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Abstract 

Background 

Short linear protein motifs are attracting increasing attention as functionally independent 
sites, typically 3–10 amino acids in length that are enriched in disordered regions of proteins. 
Multiple methods have recently been proposed to discover over-represented motifs within a 
set of proteins based on simple regular expressions. Here, we extend these approaches to 
profile-based methods, which provide a richer motif representation. 

Results 

The profile motif discovery method MEME performed relatively poorly for motifs in 
disordered regions of proteins. However, when we applied evolutionary weighting to account 
for redundancy amongst homologous proteins, and masked out poorly conserved regions of 
disordered proteins, the performance of MEME is equivalent to that of regular expression 
methods. However, the two approaches returned different subsets within both a benchmark 
dataset, and a more realistic discovery dataset. 

Conclusions 

Profile-based motif discovery methods complement regular expression based methods. 
Whilst profile-based methods are computationally more intensive, they are likely to discover 
motifs currently overlooked by regular expression methods. 
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Background 

In protein-protein interaction networks, hub proteins are defined as those that interact with a 
number of other proteins, either simultaneously or at different times. Whilst domain-domain 
interactions are important for stable interactions, rapid low affinity interactions mediated by 
short linear motifs are important for more transient interactions, for example in signal 
transduction [1,2]. Short linear motifs (SLiMs) are typically 3–10 residue stretches of a 
protein sequence, with two or more non-wildcard positions that independently mediate a 
range of functions. They may be involved in ligand binding, modification, targeting and 
cleavage [3], all of which are important in driving cell signaling [1,4]. Motifs can act in a 
coordinated and co-operative manner to exhibit functional regulatory complexity within the 
cell [5]. Therefore, the known repertoire of protein modules needs to be expanded to include 
smaller functional sites like SLiMs, in addition to well-characterised domain modules. This 
will advance understanding of the fundamental mechanisms that drive protein-protein 
interactions. 

The current (2012) release of the Eukaryotic Linear Motif (ELM) database lists 174 
experimentally validated short protein motifs [3], and the MiniMotif Database contains 
around 5,000 predicted motifs [6]. Databases dealing with motifs containing sites for post-
translational modificatoins (PTMs) alone list in the region of tens of thousands of motifs 
[7,8]. Surveys have shown that up to 30% of the human proteome is disordered [9]. 
Disordered regions are known to be rich in linear motifs [10,11]. Given the relatively low 
number of motifs so far identified, it is clear that much work is still to be done [10]. 
Therefore, it is imperative that new tools are developed to meet this challenge. 

One approach to discovering short functional sequence motifs is to apply computational tools 
to find a motif that is over-represented among a group of evolutionarily unrelated sequences 
that have a related function (e.g. they bind a common interacting protein). In DNA motif 
discovery, profile-based methods have been very successful in the identification and 
classification of transcription factor and promoter binding sites [12]. However, profile-based 
methods have not been as widely used in the search for protein motifs since the first 
publication of the MEME tool for motif discovery [13]: computational methods for the 
discovery of protein motifs [14,15] have focused on regular expression over-representation, 
whilst profile-based discovery programs such as MEME [16] have been largely confined to 
DNA analysis. 

Profile-based methods aim to describe the motif in terms of the relative frequencies of amino 
acids at each position. The regular expression [DE] allows Aspartic and Glutamic acid at that 
position, and does not define the relative frequency with which they are found at that 
position. However, in a profile-based definition it is possible to state that Aspartic acid is 
present 70% of the time, and Glutamic acid 30%. This allows a more refined definition of the 
motif. Various methods have been proposed to define a profile of a linear motif – 
summarized in [17]. Regular expressions are commonly used to attempt to capture the 
relevant sequence information about a linear motif [14]. Such representations of motifs have 
been favoured by biologists as they are sometimes more intuitive than profiles. However, 
profile-based representations may present certain potential advantages: they can sometimes 
provide a richer and more accurate representation of certain motifs, and can have a visual 
representation (using a “sequence logo” [18]) that is often more easily understood than some 
of the more complex regular expressions for highly redundant motifs. 



