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Abstract—Price impact models are important for devising
trade execution strategies. However, a proper characterization
of price impacts is still lacking. This study models the price
impact using an agent-based modeling approach. The purpose
of this paper is to investigate whether agent intelligence is a
necessary condition when seeking to construct realistic price
impact with an artificial market simulation. We build a zero-
intelligence based artificial limit order market model. Our
model distinguishes limit orders according to their order aggres-
siveness and takes into account some observed facts including
log-normal distributed order sizes and power-law distributed
limit order placements. The model is calibrated using trades
and orders data from the London Stock Exchange. The results
indicate that agent intelligence is needed when simulating an
artificial market where replicating price impact is a concern.

I. INTRODUCTION

In financial markets, trades have impact on the market
which is called price/market impact. A sell trade is always
associated with a following fall in market price and a buy
trade is always followed by a rise in market price. Also the
price impact caused by a trade increases with the trade size.
Thus, when trading a large amount of shares, the normal
approach is to divide the shares into smaller chunks and
spread them over time in order to reduce the price impact.
One example from the real world is the recent purchase of
IBM shares by Warren Buffet’s company, which has invested
$10.7 billion in IBM stock since March 2011, now owning
64 million shares, equivalent of a 5.4% stake. The amount
he has bought is about 16 times as large as the average
daily volume' of IBM. It is more likely that he traded
approximately 10.29%?2 of the average daily volume in each
trading day since March, instead of purchasing 64 million
shares in 16 trading days which otherwise should have caused
the share price go up dramatically.

Modeling price impact is an area of intense study both in
academy and practice. A proper price impact model is impor-
tant for devising many Algorithmic Trading strategies which
are used to automate trade executions in order to achieve
efficient execution price [1]. There are many models of price
impact in the literature. The early work [2], [3], [4] adopt
linear or nonlinear price impact functions of trade sizes. The
recent work [5], [6] try to model the shape of the limit
order books adopted in many financial markets. However,
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IAverage daily volume (ADV), explained by Yahoo Finance, is the
monthly average of the cumulative trading volume during the last 3 months
divided by 22 days. The recent ADV of IBM stock is 6,135,410 shares.

2This is estimated by using the following values: shares outstanding (1.8
billion), average daily volume (6,135,410 shares) from Yahoo Finance at
Nov. 15, 2011, and assuming that he traded from Mar. 1 to Sep. 30, 2011.

their order book shape models are only approximations of
the real market which do not capture the rich dynamics of a
realistic order book.

Agent-based modeling has been applied to finance for
many years [7]. It provides a microscopic approach to the
study of the behaviors of financial markets. By modeling
the interactions between the trader agents and the market
agent under explicit trading rules, the agent-based artificial
market can produce many features that exist in real markets.
This method is very useful for research in financial market
microstructure which focuses on the price formation and
price discovery processes including how trading and market
structure affect the behavior of market prices. Agent-based
modeling methodology provides an alternative approach to
model and study financial markets. It differs from the tra-
ditional equilibrium models which can not always provide
analytical solutions [8].

The purpose of the paper is to examine whether agent
intelligence is needed to replicate the realistic relationship
between price impact and market order size with an artifi-
cial market simulation. This study builds a zero-intelligence
based artificial stock market model. This model extends the
previous work done by Smith et. al. [9] from three aspects:
the first is that our model distinguishes limit orders according
to their order aggressiveness; the second is that our model
considers stochastic order sizes generated from log-normal
distributions; the third is that our model takes into account
power-law distributed limit order placements. Another con-
tribution of this study is that the artificial market model with
18 parameters is calibrated using ultra high-frequency data
from the London Stock Exchange. This research can help
us to better understand the price formation process in stock
market, and the artificial market can be used as a test bed
for devising high-frequency trading strategies.

The paper is organized as follows: Section II gives a
brief introduction to market mechanism and price impact;
Section III reviews related work on agent-based artificial
stock markets; Section IV describes our zero-intelligence
based model; Section V presents the data used in this study
and shows how to estimate the parameters of our model
from the data; Section VI explains the experimental setup;
Section VII analyzes and discusses the results; Section VIII
concludes the study and suggests future work.

