is
the ratings matrix. This is a user-item matrix that captures the particular
interests that users have in items. Sometimes these interests are in the form
of explicit ratings; for example, in MovieLens4 users express their movie in-
terests on the basis of a 5-point rating scale. Other times these interests can
be inferred from user actions; for example, Amazon’s recommendations are
based on user transaction histories and in this sense the purchasing of an item
is viewed as a strongly positive rating. Traditionally, collaborative filtering
methods belong to one of two groups: (1) user-based techniques [46, 39],
which generate recommendations for a target user based on the items that
similar users (that is, similarity among the rows of the ratings matrix) have
liked in the past and (2) item-based approaches [44], which generate recom-
mendations based on items that are similar to the items (that is, similarity
among the columns of the ratings matrix) that the target user has liked in the
past. Recent years has seen considerable research e↵ort invested into collab-
orative recommendation techniques; in particular, focusing the manipulation
of the core ratings matrix to better identify latent interests as a source of
recommendation knowledge [26, 27].

Collaborative filtering approaches have been shown to work well when
there is su�cient information to populate the ratings matrix, but very often
this matrix is sparsely populated leading to poor coverage of the recommen-
dation space and ultimately limiting recommendation e↵ectiveness [2]. The

1
http://www.amazon.com

2
http://www.last.fm

3
http://www.netflix.com

4
http://www.grouplens.org

2

alternative content-based approach to recommendation avoids the need for
user ratings data, drawing instead on more richly detailed content represen-
tations of the items to be recommended [6]. For example, meta-data about a
movie (genre, director, actors etc.) can be used as the basis for an item-level
similarity assessment allowing content-based recommenders to rank items
that are similar (content-wise) to the items that a target user is known to
like (and perhaps dissimilar to the items that the target user is known to dis-
like). Sometimes the system’s users generate this meta-data, for example in
social tagging systems, where users annotate resources using tags [13]. Appli-
cations of content-based recommenders include TV, e-commerce and travel
applications [15, 45, 47]. A challenge relating to content-based systems is the
overhead involved in obtaining the meta-data required to represent items;
indeed, for some domains (e.g. jokes, works of art etc.), representing items
e↵ectively with such data can be problematic. In addition, researchers have
looked at the potential to combine collaborative filtering and content based
approaches as the basis for hybrid recommendation strategies [12, 20]. How-
ever, there are cases where neither ratings nor meta-data are available in
su�cient quantities to provide e↵ective recommendation performance. For
this reason, in this paper we consider a third source of recommendation data.

Recently micro-blog services have become very popular, especially since
the release of Twitter in 2008, which generates huge volumes of data (cur-
rently Twitter users post 65M messages per day5). Micro-blogs allow users to
broadcast their comments, opinions and interests on a wide variety of topics
by way of short-form text messages. Sometimes these messages are related
to products. For example, users tend to comment on new gadgets they have
acquired or movies they have recently seen. For instance, Figure 1 shows an
example of a tweet expressing a positive opinion on the movie ‘Inception’.
These messages not only express an opinion about a product but sometimes
they also contain specific information about certain features, such as the per-
formance of a certain actor in a movie or the usability of a mobile phone’s
interface.

Already researchers and practitioners alike have begun to enthuse about
the potential for this type of user-generated content to influence the mar-
keting of products and services [24]. Our interests run deeper, and in this

5
http://techcrunch.com/2010/06/08/twitter-190-million-users/. Accessed:

1st December, 2010.

3

Figure 1: A tweet expressing a positive opinion on the movie ‘Inception’.

paper we explore whether these fragmented and noisy snippets of user opin-
ions can be used more directly in recommendations. To this end we consider
two important questions: (1) Can RTW data be used as the basis for rep-
resenting, indexing, and recommending items, products and services? (2)
How well does a recommender system based on RTW data perform rela-
tive to traditional approaches? In what follows we describe experiments
that are designed to shed light on these important questions. Specifically,
we develop a product recommender system that is powered by Twitter-like
product-related comments and show that it has the potential to outperform
a comparable collaborative filtering approach.

The paper is organized as follows. In Section 2, we describe related work
that has been carried out on sentiment analysis and opinion mining of user-
generated content. A description of the Blippr6 service, which we use as our
test domain, is presented in Section 3. Our recommender approach, based on
RTW data, is described in Section 4 and the results of an empirical evaluation
of the approach are given in Section 5. Finally, we present concluding remarks
in Section 6.

2. Related Work

In recent years, user opinions in the form of reviews, comments, blogs and
micro-blogs have been analyzed by researchers for di↵erent purposes. One of
the areas which has captured the interest of researchers is the application of
sentiment analysis techniques to these opinions, including the auto extraction
of product features from reviews, both well formed and unstructured. In
addition, user-generated content (in long-form or short-form) has also served
as an additional source of knowledge for recommender systems. Here, we
provide an overview of some of the work that has been carried out in this
regard.

6
http://www.blippr.com

4

A popular area of research lies in the application of sentiment analysis
techniques to user-generated content [48]. Sentiment analysis encompasses
di↵erent areas such as sentiment classification [10, 30, 32], which seeks to
determine whether the semantic orientation of a piece of text is positive or
negative (and sometimes, neutral). In [38] it was demonstrated that these
sentiment classification models can be topic-dependant, domain-dependant
and temporally-dependant and suggested that training with data which con-
tains emoticons can make these models more independent. Another area
within sentiment analysis is subjectivity classification [50], which classifies
text as subjective (i.e. it contains author opinions) or objective (i.e. it
contains factual information). Sometimes this task is applied before using
a sentiment classification technique where the factual pieces of text could
mislead the classifier.

Extracting product features from reviews and identifying opinions asso-
ciated with these features has also been studied in [16, 22, 37]. Much of the
initial work has focused on extracting features from electronic products such
as cameras or MP3 players, where the set of product features is typically
more restricted, hence representing a more tractable problem, compared to
other domains such as movies or books. In more recent work [23], where
feature extraction and opinion mining is performed on more complex (from a
feature perspective) movie reviews, the authors first attempt to identify the
set of key features that authors discuss by applying clustering techniques;
a Latent Dirichlet Allocation approach was found to provide the best re-
sults. While some research [22, 37] applies feature extraction techniques,
such as feature-based summarisation or point-wise mutual information in a
domain-independent context, [16] argues that a domain-dependent approach
is a valuable knowledge source, leading to a more precise feature set, and
describe an approach based on a taxonomy of the domain product features.