The shortness of SLiMs makes their discovery difficult, because of the resulting difficulty in 
distinguishing true positive from false positive matches. This difficulty is further 
compounded by the degree of variation between instances of a linear motif. Thus, careful 
evaluation in a realistic setting of biological discovery is needed to determine if methods are 
useful in practice. Many motifs lie in disordered regions of proteins, and the motifs are often 
distinguished by greater evolutionary conservation among orthologues; this property allows a 
focus on evolutionarily conserved residues to increase the chance of discovering novel motifs 
[19]. Focussing on regions conserved in orthologues by masking out non-conserved 
disordered residues, and discounting motifs recurrent simply amongst homologous rather 
than unrelated proteins, have been shown to greatly improve the performance of regular 
expression based methods to both identify true instances of known motifs, and to discover 
novel motifs [14,15], In this paper, we investigate to what extent the application of 
evolutionary weighting and masking of protein sequences can improve the performance of 
profile-based methods to discover short linear protein motifs. 

Methods 

A set of protein sequences is used as the query set. These sequences, or a subset of them, are 
believed to contain a common motif responsible for a functional activity. The motif is likely 
to be relatively conserved between orthologues of the proteins in other related species, in 
contrast to generally unconserved surrounding disordered regions of the protein. We used the 
relative local conservation scoring system described in Davey et al. 2009 [19] to mask out 
unconserved residues of the query sequences before submitting the sequences to the MEME 
program to discover over-represented SLiM profiles amongst the sequences [16]. In addition, 
we used the SLiMBuild algorithm from SLiMFinder to produce weightings of the relatedness 
of the query sequences to each other [15]. 

Additional masking of the query sequences to remove transmembrane regions and domains, 
taken from UniProt annotation [20], was performed in order to increase the likelihood of 
identifying linear motifs in the query sequences, by eliminating such sources of high-scoring 
false positives. 

Previous work by Fuxreiter et al. has shown that disordered regions are enriched for short 
linear motifs [21]. This has been confirmed by a separate analysis of experimentally validated 
motifs from the ELM database [22]. Both indicate that the residues that comprise the motif 
are likely to have high disorder propensities as compared to the flanking regions. A cutoff of 
0.3 ensures a balance between reducing the search space excessively whilst removing regions 
of the protein known to be ordered. From Davey et al. [22] 82% of known motifs have a 
disorder score over 0.3 the cut-off used in this analysis. 

Orthology detection and alignment generation 

In order to generate alignments for the proteins in the benchmark dataset, we used the series 
of metazoan Ensembl whole genomes downloaded in March 2010 [23]. We follow the 
method used in the Gopher orthologous protein identification and alignment algorithm 
described in Edwards et al. [24]. Each query sequence in the set was searched using BLAST 
(masking out low complexity regions) against the metazoan proteome at an expectation 
threshold of e = 10-4. The set of hits from this search was then used to search against the 
database again at a relaxed threshold of e = 10, but without complexity filtering. Sequences at 



this stage had to have 40% global similarity to the original query for inclusion. The most 
similar sequence for each species was retained for inclusion in the alignment. Multiple 
sequence alignments were then generated using the MUSCLE program [25]. 

We adopted the treatment of evolutionary information previously developed and evaluated 
for SLiM discovery [15,26], since the problem of treating evolutionary information is likely 
to be very similar for both profile and regular expression discovery of linear motifs. 
Improving public orthology resources such as those of Ensembl [23] may prove useful in 
future implementations of the method, accelerating calculations. 

Relative local conservation 

Disordered regions have different patterns of conservation compared to structured regions of 
protein sequences. Therefore, traditional multiple sequence alignments are not particularly 
informative when analyzing the conservation of proteins that include disordered regions, 
since the pattern of conservation is dominated by the pattern of order and disorder across the 
sequence. To overcome this, we applied relative local conservation (RLC) masking [19], 
which assesses the conservation of disordered residues relative to adjacent disordered 
residues, which we summarise briefly below. 

Residues are marked as belonging to one of two structural states: ordered or disordered; using 
the IUPred disorder prediction program (short setting, threshold 0.3) [27]. Only residues 
within, 25 residues to either side that were in the same structural state were compared. Then 
the residues in each column of the alignment were scored for conservation. 