II. BACKGROUND

In this section we provide an introduction to the market
structure most commonly found in large international equity
markets, and we also discuss the researches on price impact
of a market order from the market microstructure literature.



TABLE 1 TABLE II TABLE III TABLE IV
ORDER BOOK 1 ORDER BOOK 2 ORDER BOOK 3 ORDER BOOK 4
Bid Ask Bid Ask Bid Ask Bid Ask
Shares Prices Prices Shares Shares Prices Prices Shares Shares Prices Prices Shares Shares Prices Prices Shares
300 50.19 50.22 200 300 50.19 50.22 200 300 50.19 50.22 100 300 50.19 50.23 100
200 50.18 50.23 300 500 50.18 50.23 300 500 50.18 50.23 300 500 50.18 50.24 100
400 50.17 50.24 100 400 50.17 50.24 100 400 50.17 50.24 100 400 50.17 50.25 300
500 50.16 50.25 300 500 50.16 50.25 300 500 50.16 50.25 300 500 50.16 50.26 200
300 50.15 50.26 200 300 50.15 50.26 200 300 50.15 50.26 200 300 50.15 50.27 600
100 50.14 50.27 600 100 50.14 50.27 600 100 50.14 50.27 600 100 50.14 50.28 300

A. Limit Order Market

Today most equity markets operate an electronic double
auction limit order book. Examples include the Electronic
Communication Networks (ECNs) in the United States,
the Toronto Stock Exchange, and the Hong Kong Stock
Exchange. Electronic trading platforms in derivative mar-
kets have also gained popularity in recent years over the
traditional open-outcry auctions, such as Chicago Mercan-
tile Exchange’s (CME) Globex platform and International
Securities Exchange’s electronic option trading platform.
One advantage of an open limit-order book is the greater
transparency offered by these systems when compared with
dealer market settings. Price quotes and transactions are
visible to all participants which generally improves the effi-
ciency of price discovery, thus promoting market confidence.
It also promotes competition as dealers/market makers are
encouraged to post the best prices to attract order flow [10].

In a limit order market, traders can either submit a limit
order or a market order. A market order is an order to buy or
to sell a specified number of shares. It guarantees immediate
execution but provides no control over its execution price. In
contrast, a limit order is an order to buy or to sell a specified
number of shares at a specified price. It provides control over
its execution price but does not guarantee its execution.

Table I shows a sample order book, where all the buy and
sell orders are visible/transparent to traders in the market. It
consists of two queues which store buy and sell limit orders,
respectively. Buy limit orders are called bids, and sell limit
orders are called offers or asks. The highest bid price on the
order book is called best bid, and the lowest ask price on the
order book is called best ask. The difference between best
bid and best ask is called bid-ask spread. Prices on the order
book are not continuous, but rather change in discrete quanta
called ticks.

In 2001, the US equity markets changed their minimum
tick size from one sixteenth of a dollar to one cent. Since
decimalisation, the average trade size has declined from
1,200 shares per transaction in 2000 to 300 shares today.
This in turn has led to an explosion in the number of trades
executed and a narrowing of spreads with large institutional
orders taking longer to execute. Due to these changes, Wall
Street firms (both buy-side and sell-side) have started to
embrace AT for trade execution over the last few years [11].
The emergence of AT has resulted in a substantial increase
in the speed of trade execution and a significant reduction in
the average value of each trade [12].

In a limit order market, orders arrive randomly over time.

The price limit of a newly arrived order is compared to those
of orders already held in the system to ascertain if there is
a match. If so, the trade occurs at the price set by the first
order. The set of unexecuted limit orders held by the system
constitutes the dynamic order book, where limit orders can
be cancelled or modified at any time prior to their execution.
Limit orders on the order book are typically (depending on
market rules) executed strictly according to (1) price priority
and (2) time priority. Bid (ask) orders with higher (lower)
prices get executed first with time of placement being used
to break ties. A buy (sell) market order is executed at the
best ask (bid) price. The limit order book is highly dynamic,
because new limit orders will be added into the order book,
and current limit orders will get executed or cancelled from
the order book throughout the trading day. Table II shows the
order book after a trader submits a buy limit order with 300
shares placed at price 50.18. Table III shows the order book
after a trader submits a buy market order with 100 shares.
Table IV shows the order book after a trader submits a buy
market order with 300 shares.