Typically these feature and opinion mining approaches use Natural Lan-
guage Processing (NLP) techniques which assume that the text is well-
formed. Often, however, user-generated content is prone to noise in the
form of, for example, spelling and grammatical errors. In [17], an approach
is presented to extract features from noisy reviews by first identifying and
correcting errors in the text before applying NLP techniques. Assisting users
to write high quality reviews has also been studied in [11], where a case-based
reasoning system is used to extract and suggest relevant product features to
the review author from reviews that have been authored by others for sim-
ilar products in the past. Identifying spam in product reviews is also an

5

important factor to improve the quality of reviews. This problem has been
addressed in [25] where Amazon reviews are classified using a logistic re-
gression model based on attributes relating to the review (for example, the
volume of feedback received), the review author (for example, the number of
times they were the first to review a product) and the reviewed product (for
example, the sales rank of the product).

While the research and techniques described above have focused primar-
ily on long-form review text, recent work has also considered the analysis
of short-form reviews, such as micro-blog messages. For instance, in [31]
Twitter messages are classified as positive, negative or neutral by creating
two classifiers: a neutral-sentiment classifier and a polarity (negative or pos-
itive) classifier. Further [8] compare the e↵ect of di↵erent attribute sets on
sentiment classification for short-form and long-form reviews. Results show
that while classification accuracy for long-form reviews can benefit from us-
ing more complex attribute sets (for example, bigrams and POS tagging),
this is not the case for short-form reviews where simpler attributes based on
unigrams alone were su�cient from a performance perspective. Spam detec-
tion for micro-blogs has also been addressed in [19], indicating that people
are more susceptible to click on spam links contained in Twitter posts rather
than those present in emails. Further, mining users’ interests and hot topics
from micro-blog posts have also been investigated in recent research [4, 7].

Lately, researchers have started to leverage user-generated reviews as an
additional source of recommendation data. For example, a methodology to
build a recommender system which leverages user-generated content is de-
scribed in [51]. Although an evaluation is not performed, they propose a
hybrid of a collaborative filtering and a content-based approach to recom-
mend hotels and attractions, where the collaborative filtering component
utilises the review text to compute user similarities in place of traditional
preference-based similarity computations. Moreover, they also comment on
the advantages of using user-generated content for recommender systems;
such as, for example, providing a better rationale for recommended products
and increasing user trust in the system. One of the first attempts to build
a recommender system based on user-generated review data is described in
[1]. Here, an ontology is used to extract concepts from camera reviews and
recommendations are provided based on users’ requests about a product; for
example, “I would like to know if Sony361 is a good camera, specifically its
interface and battery consumption”. In this case, the features interface and
battery are identified, and for each of them a score is computed according to

6

the opinions (i.e. polarities) of other users and presented to the user.
Similar ideas are described in [3], which look at using user-generated

movie reviews from IMDb in combination with movie meta-data (e.g. key-
words, genres, plot outlines and synopses) as input for a movie recommender
system. Their results show that user reviews provide the best source of in-
formation for movie recommendations, followed by movie genre data. In
addition, in [23, 36], the number of ratings in a collaborative filtering sys-
tem is increased by inferring new ratings from user reviews using sentiment
analysis techniques. While [36] generate ratings for Flixster reviews by ex-
tracting the overall sentiment expressed in the review, [23] extract features
and their associated opinions from IMDb reviews and a rating is created by
averaging the opinion polarities (i.e. positive or negative) across the vari-
ous features. Both approaches achieve better performance when using the
ratings inferred from reviews when compared to using ratings predicted by
traditional collaborative filtering approaches. Further, extracting an overall
preference rating [28, 53] or multiple ratings (reflecting multiple product as-
pects) [5] from reviews with the objective of providing users with summaries
of reviewer sentiment on products has also been addressed.

The approach proposed in this paper expands on the above work. The
key objective is to determine whether real-time web information in the form
of short-textual reviews can be used as a useful source of recommendation
knowledge. In particular, our approach to product recommendation involves
representing users and products based on the terms used in their associated
reviews, from which recommendations are subsequently made. Sentiment
analysis or noise removal techniques have not been considered; an analysis
of such techniques we leave to future work. In the next section, we describe
the Blippr service, from which the micro-review data that is employed in our
approach is sourced.

3. The Blippr Service

In this paper we focus on a Twitter-like review service called Blippr.
This service allows registered users to review products from five di↵erent
categories: applications, music, movies, books and games. These reviews (or
blips) are in the form of 160-character text messages, and users must also
supply an accompanying rating on a 4-point rating scale: love it, like it,
dislike it or hate it. For instance, Figure 2 shows a screenshot of the Blippr
interface when a user wants to add a new blip about the movie ‘The Matrix’.

7

Figure 2: Adding a blip for the movie ‘The Matrix’ on the Blippr service.

The user must add a review and a rating. In addition, the website shows
past reviews for this movie from other users and their associated ratings.

Besides adding blips, users can also add tags to products. However, in
order to avoid user abuse, Blippr currently does not allow users to tag popular
products and nor does it indicate which users added particular tags. Blippr
also provides users with recommendations for the di↵erent product types,
although precise details on the recommendation algorithm employed have
not been published. Further, Blippr users can follow friends in a Twitter-like
fashion and share their reviews with them. Finally, users can also post their
blips to other services like Twitter or Facebook.

The Blippr service provides us with a useful source of real-time web data,
which facilitates an analysis of the performance of recommendation algo-
rithms across a range of product types. In the next section, we describe our
recommendation techniques in detail and show how the micro-blogging activ-
ity of users can be harnessed to deliver e↵ective product recommendations.

4. Product Recommendation using RTW Data

A key issue with collaborative and content-based recommenders is that
oftentimes neither user ratings nor item meta-data are available in su�cient
quantity to e↵ectively drive either approach. In this paper, we explore a third

8

source of recommendation data — namely, user-generated content relating to
products and services — to deal with such situations. While user-generated
content is inherently noisy, it is plentiful and here we describe an approach
which uses this data in order to recommend products to users.

4.1. Index Creation

Our approach involves the creation of two indices, representing users and
products, from which product recommendations are made to users. Here, we
consider how real-time web data can be used as a source of indexing infor-
mation.