The RLC is calculated for each residue using a multiple sequence alignment of the protein 
with its orthologues. We used Ensembl release 60 metazoan proteomes to generate the 
alignments [ref]. Then the residues in each column of the alignment were scored for 
conservation. For each residue, this was compared against the background mean conservation 
in a window of 25 residues to either side of the residue across the sequence. Strongly 
conserved residues are given a high score with more variable residues given a low score [ref]. 
The RLC score for the residue is calculated (in the manner of a standard Z-score) by 
subtracting the background mean conservation and normalizing by dividing by the standard 
deviation of the window. This results in normalized scores that are comparable between 
residues in different protein sequences, irrespective of differences in divergence patterns. 
Scores above 0 indicate above average relative local conservation. 

There are a number of alternative search strategies possible for exploiting information on 
conservation. One method would be to use absolute conservation level levels relative to 
orthologues from defined species. However, previous work has shown that for discovery of 
motifs in predominantly disordered intracellular eukaryotic protein regions, the relative local 
conservation compared to nearby residues of the motif is more powerful [19]. Accordingly, 
we adopted this approach, since the dataset to which we were applying this analysis are 
primarily intracellular motifs. Extracellular motifs, where there is much less protein disorder, 
may well benefit from other approaches. 



Evolutionary weighting 

The aim of evolutionary weighting is to appropriately reduce the statistical support for motifs 
that are over-represented because of large-scale sequence homology (identity by descent) 
among a subset of the proteins investigated, rather than because of convergent evolution to a 
common motif among unrelated proteins. This is achieved by grouping query sequences into 
unrelated protein clusters (UPCs). Proteins within a given search set were analysed iteratively 
by BLAST (E-value threshold of 10–3) to determine relatedness. Proteins determined by 
BLAST to be related were grouped into a UPC. Each protein in the cluster is not obviously 
related to any protein in another cluster. While a similar correction could be more simply 
achieved by only choosing one of the related proteins in the motif search [14] the approach 
taken here is favoured because short motifs typically evolve faster than domains [28], so that 
often only a subset of the related proteins may possess the motif. The weighting of sequences 
occurs after the assignment of proteins into UPCs. This is to ensure that the similarity is 
calculated based on the full sequence and not the masked regions which may be misleading in 
homology assignment. 

Profile-based discovery of motifs using meme 

MEME uses expectation maximization methods to identify over-represented motifs in the 
query set [16]. The program was presented with the unmasked dataset, the masked dataset, 
the weighted dataset and the masked and weighted dataset to judge the impact of each of 
these methods on the performance. The evolutionary weighting was calculated using 
SLiMBuild [24] and the masking by using the RLC masking from SLiMFinder [15] as 
described above. 

The datasets were given as the input to MEME running with the expectation that there would 
be zero or more motif instances in the query set. The minimum length of the motifs was set at 
3 and the maximum length at 10. Low complexity filters were switched off. The profile 
search is carried out after the sequences are filtered for disorder; there is no lower limit on the 
length of disordered sequence considered, except that the motif discovery methods require 
motifs of at least three residues in our analysis. 

MEME has an option to weight sequences. To apply evolutionary weighting, we incorporated 
knowledge regarding the distances among sequences generated in the UPC building process 
to weight the sequences appropriately. A minimum spanning tree normalization was used to 
weight sequences as described in SLiMDisc [26]. This is derived from a matrix of the 
sequence similarity of the sequences. The distances ranged between zero and 1, where zero 
indicates no similarity, and 1 indicates identical sequences. The weights for each sequence 
(W) were then estimated from the average distances to all other sequences (Sd) and the 
number of other sequences (N), as follows: 

(1 ) /dW S N= −  
 

Consider the sequences A, B, C, and D. If A and B are 50% similar to each other and 0% 
similar to C and 25% similar to D, and D and C are 0% similar to each other. A and B have a 
distance 0.5; A and C have a distance of 1; and A and D have a distance of 0.75. A will have 



a score of 0.56, B will have a score of 0.56, C will have a score of 1 and D will have a score 
of 0.69. This ranks the sequences in order of their similarity to all other sequences. 