Apart from market and limit orders, some stock exchanges
also offer hidden/iceberg orders to allow traders to conceal
the total size of a large limit order. Such orders consist of two
components, a small component whose size is visible in the
order book and a larger hidden component with a size known
only to the order submitter. The hidden component is exposed
to the market gradually through execution of the visible part
of the order [13], [14]. Many electronic trading platforms
have introduced this kind of order, including Euronext, the
Toronto Stock Exchange, the London Stock Exchange, and
XETRA. Hidden limit orders are often used by large liquidity
traders to hide their intent to trade [15]. However, iceberg
orders exhibit a less favorable time priority compared with
pure limit orders [16], [17]. After the visible portion of
an iceberg order is completely matched, other visible limit
orders at the same limit price that were entered before the
new portion is displayed take priority.

B. Price Impact of a Market Order

Price impact is the average response of prices to trades
[18]. It is related to the trade sign, trade size and market
characteristics.

The relationship between price impact and trade volume
has been extensively studied in the financial market mi-
crostructure literature. The conclusion of previous studies
is that the price impact of a market order is a concave
function of its order size, and has been validated using
transaction-level data in [19], [20], [21], [22], [23]. Price



impact is measured as the difference of mid-quote price
before the order arrives and the mid-quote price after it has
been executed. The functional form takes the form

p=yxvt

where p is the price impact of a market order with order
size v, v and p are constants of the function. The specific
constants of the function vary in different markets and at
different time periods. Lillo et. al. [19] find that the exponent
w1 is 0.5 for small orders and 0.2 for large orders at NYSE.
Farmer & Lillo [20] find that x4 is 0.26 for LSE data. Hopman
[23] find & is 0.37 for Paris Bourse stocks.

Although a concave function is a good approximation of
price impact of a market order, which has been empirically
identified by many studies, it does not capture the full
richness and complexity of the market dynamics [24]. The
order book is found to play an important role in determining
the price impact [20] [25] [23]. Farmer & Lillo [20] and
Weber & Rosenow [26] both find that large price impacts
of individual market orders are caused by a low density of
limit orders in the order book, not by large trading volume.
A proper empirical characterization of the price impact in
stock market is still lacking [18].

III. RELATED WORK: ZERO-INTELLIGENCE BASED
ARTIFICIAL STOCK MARKET

Over the last decade, a number of agent-based artificial
stock markets have been built in order to study and under-
stand the stock market dynamics [27].

Our model is based on zero-intelligence (ZI) model. The
notion of ZI was first introduced by Gode and Sunder [28].
The traders can randomly generate buying and selling orders.
The impatient orders submitted by the traders are executed
against those patient orders which are previously submitted
to the market. The patient orders are placed in the order book
according to the price and time priorities. Based on this idea,
Smith et. al. [9] simulate a limit order market to study order
flows and market dynamics. In Smith’s model, the arrivals
of the order flows composed of market orders, limit orders
and order cancelations are modeled as poisson processes.
Order sizes are produced from a half-normal distribution.
One important finding of their results is that the price impact
of a market order is a concave function of the size of the
market order which is qualitatively consistent with empirical
findings in previous studies.

Another research which simulates a limit order market in
the spirit of ZI idea is conducted by [29]. In their model,
there are 100 ZI traders endowed with the same cash and
shares. The arrival of each trader is modeled as a poisson
process. At each arriving time, the trader chooses to buy or
sell with probability 1/2, and decides to submit a market
order, or a limit order, or cancel a previous submitted order
with probabilities 7,,, m; and 1 — 7, — m; respectively. This
model distinguishes two types of limit orders according to
order aggressiveness. Traders place a limit order uniformly
distributed inside the bid-ask spread with probability 7;,, or

power-law distributed away from the spread with probability
1 —7;p,. The volumes of incoming limit orders are produced
from a log-normal distribution, and the sizes of market orders
are the same as those of the best counterpart orders. Their
model reproduces the principal stylized facts exhibited by
real markets.