Product Index. We create this index as follows. Consider a product Pi

which is associated with a set of blips and tags as per Equation 1. In turn,
each blip (and tag) is made up of a set of terms and so each product can
be represented as a set of terms using a bag-of-words style approach [42]
according to Equation 1.

Pi = {b1, ..., bk} [{tag1, ..., tagn} = {t1, ..., tn} . (1)

In this way individual products can be viewed as documents made up of
the set of terms (words) contained in their associated blips and tags. We
can create an index of these documents so that we can retrieve documents
(that is products) based on the terms that are present in their blips and
tags. The information retrieval community provides a well understood set
of techniques for dealing with just this form of document representation and
retrieval. For example, there are many ways to weight the terms that are
associated with a given product based on how representative or informa-
tive these terms are with respect to the product in question. One of the
approaches to term weighting is term frequency–inverse document frequency
(TF-IDF) [42], which is shown in Equation 2. Briefly, the weight of a term tj
in a product Pi, with respect to some collection of products P, is proportional
to the frequency of occurrence of tj in Pi (denoted by ntj ,Pi), but inversely
proportional to the frequency of occurrence of tj in P overall, thus giving
preference to terms that help to discriminate Pi from the other products in
the collection.

TF-IDF(Pi, tj,P) =
tf(tj, Pi)P

tk2Pi
tf(tk, Pi)

⇥ idf(tj,P) , (2)

9

where the term frequency, tf(tj, Pi), and the inverse document frequency,
idf(tj,P), are given by Equations 3 and 4.

tf(tj, Pi) = ntj ,Pi . (3)

idf(tj,P) = log
⇣ |P|
|{Pk 2 P : tj 2 Pk}|

⌘
. (4)

Another popular term-weighting scheme is BM25, sometimes referred to
as Okapi weigthing [40]. This scheme also uses term frequency and inverse
document frequency to weight terms. Using BM25, the importance of a term
tj in a product Pi is calculated as:

BM25(Pi, tj,P) =
X tf(tj, Pi)

k1 ⇥ ((1� b) + b⇥ |P| ⇥ L(Pi)P
Pk2P L(Pk)

) + tf(tj, Pi)
⇥idf(tj,P) ,

(5)
where L(Pi) is the length of the document in words and k1 and b are tuning
constants. The constant k1 is used to control the influence of term-frequency
in the equation (setting k1 = 0 removes the influence of term frequency).
In TREC programme experiments [40], it was found that setting k1 = 2
provided good performance and it is typically used as the default value. The
constant b controls the level of document length normalisation performed.
It ranges in value from 0 to 1, where 0 means no normalisation and 1 is
equivalent to a full normalisation. Typically this value is set to 0.75, which
also was found helpful in TREC. Although we can use default values for k1
and b, it is recommended that these values are set after systematic trials
on the particular collection [41]. The inverse document frequency weight
used in BM25 is usually a slight variation on that used in the above TF-IDF
definition, and is given by:

idf(tj,P) = log
⇣ |P|� ⌘(tj) + 0.5

⌘(tj) + 0.5

⌘
, (6)

where ⌘(tj) = |{Pk 2 P : tj 2 Pk}|. Thus we can create a term-based index
of products P, such that each entry Pij encodes the importance of term
tj in product Pi, where term weights are calculated according to TF-IDF

10

(Equation 7) or BM25 (Equation 8). In this work we use Lucene7 which
provides the TF-IDF term-weighting functionality. In addition, we use a
BM25 extension for Lucene provided in [34].

Pij = TF-IDF(Pi, tj,P) . (7)

Pij = BM25(Pi, tj,P) . (8)

User Index. We use a similar approach to that above to create the user
index. Specifically, we treat each user as a document made up of their blips
as per Equation 9. (Note that we cannot represent users by tags given that
Blippr does not reveal which tags added by individual users.) As before, we
index the set of users using Lucene to produce a user index, U, such that
each entry Uij encodes the importance of term tj for user Ui, once again
using the TF-IDF or BM25 weighting functions as per Equations 10 and 11,
respectively.

Ui = {b1, ..., bk} = {t1, ..., tn} . (9)

Uij = TF-IDF(Ui, tj,U) . (10)

Uij = BM25(Ui, tj,U) . (11)

4.2. Recommending Products

In the above, we have described how two types of index for use in recom-
mendation are created: an index of users and an index of products, based on
the terms in their associated blips (and tags in the case of products). This
suggests the following recommendation strategies. First, we can implement a
user-based approach in which the target user’s profile acts as a query against
the product index to produce a ranked-list of similar products (the target
user’s blips are first removed from the product index to ensure that no bias
is introduced into the process); see Figure 3. We can consider di↵erent vari-
ations of this approach by using di↵erent weighting schemes (TF-IDF and

7
http://lucene.apache.org

11

Basically I think we just need an algorithm here which takes as input the
target user id, U_T, the user matrix U, the movie matrix M, and the number of
recs, n. Then this just returns recommendations/movies m1,...,m_u as output.

UserBasedRecommendation(U_T,U,M,n)
Begin

 query := U.get(U_T) // Return term vector for U_T in U.
 recs := M.retrieve(query) // Retrieve ranked list of movie ids from M
based on query.

 return recs.first(n) // Return the top n recommendations.

End

In this case then, M can be M_blips or M_tags or M_blips+tags so that we
have our different strategies.

!"#$%!"#$%&'(")*'%"!"+")*'%",-.'/"&+"0%1.)2(",-.'/"'+"-)34'%"15"
0%1.)2(*"(1"%'(%,'6'"#"
($%#$%!"#10"#"0%1.)2("%'2133'-.$(,1-*"
"
78" 9:;<=>:;?<;@ABB;C?>#DAC"E!"+"&+"'+"#F"
G8")*+,"-
H8" " I)'%J"!"&8&'(E!"F"" KK"<'()%-"('%3"6'2(1%"51%"!"",-"&"
L8" " %'2*"!"'8%'(%,'6'EI)'%JF" KK"<'(%,'6'"%$-M'."N,*("15""

KK"0%1.)2(*"5%13"'"4$*'."1-"I)'%J"
O8" " .*%$.""%'2*85,%*(E#F"" KK"<'()%-"(10"#"%'2133'-.$(,1-*"
P8" /"0-
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

Figure 3: User-based recommendation algorithm.