Datasets 

For the purposes of benchmarking the effectiveness of the evolutionary weighting and 
relative local conservation masking method we took datasets from a number of papers in the 
field, to facilitate comparisons among methods. The first dataset was from [14]. It used a gold 
standard literature based dataset from the ELM database [29]. 

The second dataset is a more realistic test of the normal operation of the program using 
protein-protein interaction data downloaded from the Human Protein Reference Database 
(HPRD) [30] taken from [19]. The aim of using this dataset was to test the ability of the 
program to uncover motifs in a dataset that is known to be noisy. Both datasets are available 
from the authors of the original manuscripts and are included in the supplementary material. 

Results 

Evolutionary weighting and masking out non-conserved regions improves 
discovery of motifs in disordered regions in a standard dataset 

Table 1 shows the results for the ELM dataset of known motifs, occurring mainly in 
disordered regions of proteins. This compares MEME’s ability to recover known motifs 
under different conditions with a regular expression method, SLiMFinder. Regular expression 
approximations of the profiles are shown in Table 1 to facilitate comparison of the results. 
Overall, it is clear that the MEME default is not as efficient as SLiMFinder at recovering 
known motifs (see Table 2). However, after the inclusion of both evolutionary weighting and 
masking out non-conserved residues, the performance of both methods are approximately 
equivalent. However, they don’t give identical results: SLiMFinder returns 3 motifs that 
MEME with weighting and masking fails to identify in the top ten motifs, namely SH3, 14-3-
3_1 and RB; the latter motif was identified by the default MEME programme but lost in the 
modified version. However, MEME with weighting and masking does identify the NRBOX 
motif that would not have been discovered by either SLiMFinder or MEME default, 
indicating that the approach may be complementary to regular expression searching. 
SLiMFinder returns 41% of the true positives whilst MEME with evolutionary weighting and 
masking returns 72%. The false positive rate for SLiMFinder is 59% with 28% for MEME. 

Table 1  Performance using experimentally validated ELMs (dataset from [14]), 
searching for protein short linear motifs in disordered regions of proteins 

ELM Name 

Number 
of 
proteins 

Regular Expression from ELM 
database 

SLIMFinder with 
evolutionary weighting 
and RLC masking 
(Rank) MEME default (Rank) 

MEME with 
Evolutionary 
weighting and RLC 
masking (Rank) 

TRG_ER_KDEL_1 12 [KRH][DENQ]EL K.{0,2}DEL$ (1) DEL (35) DEL (1) 

LIG_Dynein_DLC8_1 4 [KR].TQT S..K.TQT (1) K[AESV]TQ[TE][PD] (1) [KV][SAE]TQT 91) 

LIG_PCNA 13 Q..[ILM]..[FHM][FHM] [IL].S[FH]F (1) Q.[SRT][IL][DM ]SFF (1) [LI].SFF (3) 

MOD_SUMO 29 [VILAFP]K.[EDNGP] [FIV]K.E (1) [IV]K[QE]E[PE] (1) [ IV]KEE (1) 

LIG_SH3_2 9 P..P.[KR] P..P.R.{0,1}P (1) - - 

LIG_CYCLIN_1 22 [RK].L.{0-1}[FYLIVMP] RR.{0,1}L.{0,1}F (1) [GE]L[St]R[ED ]L.[KE][HLR]L (5)  K[KR][KR] (1) 



LIG_CtBP 26 P.[DEN]L[VAST] P[ILM]DL (1) PLDLS (1) PLDLS (1) 

LIG_AP_DAE_1 8 [DE][DES].[F].[DE][LVIMFD] D.F..F.S..P (1) DDEF[GS][DE]FQ (1) [GA]DF (1) 

LIG_14-3-3_3 6 [RHK][STALV].[ST].[PEDSIF] S.P.S.T.P (3) R[TS]NSA (65) - 

LIG_RB 25 [LI].C.[DE] L.C.E (6) LVCFE (1) - 

LIG_Clathr_ClatBox_1 15 l[ILM].[ILMF][DE] L.{1,2}DL.{0,2}D (12) [DE][ST][NSD]l[ LI][DE][LF] (9) [LG]L[DG]LD[SG](1)  