The most recent work is the paper by [30]. They build
an agent-based stock market model consisting of ZI agents
to mimic the Taiwan Stock Market (TWSE). Different from
continuous matching in limit order market, the order match-
ing at TWSE is organized every 25 seconds. In their model at
each simulated time corresponding 0.01 second of real time,
there are five possible events happening in the artificial mar-
ket: limit order submission, market order submission, order
cancelation, order matching and no activity. The probabilities
of these events are estimated using real data from TWSE,
which are then used for simulating the artificial market.
Like [9], they use a stochastic order size which is generated
randomly from a half-normal distribution. In the experiment,
they compare the liquidity costs in real market and simulated
market, which is measured as the difference of the virtual
payment at the disclosed price when the order is entering
the market and the actual transaction payment. The result
shows that the liquidity cost generated by the simulation data
are higher than those for the TWSE data which is possibly
caused by their overestimated market order size.

IV. AN ZERO-INTELLIGENCE BASED LIMIT ORDER
MARKET MODEL

Our model tries to mimic a limit order market. The trading
mechanism in our model follows the price/time priority
described in Section II-A. Traders are allowed to submit
orders at any time, and cancel their limit orders which
are not executed. Our model extends Smith’s model [9]
by distinguishing different limit orders according to order
aggressiveness, considering log-normal distributed order size
and taking into account power-law distributed limit order
placements in order to come as close as possible to a realistic
order flow. An algorithm describing the artificial market
simulation process is shown in Algorithm 1.

In our model, there are two agents: a buy agent and a sell
agent. All the buy (sell) limit/market orders are placed by the
buy (sell) agent. We assume that each hypothetical time in
our artificial market corresponds to one millisecond in real
market. At each time in the artificial market, a buy agent or
a sell agent is chosen with probability 1/2. The chosen agent
at each time can perform one of the four actions as below
to fulfill his investment object:

¢ do nothing,

e submit a market order,

e submit a limit order, or

o cancel an outstanding? limit order.

With probability A,, the agent will do nothing at all; with
probability A,,, the agent will submit a market order to the

3 An outstanding limit order means that the limit order is still listed on
the order book



Algorithm 1 Artificial Limit Order Market

Generate a random number from a uniform distribution (0, 1) and determine the agent type according to the probability 0.5.

switch Agent do
case Buyer

switch Action do
case Do nothing
| Do nothing at all.
endsw
case Submit a market order

endsw
case Submit a limit order

and /\o ffspr-
switch LimitOrder do
case Crossing Limit Order

endsw
case Inside-spread Limit Order

Hinspr and Tinspr.
endsw
case Spread Limit Order

Hspr and Ospr.
endsw
case Off-spread Limit Order

endsw

endsw

endsw

case Cancel an outstanding limit order

endsw
endsw
endsw
case Seller
| (similar to the case of buyer)
endsw
endsw

Generate a random number from a uniform distribution (0, 1) and determine the action type according to the probabilities Ao, Ay, A; and Ac.

|  Execute a market order with the order size generated from a log-normal distribution with parameters (0, and om0

Generate a random number from a uniform distribution (0, 1) and determine the limit order type according to probabilities Acrs, Ainspr, Aspr

Submit a limit order at the best ask price with the order size generated from a log-normal distribution with parameters ftcrs and ocrs.
Execute the crossing limit order. If it is not fully executed, place the rest of the limit order at the best ask price on the order book.

Generate a random value denoted as Pjy, sp, from a uniform distribution (BestBid, BestAsk).
Place a limit order at the price P;,sp, on the order book with the order size generated from a log-normal distribution with parameters

Place a limit order at the best bid price on the order book with the order size generated from a log-normal distribution with parameters

Generate a random value denoted as RP, fsp, from a power-law distribution with exponent B, ¢ ¢ .
Place a limit order at the price (BestBid — RP,ffspy) on the order book with the order size generated from a log-normal
distribution with parameters fioffspr and oo fspr-

| Cancels the oldest outstanding limit order that the buyer previously submitted.

market; with probability );, the agent will submit a limit
order to the market; with probability A., the agent will cancel
a limit order which he previously placed and is not executed.
The sum of these probabilities has to be one (A, + Ay, + A+
Ac = 1). Without loss of generality, we assume that the agent
always cancels the oldest limit order which he previously
placed.