And then here is the CommunityBasedRec alg to get you started

CommunityBasedRecommendation(U_T,U,M,n,k)
Begin

 query := U.get(U_T)
 users := U.retrieve(query) // Get ranked list of similar users.
 neighbours := users.first(k) // Get top k most similar users as
neighbours

 // Now you just need the pseudo code to produce a list of movies from
these neighbours, ranked according to popularity.

 recs := ...

 return recs.first(n)
End

//////////////////
We need a scoring function:
score(m,neighbours) = Sum over neighbours of ... 1 if m is in neighbour, else
0

Then recs = union of all movies in neighbours, sorted by score

!"#$%!"#$%&'(")*'%"!"+")*'%",-.'/"&+"0%1.)2(",-.'/"'+"-)34'%"15"0%1.)2(*"(1"
%'(%,'6'"#+"-',&741)%711."*,8'"$"
($%#$%!"#10"#"316,'"%'2133'-.$(,1-*"
"
9:" ;<==>?@#ABCDEFGE;<==E?FC#@<?"H!"+"&+"'+"#+"$I"
J:")*+,"-
K:" " L)'%M"!"&:&'(H!"I"" NN"G'()%-"('%3"6'2(1%"51%"!"",-"&"
O:" ")*'%*"!"&:%'(%,'6'HL)'%MI" NN"P'("%$-Q'."R,*("15"*,3,R$%")*'%*"
S:" " -',&7*"!")*'%*:5,%*(H$I" NN"P'("(7'"(10"Q"31*("*,3,R$%""

NN")*'%*"$*"-',&741)%*"
T:" " %'2*"!"UV" NN"P'("$RR"-',&741)%*W"0%1.)2(*""
X:" " ./0"*123"n"""-',&7*"
Y:" " - %'2*-!"%'2*"#"n:0%1.)2(*HI"
Z:" " *"4" "

"
9[:" " 0*%$0""%'2*:*1%(H*21%'H:+:I+"#I"" NN"G'()%-"(10"#"31*("5%'L)'-(RM""

NN"122)%%,-&"0%1.)2(*"
NN"*21%'H%&+"-',&7*I"\"$122)%*H%&+"nI"

99:" *"4-
"
"
"
"

n'""-',&7*"

Figure 4: Community-based recommendation algorithm.

BM25) to index and query the index. We can also apply stemming (i.e. re-
ducing words to their stem, base or root form) to our data to improve the
match between query and index terms.

In addition, to provide a benchmark for the above index-based approaches,
we implement a community-based approach based on collaborative filtering
ideas [46]. We identify a set of similar users (or neighbours), by using the
target user profile as a query on the user index, and then rank the pre-
ferred products of these neighbours based on their frequency of occurrence in
neighbour profiles; see Figure 4. We can adjust this algorithm by retrieving
di↵erent numbers of neighbours; in our experiments performed in Section 5,
we compare the retrieval performance provided by using 10 and 100 nearest
neighbours.

12

5. Evaluation

We now evaluate the recommendation performance provided by the RTW-
based algorithms described above. We begin by describing the datasets used
in our evaluation and the metrics that we employ to measure performance.

5.1. Datasets

Our experiments use Blippr data relating to 4 di↵erent product types:
movies, books, applications (apps) and games. As previously mentioned,
Blippr facilitates feedback on items from 5 product types; in our work, we
do not consider music products due to the small number of blips for this
product type. For clarity, we focus on strong-positive blips only (i.e. where
users have expressed the highest sentiment toward products). We collected
data from the website using the Blippr API in April 2010, capturing blips
written before that date (other data had to be scraped from the website
due to the limitations of the API). We performed some preprocessing on
the extracted blips such as removing stopwords, special symbols (?,*,& etc.),
digits and multiple repetitions of characters in words (e.g. we reduce goooood
to good). We also consider only those blips that are written in the English
language.

5.2. Metrics

We use precision and recall, which have been widely used in the field of
information retrieval, to evaluate recommendation accuracy. These metrics
have been adapted to evaluate the accuracy of a set of recommended products
[43] and are defined as follows:

Precision =
|T \R|
|R| , (12)

Recall =
|T \R|
|T | , (13)

where T is the test set and R is the recommended set of items for each user,
respectively. Here, the test set for each user is given by the set of products
that the user has blipped about (since we only consider the strong-positive
blips authored by users in our datasets).

Precision and recall are often conflicting properties. For example, in-
creasing the recommendation set size is likely to improve recall, but reduce

13

precision. To resolve this conflict, we use the F1 metric, which is the har-
monic mean of precision and recall [49]. It is given by:

F1 =
2⇥ Precision⇥ Recall

Precision + Recall
. (14)

We also evaluate recommendation coverage, which measures the number
of products that a recommender is capable of making recommendations for
(as a percentage of the total number of products in the system). Clearly,
the ability to make recommendations for as many products as possible is a
desirable system property.

5.3. Indexing Results

In order to evaluate the utility of our approach as a means to represent
products, we conducted initial experiments on one of the product indices (the
movies index). The objective of this experiment is to see if we can index and
retrieve products represented by their blips and tags. In order to do so, we
create three variations of the product index based on using: blips only (B),
tags only (T) and both blips and tags (B+T). For this experiment, TF-IDF
is used as the weighting scheme. We focus on movies that have received
at least 5 blips and 5 tags, which gives a total of 363 movies and 1,066
distinct tags. For each target movie MT , we treat 3 of its blips as 3 separate
queries. We remove these blips from the indices and then allow Lucene to
retrieve a ranked-list of movies in response to these queries over the 3 index
variations. We repeat this approach for queries based on tags; that is, use
3 tags as queries, remove them from the index and perform retrieval. In
this way we can evaluate the e↵ectiveness of 6 retrieval systems based on
di↵erent combinations of queries (blips versus tags) and indices (blips versus
tags versus blips and tags). We generate result-lists ranging in size from 1 to
100 movies and in each case note the hit ratio – i.e. the percentage of times
that MT is returned by the retrieval system.