LIG_14-3-3_1 4 R[FSWY].S.P RS.S.P (3) RS[IPRT]S[ALMT]P (29) S[AI]S[ALE]P (1) 

LIG_RGD 15 RGD R.D.V (7) RGD (6) RGD (3) 

LIG_HP1_1 6 P.V.[LM] - - - 

LIG_NRBOX 9 L..LL - [KN]H[AKP]LLS[RN]LL[RQ] (21)  L[KRS][QY]LL (1) 

MOD_N-GLC_2 5 N.C - 
[FHIMY][NS][EANS][CE][VENS]
[CEHRV][VAF][MKLV][EAGS][
NE] (42) 

- 

TRG_lysEnd_APsAcLL 10 [DER]…L[LVI] - - - 

All proteins contain at least one experimentally determined motif instance. The regular 
expression that matches the annotated ELM regular expression is returned for each method 
along with its rank (in brackets). No result returned is indicated by 

Table 2  Summary of performance using experimentally validated ELMs (see Table 1) 

 SLiMFinder MEME default MEME with Weighting and RLC masking 

Number of First hits 8 6 9 

Number in Top 10 12 9 11 

Total 17 17 17 

Percentage First Hit 47% 35% 53% 

Percentage Top 10 71% 53% 65% 

Profile methods complement regular expression methods with a realistic 
biological discovery test dataset 

Table 3 shows the results for the HPRD dataset, which represents a more realistic motif 
discovery example, since not all proteins contain a validated instance of the motif. Thus, this 
represents a typical question that would be asked by experimentalists trying to discover 
motifs in their protein-protein interaction data. In the case of HPRD SH2_GRB2 example, 
both weighting and masking were required to identify the motif, since analysis without either 
or without both failed to identify the motif (Additional file 1: Table S1). A summary of the 
findings of these HPRD search results (Table 4) clearly indicates the benefits of applying 
both weighting and masking. MEME with weighting and masking does not perform quite as 
well in terms of identifying the true motif in the top of the list (Table 4); but it is equivalent in 
terms of identifying the true motif within the top 10, identifying 4 motifs that SLiMFinder 
failed to identify in the top 10 (Table 3). SLiMFinder returns 21% of the true positives whilst 
MEME with evolutionary weighting and masking returns 9%. Again, this indicates that the 
two methods are complementary. 



Table 3  Performance for MEME searching for short linear motifs in a realistic motif discovery scenario 

HPRDID 
Hubgene 
Symbol 

Number of 
proteins(with 
motif) Complex name Motif name (from ELM) 

Regular expression from 
ELM database 

SLiMFinder 
with 
evolutionary 
weighting and 
RLC Masking Meme Default 

MEME with evolutionary 
weighting RLC Masking 

150 GRB2 164 (146) Grb2 LIG_SH3 P..P - - - 

  164 (103)  LIG_SH2_GRB2 Y.N Y.N[LMV] (3) NK[NEK]KNRY[KV][DN]I 
(2) 

KNRY[KPV][ND]ILP (1) 

215 YWHAH 47 (13) 14-3-3 Eta LIG_14-3-3_1 R[SFYW].S.p [KR]S.S.P (1) - PKIHRSASEP (17) 

350 CLTC 35 (15) Clathrin, heavy 
polypeptide 

LIG_Clathr_Clatbox_1 L[ILM].[ILMF][DE] LLDL (4) - LLDL[EDM][DS][FA]QP (18) 

453 CCNA2 25 (23) Cyclin, A2 LIG_CYCLIN_1 [RK].L.{0,1}[FYLIVMP] - A[CK]R[RN]LFG (7) SA[CK]R[NR]LFG (8)  

607 FNTA 10 (2) Farnessyltransferas e 
alpha subunit 

MOD_ASX_betaOH_E
GF 

C[^DENQ][LIVM]..$ - C[DT]IS (30) C[DT]IS (17) 

627 IGTAS 15 (7) Intergin alpha 5 LIG_RGD RGD - KGDRGDA (25) RG[DQ] (34) 

1456 PCNA 65 (13) Proliferating cell nuclear 
antigen 

LIG_PCNA Q..[ILM]..[FHM][FHM] Q..[IL]..FF (1) TL[YES]SFF (3) TL[YES]SFF (2) 