If the agent wants to submit a limit order, he has four
types of limit order to choose according to the order’s
aggressiveness. These four types of limit orders are:

o crossing limit order, which causes an immediate execu-

tion,

« inside-spread limit order, which is placed inside the bid-

ask spread,

« spread limit order, which is placed at the best bid (ask)

price if it is a buy (sell), and

o off-spread limit order, which is placed inside the order

book with less attractive price than the best quote.
With probability A..s, the agent chooses a crossing limit
order; with probability A;,sp,-, the agent uses an inside-
spread limit order; with probability A, the agent adopts a
spread limit order; with probability A, ¢spr, the agent places
an off-spread limit order. The sum of these probabilities also

has to be one (Acrs+Ainspr+Aspr+Aoffspr = 1). We assume
that crossing buy (sell) limit orders are always placed at the
best ask (bid) price*. If the size of the crossing buy (sell)
limit order exceeds the depth at the best ask (bid) quote, the
unexecuted part of the buy (sell) limit order will be placed at
the best ask (bid) quote. The inside-spread limit orders are
uniformly placed between the best bid quote and the best
ask quote. The placement of off-spread limit order follows a
power-law distribution with exponent (3,¢f—,°, and various
order sizes are allowed in our model, which are generated
from log-normal distributions®.

V. MODEL CALIBRATION

In order to make our model more realistic, we estimate
the 14 parameters (shown in Table VI) of our model using
real data from London Stock Exchange (LSE). One important

4This assumption is made based on our observation of LSE market that
crossing limit orders are rarely placed far away from the best quote on the
opposite side of the market.

5Empirical work [31], [32] finds that the relative price of the off-spread
limit order follows a power-law distribution. The relative price is the
difference between the limit price of the order and the best quote.

SEmpirical work [33] finds that order size is roughly distributed like a
log-normal distribution with a power law tail.



TABLE V
DESCRIPTIVE STATISTICS OF ROB DATA AT SEP. 6, 2010 FOR
BARCLAYS CAPITAL

Descriptive Statistics

Average midquote price: 323.04
Average bid-ask spread: 0.11
Average trade size (dollars): 2110606
Average trade size (shares): 6537
Number of trades: 4329
Number of order cancelations: 68783
Number of market orders: 3972
Number of limit orders: 142368

reason why we study LSE market is that it provides data that
contain details of every order and every trade which enables
us to calculate the parameters of our model. This section
provides a brief introduction to the LSE data and describes
how to estimate the parameters of our model using the data.

A. Data

LSE is one of the largest exchanges in the world. It
provides an electronic order book platform, Stock Exchange
Electronic Trading System (SETS), for trading indexed secu-
rities. This trading system has three sessions on each trading
day:

e opening auction session, from 07:50:00 to 08:00:00,

where buy and sell orders are matched at 08:00:00,

« continuous trading session, from 08:00:00 to 16:30:00,
where buy and sell orders are continuously matched at
price/time priority, and

e closing auction session, from 16:30:00 to 16:35:00,
where buy and sell orders are matched at 16:35:00.

In this study, we use the Rebuild Order Book (ROB)
data, which provide intraday information on all trades and
orders. The precision of recording time in the data is one
millisecond. ROB provides the information on all orders and
trades at the end of each trading day in three files:

o ‘order details’ file, which contains details of every new

persistent order’ entering the electronic order book,

o ‘order history’ file, which contains information on
changes to each persistent order, including order match-
ing, order deletion, order expiration and order modifi-
cation, and

o ‘trade report’ file, which contains details of every trans-
action.

Each order submitted to the electronic market has a unique
code number which maps the new persistent orders listed on
‘order details’ file and their order trajectories (full execu-
tion, partial execution, deletion, expiration and modification)
recorded on ‘order history’ file.