The results are shown in Figure 5 (left), with each system represented by
a single curve. The best performance is achieved when we use blips as queries
over an index of blips and tags (B vs B+T); for example, we retrieve the
target movie about 36% of the time for result-lists of size 20 movies. Further,
this performance is very close to using an index of blips alone, which indicates
that tags do not contribute significantly to performance. Proof of this is the
poor performance achieved when using tags as queries over an index of tags
alone (T vs T), retrieving the target movie only 7% of the time for 20-movie

14

0"

20"

40"

60"

0" 20" 40" 60" 80" 100"

H
it
$R
a'

o$
(%

)$

Result$List$Size$

B"vs"B+T" B"vs"B" B"vs"T"

T"vs"B+T" T"vs"B" T"vs"T"

0"

40"

80"

120"

160"

0" 100" 200" 300"

M
ed

ia
n'
Ra

nk
'

#'Blips'Per'Movie'

Figure 5: Hit ratios for the 6 query-index combinations (left) and median rank vs. movie
index size (right)

result-lists. More generally, we see better performance when we use blips as
queries compared to tags as queries; tags are just not expressive enough in
the case of the Blippr data. Similarly, indexing using blips, or blips and tags,
delivers better performance than indexing by tags alone. Figure 5 (right)
plots the position (rank) of the matching target movies (in the blips vs blips
condition) as a function of the number of blips used to index the target
movie. This shows superior retrieval performance in cases where there are
more blips available. For example, when there are less than 50 blips per
movie, the position of the target movie typically varies between the top 5
and the top 80 movies. In contrast, once we have more than 50 blips per
movie we see that when the target movie is found (which is approximately
80% of the time), it tends to be located among the top 20 results, and often
in the top 10.

These results suggest that blips, albethey inherently noisy and unstruc-
tured, are a useful form of indexing information, at least su�cient to retrieve
a given product based on a subset of its blips. This bodes well for the use of
real-time data as a source of recommendation knowledge, which we consider
more directly in the next section. Given that tags did not prove to be useful
for indexing and retrieving products in the movies dataset (or in any of the
other datasets)8, in the following experiments products are represented by

8This may be due, at least in part, to the restrictions placed on tagging popular movies

15

their blips only.

5.4. Recommendation Results

To test the recommendation utility of real-time web data, we need to build
a recommender system that is capable of recommending a set of products for
a given user. To evaluate our recommendation algorithms, we first need to
create separate product and user indices for each of the 4 datasets according
to the approach described in Section 4. For these experiments, we have
selected those items that have received at least 3 blips and those users that
have authored between 5 and 20 blips, inclusive. Statistics for all datasets
are shown in Table 1.

Table 1: Statistics showing the number of products, tags and users present in each dataset.

movies apps books games

Products 1,080 268 313 277
Users 542 373 120 164
Blips 15,121 10,910 3,003 3,472
Distinct Tags 1,543 817 649 165
Total Tags 8,444 1,672 2,236 368

Our main objective is to compare the performance of our user-based ap-
proach with that of the community-based benchmark (Section 4.2). In the
case of the user-based approach, we are also interested in comparing the per-
formance of two the popular weighting schemes: TF-IDF and BM25. Fur-
ther, we want to determine if stemming has any e↵ect on the performance
of our recommender system. To do so, we compare a TF-IDF index with-
out stemming (TF-IDF) to a TF-IDF index with stemming (TF-IDF+). For
BM25, we performed tests to determine the optimal values for the tuning
constants k1 and b. We chose F1 corresponding to a result-list size of 5
(F1@5) as the reference metric to select the optimal values. From Table 2, it
can be seen that the optimal values are di↵erent for all datasets. In partic-
ular, for the games dataset, the best F1@5 performance was achieved when
k1 = 0, meaning that term weights are only influenced by inverse document
frequency, with term frequencies playing no role (see Equation 5).

by the Blippr service. In other domains, tags may prove to be a more useful source of
indexing information.

16

Table 2: Optimal BM25 parameters for each dataset.

movies apps books games

k1 1 2 0.5 0
b 0.25 0.25 0.5 –

To perform the evaluation, for each dataset, we consider each user in
turn from the user index to act as a target user, UT , as per Section 4.2 and
compute precision, recall and F1 metric scores for di↵erent recommendation-
list sizes ranging from 5 to 30 items. Precision and recall results are presented
in Figures 6–9 (left) for the movies, applications, books and games datasets,
respectively. For all datasets, there is a clear benefit for the user-based
recommendation strategies compared to the community-based approaches.
For example, in the case of the books dataset using recommendation lists
of size 5, we see that the best user-based approach enjoys a precision score
of approximately 0.44, indicating that, on average, more than 2 of the 5
recommended books are known to be liked by target users. Figures 6–9 (left)
also show the community-based results when 10 (CB-10) and 100 (CB-100)
similar users are selected as the basis for recommendation. For all except the
books dataset, there is clearly a benefit when it comes to drawing on a larger
community of similar users, although our tests suggest that this does not
extend beyond 100 users in practice, and neither approach is able to match
the precision and recall scores of the user-based strategies. The books dataset
is the exception to this trend, where selecting 10 similar users achieves better
performance than selecting 100 users (but did not outperform the blip-based
index approach). This is likely due to the small number of users in this
dataset; for example, the books dataset contains 120 users, compared to 542
users in the largest dataset (movies).

For all datasets, TF-IDF with and without stemming provide similar re-
sults; with stemming applied, TF-IDF performs marginally better for most
datasets. Similar trends are observed for BM25 (in the figures, the results
without stemming are not shown). For the larger datasets (movies and apps),
the performance provided by BM25 is very close to that of TF-IDF. In con-
trast, BM25 performance is seen to fall o↵ for the smaller datasets (books
and games), with for example, the community-based approach using 100
neighbours (CB -100) outperforming BM25 for the games dataset when rec-

17

!"

!#$"

!#%"

!#&"

!#'"

!" (" $!" $(" %!" %(" &!" &("

!"
#$
%&
%'
()

*#$+,,)

)*+,-*")*+,-*." /0%(" 1/+$!" 1/+$!!"