1574 RB1 110 (28) Retinoblastoma 1 LIG_RB [LI].C.[DE] - - - 

3288 PPARG 22 (15) Peroxisome proliferator 
AR 

LIG_NRBOX L.LL L.RLL (1) HKILHRLLQ (4) [LT][VS]HKLV Q[AL][IL] (1) 

3334 DYNLL1 52 (5) Dynien light chain 1 LIG_Dynien_DLC8_1 [KR].TQT - [MV]S[CY][DS]K[ES]TQT
P (95) 

KSTQT (10) 

3786 NEDD4 28 (17) NEDD4 LIG_WW_1 PP.Y PP.Y (7) PPAY (83) PPPYSSI (2) 

3833 TRAF6 22 (19) TRAF6 LIG_TRAF6 .P.E..[FYWHDE]. - - - 

4015 CTBP1 26 (14) C-terminal binding 
protien 

LIG_CtBP P.[DEN]LVAST] D.P[IL]D (6) - P[LI]DLS (1) 

4946 CCNA1 20 (20) Cyclin A1 LIG_CYCLIN_1 [RK].L.{0,1}[FYLIVMP] - A[CK]R[RN]LFG (3) A[CK]R[RN]LFG (1) 

5462 GIPC1 26 (7) GIPC1 LIG_PDZ_1 .[ST].[VIL]$ S.V$ (1) - - 

5639 YWHAG 206 (28) 14-3-3 gamma LIG_14-3-3_1 R[SFYW].S.P R.RS.S.S (1) SRSRSRS[KR]SR (51) [SK]SRSRS[RK]SR (30) 

8968 EPS15 24 (10) Eps15 LIG_EH NPF TNPF (1) TNPF[LS](3) TNPF (1) 



9045 UBE2I 87 (78) Ubiquitin conjugating 
enzyme E1 

MOD_SUMO [VILAFP]K.[EDNGP] VK.E (2) M[KM]VKDEY (18) VEIVYE (7) 

9347 GGA2 19 (2) GGA2 LIG_AP_GAE_1 [DE][DES].F.[DE][LVIMF
D] 

DDF..F..A (1) D[DL]FG[GDE]F (6) D[DL]FG[GDE]F (7) 

9424 YAP1 15 (8) YES associated protein LIG_WW_1 PP.Y - [PL][PD]PPY (50) H[CT][TY][LP]PPPY (6) 

The HPRD dataset used, its name and the number of proteins in that dataset along with the ELM known to mediate some interactions with the 
protein hub are shown. The regular expression returned highest that matches the annotated ELM and its rank (in brackets) for SLiMFinder and 
MEME with and without RLC masking and evolutionary weighting are shown. No result returned is indicated by 



Table 4  Summary of the results in a realistic motif discovery scenario (see Table 3) 
 SLiMFinder MEME default MEME with Weighting and RLC masking 

Number returned 12 14 17 

Number of first hits 7 0 5 

Total 21 21 21 

Number in Top Ten 12 6 12 

Percentage Returned 76% 67% 81% 

Percentage Top 10 57% 29% 57% 

Percentage Top Hit 33% 0% 24% 

Thus, the addition of the evolutionary weighting and RLC masking is able to increase the 
ability of MEME to identify the correct motif in the top 10 results returned. This indicates the 
likely benefits of including evolutionary weighting and RLC masking in de novo motif 
discovery, particularly for motifs lying in structurally disordered regions, which are strongly 
represented within both test datasets. 

It might be expected that the motifs returned by MEME are richer, containing more 
information, since the profile representation has the potential to encode more information. 
Table 5 shows the SeqLogo representation of a sample of the motifs. Additional file 2: Table 
S2 indicates that for the ELM dataset, of motifs returned by both methods, for eight of them, 
MEME was more informative (motif less likely to occur by chance), one was equal, and for 
two SLiMFinder was more informative. For the more biologically realistic HPRD dataset 
(Additional file 3: Table S3), all 17 comparable motifs were more informative for MEME. 
This feature of MEME, that it tends in a realistic setting to return more informative motifs, 
may be valuable, since it may be detecting true subtleties that are missed by regular 
expression searching. However, we cannot exclude the possibility that it is simply over-fitting 
to the available data. 