For each transaction, ‘order history’ file contains informa-
tion on both sides of the transaction. The transaction record
on ‘order history’ file is mapped to each transaction and has
a unique trade code which is used to track the transaction
details contained in ‘trade report’ file.

TPersistent orders are the orders which are stored on the electronic order
book after they are submitted to the market.

The ROB data are raw data. In order to get the information
we need to estimate the parameters of our model, we must
infer non-persistent market orders and three missing events
from the given data files. Market orders can be inferred
from the ‘order history’ file as it records information on the
matching side of each transaction. The first missing event in
ROB data is the execution of iceberg limit order. LSE allows
traders to place iceberg limit order, part of which is hidden in
the order book and is not recorded in the ROB data. When
the visible part of the iceberg limit order is matched by a
market order with larger size, the hidden part will be executed
against the rest of the market order. The traded hidden part of
the iceberg limit order can be inferred from the records of the
limit order whose transaction size is larger than its original
size. The second missing event is the crossing limit order
which causes immediate trade after submission. The ‘order
details’ file only records the unexecuted part of the crossing
limit orders. The traded part can be found from the ‘order
history’ file in that each crossing limit order is matched by
one or more persistent limit orders previously submitted to
the market. The third missing event is the limit order which
was submitted to the market a few days ago but is executed
today. The information on details of these orders needs to be
recovered from older data files.

For this study, we choose the stock Barclays Capital, which
is one of the most frequently traded stocks in LSE. Our
sample data covers details of all orders and trades from 1th
April to 30th September 2010. We are only interested in the
continuous trading session. The records before 8:00:00 and
after 16:30:00 are ignored. Table V shows the descriptive
statistics of the trades and orders data for Barclays Capital.

B. Parameter Setting of Agent-based Limit Order Market
Model

Our data cover 126 trading days. During the continuous
trading session, there are 30,600,000 milliseconds in each
trading day. We calculate the numbers of market orders, limit
orders and order cancelations® and the probabilities of these
events on each day. As we assume only one event occurs
at each millisecond in our model, the events occurring at
the rest of the trading period are ‘do nothing’ events. The
probability parameters for the four events (do nothing A,
limit order );, cancelation \. and market order \,,,) of our
model are estimated as the average daily probabilities from
the real data. We do the similar calculations for probabilities
of the limit order types on each trading day using LSE
data. The probability parameters for limit order types (A¢rs,
Ainspr> Aspr and Agf fspr) in our model are estimated as the
average daily probabilities over the whole period weighted
by the total number of limit orders on each trading day.

In our model, each value in order sizes is produced from
log-normal distributions which take the functional form:

exp(tt + 0 * Tropm)

8We take order deletion and order expiration in ROB data as the same,
both are counted as order cancelation events.



TABLE VI
PARAMETERS OF ARTIFICIAL LIMIT ORDER MARKET SIMULATION

EVENTS AND LIMIT ORDER TYPES IN ARTIFICIAL MARKET

TABLE VII

Market Settings Values Probabilities Daily Occurrences
initial mid-quote price 300 Order Sign

initial bid-ask spread 05 buy 0.5000 & 0.0001 15300854 & 2517
tick size 0.01 sell 0.5000 £ 0.0001 15299145 £ 2517
Agent Type Probabilities Event Type

buy or sell 0.5 do nothing 0.9847 £ 0.0000 30132401 & 722
Event Type Probabilities submit a market order 0.0003 £ 0.0000 9399 + 104

do nothing Ao = 0.9847 submit a limit order 0.0076 + 0.0001 233785 + 483
submit a market order Am = 0.0003 cancel a limit order 0.0073 + 0.0000 224413 £+ 472
submit a limit order A = 0.0077 Limit Order Type

cancel a limit order Ac = 0.0073 crossing limit order 0.0032 £ 0.0001 736 £ 29
Limit Order Type Probabilities inside-spread limit order ~ 0.0977 4+ 0.0006 22829 4+ 152
crossing limit order Aers = 0.0032 spread limit order 0.1728 +0.0010 40408 + 232
inside-spread limit order Ainspr = 0.0978 off-spread limit order 0.7262 + 0.0011 169810 4 444
spread limit order Aspr = 0.1726