0"

0.1"

0.2"

0.3"

0.4"

0" 0.1" 0.2" 0.3" 0.4" 0.5"

Pr
ec
is
io
n)

Recall)

0"

0.1"

0.2"

0.3"

0" 5" 10" 15" 20" 25" 30" 35"

F1
#M

et
ri
c#

Result#List#Size#

Figure 6: Movies dataset: precision-recall (left) and F1 metric (right) for user-based
(TF-IDF vs. TF-IDF+ vs. BM25) and community-based (CB-10 vs. CB-100) recom-
mendation.

ommendation list sizes of greater than 15 are considered.
The F1 scores achieved by the 5 recommendation strategies are shown

in Figures 6–9 (right). Obviously we see the same relative ordering of the
di↵erent strategies as before with the user-based approach employing TF-IDF
with or without stemming delivering the best performance for all datasets.
Interestingly, we also see that F1 is maximized for result-lists of size 10,
followed closely by result-lists of size 5, indicating that the best balance of
precision and recall is achieved for typical recommendation list sizes.

In Figure 10 (left), we compare the precision and recall provided by the
user-based approach using TF-IDF across the 4 datasets. It can be seen that
the best performance is achieved for the apps dataset, with approximately
similar trends observed for the other datasets. For example, precision and
recall values of 0.54 and 0.37 are achieved for the applications dataset, respec-
tively, compared to values of 0.42 and 0.29 for the books dataset (these values
correspond to recommendation lists of size 5). Also shown in this figure is
the mean number of blips per product for each dataset; it can be seen that
these values correlate well with the precision (Pearson r = 0.84) and recall
(Pearson r = 0.83) performance achieved for the datasets. This seems a rea-
sonable finding, since it indicates that richer product indices (i.e. products
are described by a greater number of blips) lead to better recommendation
performance. However, we note that the datasets used in our evaluation con-

18

!"

!#$"

!#%"

!#&"

!#'"

!" (" $!" $(" %!" %(" &!" &("

!"
#$
%&
%'
()

*#$+,,)

)*+,-*")*+,-*." /0%(" 1/+$!" 1/+$!!"

0"

0.2"

0.4"

0.6"

0" 0.2" 0.4" 0.6" 0.8" 1"

Pr
ec
is
io
n)

Recall)

0"

0.2"

0.4"

0.6"

0" 5" 10" 15" 20" 25" 30" 35"

F1
#M

et
ri
c#

Result#List#Size#

Figure 7: Applications dataset: precision-recall (left) and F1 metric (right) for user-based
(TF-IDF vs. TF-IDF+ vs. BM25) and community-based (CB-10 vs. CB-100) recom-
mendation.

!"

!#$"

!#%"

!#&"

!#'"

!" (" $!" $(" %!" %(" &!" &("

!"
#$
%&
%'
()

*#$+,,)

)*+,-*")*+,-*." /0%(" 1/+$!" 1/+$!!"

0"

0.2"

0.4"

0.6"

0" 0.2" 0.4" 0.6" 0.8"

Pr
ec
is
io
n)

Recall)

0"

0.2"

0.4"

0.6"

0" 5" 10" 15" 20" 25" 30" 35"

F1
#M

et
ri
c#

Result#List#Size#

Figure 8: Books dataset: precision-recall (left) and F1 metric (right) for user-based (TF-
IDF vs. TF-IDF+ vs. BM25) and community-based (CB-10 vs. CB-100) recommenda-
tion.

19

!"

!#$"

!#%"

!#&"

!#'"

!" (" $!" $(" %!" %(" &!" &("

!"
#$
%&
%'
()

*#$+,,)

)*+,-*")*+,-*." /0%(" 1/+$!" 1/+$!!"

0"

0.1"

0.2"

0.3"

0.4"

0" 0.1" 0.2" 0.3" 0.4" 0.5" 0.6"

Pr
ec
is
io
n)

Recall)

0"

0.1"

0.2"

0.3"

0.4"

0" 5" 10" 15" 20" 25" 30" 35"

F1
#M

et
ri
c#

Result#List#Size#

Figure 9: Games dataset: precision-recall (left) and F1 metric (right) for user-based
(TF-IDF vs. TF-IDF+ vs. BM25) and community-based (CB-10 vs. CB-100) recom-
mendation.

tain relatively small numbers of users, products and blips, and hence further
analysis is required to make definitive conclusions in this regard.

Finally, we examine coverage performance in Figure 10 (right). Here we
show the trends for the user-based recommendation strategy using TF-IDF
and for the best performing community-based approach using 100 nearest
neighbours (CB -100). It can be seen that the user-based approach provides
almost complete coverage for all datasets, well in excess of that given by
the community-based approach, particularly for the larger datasets (movies
and apps). This is a very positive finding in respect of the utility of blips
as a source of recommendation data, since it indicates that not only is this
approach capable of providing significantly better coverage compared to the
traditional community-based strategy, it is capable of delivering more accu-
rate recommendations as well.

6. Conclusions

This paper investigates how user-generated micro-blogging messages can
be used as a new source of recommendation knowledge. We have proposed an
approach to represent users and products based on the terms in their associ-
ated reviews using techniques from the information retrieval community. We

20

0"

10"

20"

30"

40"

50"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

Movies" Apps" Books" Games"

M
ea
n%
#%
Bl
ip
s%
pe

r%
Pr
od

uc
t%

Pr
ec
is
io
n/
Re

ca
ll%

Dataset%

Precision" Recall" Mean"#"Blips/Product"

0"

20"

40"

60"

80"

100"

Movies" Apps" Books" Games"

Co
ve
ra
ge
((%

)(

Dataset(

TF7IDF" CB7100"

Figure 10: Precision and recall (for recommendation lists of size 5) provided by user-based
recommendation using TF-IDF and mean number of blips per product for each dataset
(left) and the coverage provided by the recommendation strategies for each dataset (right).

have performed an evaluation on micro-blog reviews from 4 product datasets
and the results are promising. First, they suggest that micro-blogging mes-
sages can provide a useful recommendation signal, despite their short-form
and inconsistent use of language. Secondly, we have found that our approach
outperforms a more traditional collaborative-filtering based approach in all
the datasets evaluated, both in terms of accuracy and coverage. In future
work, we will consider other performance metrics in our evaluations such as
novelty [14] and diversity [52].

This work is novel in its use of micro-blogging information for recom-
mendation. Our approach is related to a growing body of research on the
potential for user-generated content to provide product recommendations
[1, 3, 23]. This related research focuses mainly on more conventional, long-
form user reviews, whereas the work presented here focuses on the more
challenging micro-blogging messages. In future work, we will apply our ap-
proach to other domains such as Twitter which o↵ers a rich source of user
opinions and interests on heterogeneous topics and products. We will also
focus on enriching user and item profiles by using sentiment analysis and
feature extraction techniques. Further, we will expand our approach to con-
sider the potential for cross-domain recommendation, where indices created
using messages from one domain are used to recommend products from other
domains.