Table 5  Sample of Sequence Logos from the MEME output from Table 1 

ELM Name MEME Defined Regular Expression SeqLogo from MEME 

Lig_Dynein [KV][SAE]TQT 

 

Lig PCNA [LI].SFF 

 



Lig Cyclin 1 K[KR][KR] 

 

Lig CtBP PLDLS 

 

Lig KDEL DEL 

 

In the example of Lig_Dynein the profile accurately captures the lack of flexibility in the 
final three positions. These three residues are all well conserved and contribute hydrogen 
bonds to the interaction. We examined the available structures using the ligplot software [31], 
where the profile allows Serine, Glutamic Acid and Alanine at position two in the motif. No 
structures were available for the case of Valine at position 1. In the case of Serine (PDB id: 1 
F95) and Alanine (PDB id: 3E2B) at position two, there is no evidence of these residues 
contributing hydrogen bonds to the binding [32,33]. In the case of Glutamic Acid (PDB id: 
2PG1) it does contribute a hydrogen bond to the interaction [34]. Thus, motifs with a charged 
rather than a small residue at position two may have a distinct mode of binding. 

The approaches described here will be useful for proteomics experiments where the user 
expects that associations and interactions are mediated by short linear motifs. Accordingly, 
we have made scripts available to facilitate calculation of the weights for submission to 
MEME, as well as for the masking out of non-conserved residues at 
http://bioware.ucd.ie/meme.html. Developers interested in contributing to the further 
development of this freely available software are invited to apply for access to the subversion 
software repository. Applications of this approach should cite this paper, but also MEME 
[16]. Other tools employed such as IUPred [27], BLAST [35], Muscle [25], ClustalW [36] 
should be acknowledged as appropriate. 



Discussion 

In the search for linear protein motifs the recent focus has centred on regular expressions. 
Whilst the methods that have transferred from DNA transcription factor searching such as 
MEME and NestedMica [37] have been applied to motif searching in proteins, profile-based 
methods have not typically been applied in SLiM databases such as ELM, phospho.ELM and 
MiniMotif. Regular expression based definitions have been preferred for a number of 
reasons, from ease of use to the fact that they can include subjective annotations from expert 
curators of the databases. However, in the move to more automated methods of protein linear 
motif discovery, there are a number of advantages to incorporating profile-based definitions, 
as these may increase the informativeness of the motifs under certain circumstances. 

It is of interest to speculate on possible reasons why the MEME-based approach adopted here 
may give different results to regular expression approaches such as SLiMFinder. One 
possible reason is that certain motifs may evolve in a way that is best described by a regular 
expression, and therefore regular expressions will have more power to detect them, whilst 
other motifs evolve in a way that is more easily captured by a profile representation, with 
requirements for a specific subset of residues at certain positions that do not match the 
common ambiguity sets implemented in regular expression searching. We would have 
anticipated that profile representations will become more powerful for motifs with many 
occurrences, since the profile definitions are more approximate when there are only a few 
sequences, but we find no clear suggestions to date that this is the case (Tables 1 and 2). The 
two search strategies differ in another subtle way: with the MEME approach, the sequence 
weighting occurs before motif discovery, whereas with SLiMFinder motifs are selected 
within the entire protein dataset and then ranked afterwards, on the basis of statistical support. 
It is possible that this may favour SLiMFinder whenever a motif is found in only a small 
subset of the related proteins. In the 8 test datasets where the motif is found in less than 30% 
of the interacting proteins, SLiMFinder finds the correct motif more often than MEME, 5 
times compared to 3 times. 

The discovery of linear motifs in interaction sets and proteomics experiments is only one step 
in the process of determining the functionality of proteins or sets of proteins in an interaction 
network. Profile-based methods will be useful in the process of searching for further 
instances of motifs identified in one experiment. Given the success of profile-based searching 
methods in complementing sequence based searching in domain recognition, [38,39], we 
anticipate that profile-based approaches should also take their place alongside regular 
expression methods in SLiM identification (e.g. SLiMSearch [40]). 
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