off-spread limit order Aoffspr = 0.7264

Parameters of Log-normal Distribution

Order Size Type

market order size Mmoo = 7.5663 Omo = 1.3355
crossing limit order size ers = 8.4701 Oers = 1.1982
inside-spread limit order size Hinspr = 7.8709 Tinspr = 0.9799
spread limit order size Pspr = 7.8929 Ospr = 0.8571

off-spread limit order size
Limit Price Type
off-spread relative limit price

Hoffspr = 8.2166
Parameters of Power-law Distribution
Tminesr—p = 0.05 Borf—p = 1.7248

Goffepr = 0.9545

where p and o are parameters, 7,0, 1S @ random number
normally produced from (0,1), and exp is an exponential
function of the natural number. Each value in relative limit
prices is drawn from the power-law function as:

xmin x (1 — r)_l%ﬁ

where 7 is a random number uniformly generated from
(0,1), zmin and B are the parameters which need to be
estimated. The data in the whole period are used to estimate
these parameters for all kinds of orders using the method
of maximum likelihood®. In order to better fit the power-
law distribution while keeping the reliability of the original
data, we exclude the values x; whose probabilities satisfy
P(z > x4) < 0.01 or P(z < x¢) < 0.01. All the estimated
parameters are shown in Table VI.

VI. EXPERIMENTAL SETUP

Our model is simulated using Matlab. In our model, there
are always at least three levels on each side of the order book
in order to prevent the order book from being empty. The ar-
tificial market runs for 34,200,000 hypothetical milliseconds
(correspond to 9 and a half hours) in each simulation. In some
case, the artificial market may be unstable initially due to the
stochastic order flows. Thus, the first 3,600,000 milliseconds
(correspond to 1 hour) are used to warm up the market. We
are only observing the later 30,600,000 milliseconds which
correspond to the continuous trading session in one trading
day. Our artificial market is run for 30 artificial trading days.
Like LSE, our system also has a data recording function
which writes down the details of every trade and every order.

9The matlab code for estimating the power-law distributions is developed
by the researchers at Santa Fe Institute, which can be downloaded from the
website http://tuvalu.santafe.edu/aaronc/powerlaws/.

VII. RESULTS AND DISCUSSIONS

After 30 runs of artificial market simulation, we calculated
the numbers of events and orders and their occurrence
probabilities in each day (equals each run). Table VII shows
their means and standard deviations over the 30 simulated
trading days. An observation from the table is that the events
and orders probabilities in the simulated market are very
close to those in the LSE market (shown in Table VI).

We compared the order sizes of different order types in the
LSE market and those from the simulated market. Table VIII
shows some summary statistics of order sizes and relative
limit prices for the six-month period (126 trading days) in the
LSE data and for the 30-artificial-day period in the simulated
data respectively. One can observe that the average order
sizes for all order types and the average relative limit prices
in the simulated market are very close to those in the LSE
market.

This study adopts the method used in [34] and [19] to
measure the price impact of a market order. Letting the
logarithm of midquote price be p, the price impact caused
by a market order is calculated as

Ap = Pafter — Pbefore

where pyc fore is the price just before the market order arrived
the market and py, s, is the price immediately after the order
is executed. The methods used to measure the trade size are
different in previous literature. Lillo et. al. [19] measure it
as traded value in dollar divided by the stock value while
Hopman [23] measure it as the number of shares in the order
divided by the number of shares outstanding. In this study,
the trade size is measured as the shares of the market order
divided by the total trading volume in each trading day.

We investigate the average behavior of price impact by
dividing the data based on trade size into 10 bins and
compute the average price impact for the data in each bin. As
many previous studies have demonstrated that the behavior of
price impact is almost the same for both buy and sell trades,
this study does not distinguish buy and sell trades. Figures 1
and 2 depict the relationship between the price impacts and
trade sizes in the LSE and the simulated market respectively.