21

7. Acknowledgements

Based on work supported by Science Foundation Ireland, Grant No. 07/CE/I1147.

References

[1] S. Aciar, D. Zhang, S. Simo↵, and J. Debenham. Recommender sys-
tem based on consumer product reviews. In Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence (WI-
IATW ’06), pages 719–723, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[2] G. Adomavicius and A. Tuzhilin. Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible ex-
tensions. IEEE Transactions on Knowledge and Data Engineering,
17(6):734–749, 2005.

[3] S. Ahn and C.-K. Shi. Exploring movie recommendation system using
cultural metadata. Transactions on Edutainment II, pages 119–134,
2009.

[4] A. Angel, N. Koudas, N. Sarkas, and D. Srivastava. What’s on the
grapevine? In Proceedings of the 35th SIGMOD international conference
on Management of data (SIGMOD ’09), pages 1047–1050, New York,
NY, USA, 2009. ACM.

[5] S. Baccianella, A. Esuli, and F. Sebastiani. Multi-facet rating of prod-
uct reviews. In Proceedings of the 31th European Conference on IR
Research on Advances in Information Retrieval (ECIR ’09), pages 461–
472, Berlin, Heidelberg, 2009. Springer-Verlag.

[6] M. Balabanović and Y. Shoham. Fab: content-based, collaborative rec-
ommendation. Communications of the ACM, 40(3):66–72, 1997.

[7] N. Banerjee, D. Chakraborty, K. Dasgupta, S. Mittal, A. Joshi, S. Nagar,
A. Rai, and S. Madan. User interests in social media sites: an explo-
ration with micro-blogs. In Proceeding of the 18th ACM conference on
Information and knowledge management (CIKM ’09), pages 1823–1826,
New York, NY, USA, 2009. ACM.

22

[8] A. Bermingham and A. F. Smeaton. Classifying sentiment in microblogs:
is brevity an advantage? In Proceedings of the 19th ACM interna-
tional conference on Information and knowledge management (CIKM
’10), pages 1833–1836, New York, NY, USA, 2010. ACM.

[9] J. S. Breese, D. Heckerman, and C. M. Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In G. F. Cooper and
S. Moral, editors, Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence (UAI ’98), pages 43–52. Morgan Kauf-
mann, 1998.

[10] A. Brew, D. Greene, and P. Cunningham. Using crowdsourcing and
active learning to track sentiment in online media. In Proceedings of the
19th European Conference on Artificial Intelligence (ECAI ’10), pages
145–150, Amsterdam, The Netherlands, The Netherlands, 2010. IOS
Press.

[11] D. Bridge and P. Healy. Ghostwriter-2.0: Product reviews with case-
based support. In M. Bramer, M. Petridis, and A. Hopgood, edi-
tors, Proceedings of the Thirtieth International Conference on Innovative
Techniques and Applications of Artificial Intelligence (SGAI ’10), pages
467–480. Springer, 2010.

[12] R. Burke. Hybrid recommender systems: Survey and experiments. User
Modeling and User-Adapted Interaction, 12(4):331–370, 2002.

[13] I. Cantador, A. Belloǵın, and D. Vallet. Content-based recommendation
in social tagging systems. In Proceedings of the fourth ACM conference
on Recommender systems (RecSys ’10), pages 237–240, New York, NY,
USA, 2010. ACM.

[14] O. Celma and P. Herrera. A new approach to evaluating novel rec-
ommendations. In Proceedings of the 2008 ACM conference on Rec-
ommender systems (RecSys ’08), pages 179–186, New York, NY, USA,
2008. ACM.

[15] S. Chelcea, G. Gallais, and B. Trousse. A personalized recommender
system for travel information. In Proceedings of the 1st French-speaking
conference on Mobility and ubiquity computing (UbiMob ’04), pages 143–
150, New York, NY, USA, 2004. ACM.

23

[16] F. L. Cruz, J. A. Troyano, F. Enŕıquez, F. J. Ortega, and C. G. Vallejo.
A knowledge-rich approach to feature-based opinion extraction from
product reviews. In Proceedings of the 2nd international workshop on
Search and mining user-generated contents (SMUC ’10), pages 13–20,
New York, NY, USA, 2010. ACM.

[17] L. Dey and S. K. M. Haque. Opinion mining from noisy text data. In
Proceedings of the second workshop on Analytics for noisy unstructured
text data (AND ’08), pages 83–90, New York, NY, USA, 2008. ACM.

[18] P. du Boucher-Ryan and D. Bridge. Collaborative recommending using
formal concept analysis. Knowledge Based Systems, 19(5):309–315, 2006.

[19] C. Grier, K. Thomas, V. Paxson, and M. Zhang. @spam: the un-
derground on 140 characters or less. In Proceedings of the 17th ACM
conference on Computer and communications security (CCS ’10), pages
27–37, New York, NY, USA, 2010. ACM.

[20] C. Hayes and P. Cunningham. Context boosting collaborative recom-
mendations. Knowledge Based Systems, 2–4:131–138, 2004.

[21] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorith-
mic framework for performing collaborative filtering. In Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval (SIGIR ’99), pages 230–237, New
York, NY, USA, 1999. ACM.

[22] M. Hu and B. Liu. Mining and summarizing customer reviews. In Pro-
ceedings of the tenth ACM SIGKDD international conference on Knowl-
edge discovery and data mining (KDD ’04), pages 168–177, New York,
NY, USA, 2004. ACM.

[23] N. Jakob, S. H. Weber, M. C. Müller, and I. Gurevych. Beyond the
stars: exploiting free-text user reviews to improve the accuracy of movie
recommendations. In Proceeding of the 1st international CIKM work-
shop on Topic-sentiment analysis for mass opinion (TSA ’09), pages
57–64, New York, NY, USA, 2009. ACM.

[24] B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury. Micro-blogging as
online word of mouth branding. In Proceedings of the 27th international

24

conference extended abstracts on Human factors in computing systems
(CHI EA ’09), pages 3859–3864, New York, New York, USA, 2009. ACM
Press.

[25] N. Jindal and B. Liu. Opinion spam and analysis. In Proceedings of the
international conference on Web search and web data mining (WSDM
’08), pages 219–230, New York, NY, USA, 2008. ACM.

[26] Y. Koren. Collaborative filtering with temporal dynamics. In Proceed-
ings of the 15th ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD ’09), pages 447–456, Paris, France, June
28–July 1 2009.

[27] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for
recommender systems. IEEE Computer, 42(8):30–37, 2009.

[28] C. W.-k. Leung, S. C.-f. Chan, and F.-l. Chung. Integrating collab-
orative filtering and sentiment analysis: A rating inference approach.
In Proceedings of of the European conference on artificial intelligence
(ECAI ’06) workshop on recommender systems, pages 62–66, Riva del
Garda, Italy, 2006.

[29] R. J. Mooney and L. Roy. Content-based book recommending using
learning for text categorization. In Proceedings of the fifth ACM confer-
ence on Digital libraries (DL ’00), pages 195–204, New York, NY, USA,
2000. ACM.

[30] T. Mullen and N. Collier. Sentiment analysis using support vector ma-
chines with diverse information sources. In Proceedings of the conference
on Empirical Methods in Natural Language Processing (EMNLP ’04),
pages 412–418, 2004.

[31] V. Pandey and C. Iyer. Sentiment analysis of microblogs, 2009. Accessed
November 2010.

[32] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment clas-
sification using machine learning techniques. In Proceedings of the
2002 conference on Empirical methods in natural language processing
(EMNLP ’02), pages 79–86, Morristown, NJ, USA, 2002. Association
for Computational Linguistics.

25

[33] M. J. Pazzani and D. Billsus. Content-based recommendation systems.
In P. Brusilovsky, A. Kobsa, and W. Nejdl, editors, The adaptive web:
Methods and strategies of Web personalization, pages 325–341. Springer-
Verlag, Berlin, Heidelberg, 2007.

[34] J. Pérez-Iglesias, J. R. Pérez-Agüera, V. Fresno, and Y. Z. Feinstein.
Integrating the Probabilistic Models BM25/BM25F into Lucene. CoRR,
abs/0911.5046, 2009.

[35] O. Phelan, K. McCarthy, M. Bennett, and B. Smyth. Terms of a feather:
content-based news recommendation and discovery using twitter. In
Proceedings of the 33rd European conference on Advances in information
retrieval (ECIR ’11), 2011.

[36] D. Poirier, I. Tellier, F. Franoise, and S. Julien. Toward text-based
recommendations. In Proceedings of the 9th international conference on
Adaptivity, Personalization and Fusion of Heterogeneous Information
(RIAO ’10), Paris, France, 2010.

[37] A.-M. Popescu and O. Etzioni. Extracting product features and opin-
ions from reviews. In Proceedings of the conference on Human Lan-
guage Technology and Empirical Methods in Natural Language Process-
ing (HLT ’05), pages 339–346, Morristown, NJ, USA, 2005. Association
for Computational Linguistics.

[38] J. Read. Using emoticons to reduce dependency in machine learning
techniques for sentiment classification. In Proceedings of the ACL Stu-
dent Research Workshop (ACL ’05), pages 43–48, Morristown, NJ, USA,
2005. Association for Computational Linguistics.

[39] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grou-
plens: An open architecture for collaborative filtering of netnews. In Pro-
ceedings of ACM Conference on Computer-Supported Cooperative Work
(CSCW ’94), pages 175–186, Chapel Hill, North Carolina, USA, August
1994.

[40] S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gat-
ford. Okapi at trec-3. In Text REtrieval Conference (TREC), pages
109–126, 1996.

26

[41] S. E. Robertson and K. S. Jones. Simple, proven approaches to text
retrieval. Technical report, Microsoft Research Ltd, University of Cam-
bridge, Cambridge, UK, 1997.

[42] G. Salton and M. J. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill, Inc., 1986.

[43] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommen-
dation algorithms for ecommerce. In Proceedings of the 2nd ACM Con-
ference on Electronic Commerce (EC ’00), pages 158–167, Minneapolis,
Minnesota, USA, October 17-20 2000. ACM.

[44] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of
the 10th International World Wide Web Conference (WWW ’01), pages
285–295, Hong Kong, May 2001.

[45] J. B. Schafer, J. A. Konstan, and J. Riedl. E-commerce recommendation
applications. Data Mining and Knowledge Discovery, 5(1-2):115–153,
2001.

[46] U. Shardanand and P. Maes. Social information filtering: algorithms for
automating “word of mouth”. In Proceedings of the SIGCHI conference
on Human factors in computing systems (CHI ’95), pages 210–217. ACM
Press/Addison-Wesley Publishing Co., 1995.

[47] B. Smyth and P. Cotter. A personalised TV listings service for the
digital TV age. Knowledge Based Systems, 13(2-3):53–59, 2000.

[48] H. Tang, S. Tan, and X. Cheng. A survey on sentiment detection of
reviews. Expert Systems with Applications, 36(7):10760–10773, 2009.

[49] C. J. van Rijsbergen. Information Retrieval. Butterworth-Heinemann,
Newton, MA, USA, 1979.

[50] J. Wiebe and E. Rilo↵. Creating subjective and objective sentence clas-
sifiers from unannotated texts. In Proceedings of the 6th International
Conference on Intelligent Text Processing and Computational Linguis-
tics (CICLing ’05), pages 486–497, Mexico City, Mexico, 2005.

27

[51] R. T. A. Wietsma and F. Ricci. Product reviews in mobile decision
aid systems. In Pervasive Mobile Interaction Devices (PERMID 2005),
pages 15–18, Munich, Germany, 2005.

[52] M. Zhang and N. Hurley. Statistical modeling of diversity in top-n rec-
ommender systems. In Proceedings of the 2009 IEEE/WIC/ACM In-
ternational Joint Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT ’09), volume 01, pages 490–497, Washington, DC,
USA, 2009. IEEE Computer Society.

[53] Z. Zhang and B. Varadarajan. Utility scoring of product reviews. In
Proceedings of the 15th ACM international conference on Information
and knowledge management (CIKM ’06), pages 51–57, New York, NY,
USA, 2006. ACM.

28