From Figures 1, one finds that the relationship between



TABLE VIII
SUMMARY STATISTICS OF ORDER SIZES AND RELATIVE LIMIT PRICES

Min Max Mean S.D. Observations
- LSE Data I 789367 3916 6558 1184045
Market Order Size Simulated Data 2 786637 4721 10481 281970
Crossine Limit Order Size LSE Data 3 12500000 10562 46111 93200
8 Simulated Data 36 543378 9676 16716 22080
- — - LSE Data I 2476197 3902 4761 2881792
Inside-spread Limit Order Size Simulated Data 16 351554 4237 5384 684870
Soread Limit Order Size LSE Data I 3398413 3723 4782 5087395
P Simulated Data 33 183278 3867 4028 1212240
— - LSE Data I 3666101 5966 11910 21412078
Off-spread Limit Order Size Simulated Data 16 564201 5839 7123 5094300
. , - LSE Data 0.05 100.00 129 276 21412078
Off-spread Limit Order’s Relative Price ;1 0i Data 005 99.99 093 472 5107980
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Fig. 1. Price impact vs. trade size in the LSE market Fig. 2. Price impact vs. trade size in the simulated market

the price impact and trade size is nonlinear and concave.
Larger trades do no always have higher price impact than
smaller trades. This finding is consistent with the conclusion
in previous literature. There are three explanations for this
concavity in literature. The first explanation is that large-
order trades have private information about the market price.
The second explanation is that large-order traders are patient
traders who wait for periods of high liquidity [35]. The third
explanation is that the order book has deeper liquidities away
from the best bid or ask [36].

By comparing the price impacts in the two markets, we
find that generally the price impact in simulated market is
larger than that in the LSE market. The price impacts for the
smallest trade sizes are very close in the two markets, but the
price impacts for larger trade sizes (ranging from 2 x 1073
to 10 * 10~3) in simulated market are bigger than those in
the LSE market. One possible reason is that limit price gaps
in the simulated market are larger than those in the LSE
market. However, this can be excluded by the fact that the
average relative limit price in simulated market is smaller
than that in the LSE market (showed in Table VIII). Another
possible reason is that traders in the LSE market execute their
orders intelligently, for example, by observing the market
conditions. Farmer et al. [35] and Hopman [23] both find
that large orders are traded when the market liquidity is

deep. Because the trader agents in our simulated market are
‘zero intelligent” who do not care about the market liquidity
when trading their orders, the price impacts caused by trading
large orders in the simulated market are higher than the
price impacts in the LSE market. This suggests that agent
intelligence is needed when simulating an artificial market
which tries to replicate the relationship between price impact
and market order size.

VIII. CONCLUSIONS

Trading affects price in financial markets. It is empirically
demonstrated that a buy trade pushes the price up and a
sell trade pushes it down. Modeling price impact is an
active domain of research in trading firms. Many price
impact models were also developed in the literature, but
they are just approximations. This study adopts an agent-
based modeling approach to model price impacts of market
orders. Our model is based on Smith’s ZI model [9] in
which agents have no intelligence and randomly submit
orders to the market. In this study, we extend their model by
distinguishing limit order with different order aggressiveness
and considering power-law distributed limit order placements
and log-normal distributed order sizes. After calibrated using
trades and orders data from the LSE, the model simulates
the continuous trading session in the LSE market. The



simulated market in this study can be used for devising high-
frequency trade execution strategies and for the research of
price formation and price discovery. The results show that the
price impacts caused by large market orders in the simulated
market are higher than the price impacts in the LSE market.
Previous literature [35] has found that large-order traders
wait for periods of high liquidity. In contrast, the agents
in our model randomly trade orders without monitoring the
market conditions. This suggests that agent intelligence is
a necessary condition when simulating an artificial market
where replicating realistic price impact is a concern.

Future work will focus on how to improve our model. The
first task is to adopt the evolutionary methods to optimize
the estimations of the parameters in our models in order to
achieve a more realistic simulated market. The second task is
to add some intelligent agents into our current model in order
to better replicate the price impacts of market orders. Lastly
but not the least, as Lyden’s study [37] finds that price impact
shows intraday seasonality, we will extend current research
to investigate the intraday behavior of price impact.
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