( BioMied Central

BIMC Bioinformatics The Open Access Publisher

This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Profile-based short linear protein motif discovery.
BMC Bioinformatics 2012, 13:104  doi:10.1186/1471-2105-13-104

Niall J Haslam (niall.haslam@ucd.ie)
Denis C Shields (denis.shields@ucd.ie)

ISSN 1471-2105
Article type Methodology article
Submission date 14 December 2011
Acceptance date 18 May 2012
Publication date 18 May 2012

Article URL http://www.biomedcentral.com/1471-2105/13/104

Like all articles in BMC journals, this peer-reviewed article was published immediately upon
acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright
notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.

For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

© 2012 Haslam and Shields ; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:niall.haslam@ucd.ie
mailto:denis.shields@ucd.ie
http://www.biomedcentral.com/1471-2105/13/104
http://www.biomedcentral.com/info/authors/
http://creativecommons.org/licenses/by/2.0

Profile-based short linear protein motif discovery

Niall J Haslam?3
Email: niall.haslam@ucd.ie

Denis C Shields®*
Corresponding author
Email: denis.shields@ucd.ie

! Complex and Adaptive Systems Laboratory, University College Dublin, Dublin,

Ireland

% Conway Institute of Biomolecular and Biomedical Research, Universitggzol

Dublin, Dublin, Ireland

% School of Medicine and Medical Sciences, University College Dublin, Dub
Ireland

lin,

Abstract

Background

Short linear protein motifs are attracting increasing attention asdoatly independent
sites, typically 3—10 amino acids in length that are enriched in disordered regpnteais.
Multiple methods have recently been proposed to discover over-represented mioiifs wi
set of proteins based on simple regular expressions. Here, we extend thesénappooac
profile-based methods, which provide a richer motif representation.

Results

The profile motif discovery method MEME performed relatively poorly for reotif
disordered regions of proteins. However, when we applied evolutionary weightingptma
for redundancy amongst homologous proteins, and masked out poorly conserved regi
disordered proteins, the performance of MEME is equivalent to that of regulassixpr
methods. However, the two approaches returned different subsets within both a bench
dataset, and a more realistic discovery dataset.

Conclusions

Profile-based motif discovery methods complement regular expression basedsnet
Whilst profile-based methods are computationally more intensive, they asetbkdiscover
motifs currently overlooked by regular expression methods.
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Background

In protein-protein interaction networks, hub proteins are defined as those that intdrac
number of other proteins, either simultaneously or at different times. Whilgtidatamain
interactions are important for stable interactions, rapid low affinityantems mediated by
short linear motifs are important for more transient interactions, for eeampignal
transduction [1,2]. Short linear motifs (SLiMs) are typically 3—10 residutkée of a

protein sequence, with two or more non-wildcard positions that independently mediate a
range of functions. They may be involved in ligand binding, modification, targetthg a
cleavage [3], all of which are important in driving cell signaling [1,4]. Mo#iis act in a
coordinated and co-operative manner to exhibit functional regulatory compléttity the

cell [5]. Therefore, the known repertoire of protein modules needs to be expanded to include
smaller functional sites like SLiMs, in addition to well-characterised domaidules. This
will advance understanding of the fundamental mechanisms that drive protein-protein
interactions.

The current (2012) release of the Eukaryotic Linear Motif (ELM) databstsellr4
experimentally validated short protein motifs [3], and the MiniMotif Dagal@ontains
around 5,000 predicted motifs [6]. Databases dealing with motifs containing sipestor
translational modificatoins (PTMs) alone list in the region of tens of thousandstiés m
[7,8]. Surveys have shown that up to 30% of the human proteome is disordered [9].
Disordered regions are known to be rich in linear motifs [10,11]. Given the rejdowel
number of motifs so far identified, it is clear that much work is still to be done [10].
Therefore, it is imperative that new tools are developed to meet this clealleng

One approach to discovering short functional sequence motifs is to apply computabtal
to find a motif that is over-represented among a group of evolutionarily unrskgeences
that have a related function (e.g. they bind a common interacting protein). In ONA m
discovery, profile-based methods have been very successful in the identifecadion
classification of transcription factor and promoter binding sites [12]. Howpkaile-based
methods have not been as widely used in the search for protein motifs since the first
publication of the MEME tool for motif discovery [13]: computational methods for the
discovery of protein motifs [14,15] have focused on regular expression over-represgntat
whilst profile-based discovery programs such as MEME [16] have been largelyecbid
DNA analysis.

Profile-based methods aim to describe the motif in terms of the relative frezgiehamino
acids at each position. The regular expression [DE] allows Aspartic and Gl#eichiat that
position, and does not define the relative frequency with which they are found at that
position. However, in a profile-based definition it is possible to state that Aspeidiis
present 70% of the time, and Glutamic acid 30%. This allows a more refined defofiticn
motif. Various methods have been proposed to define a profile of a linear motif —
summarized in [17]. Regular expressions are commonly used to attempt to dapture t
relevant sequence information about a linear motif [14]. Such representationsfefhraod
been favoured by biologists as they are sometimes more intuitive than piadilesver,
profile-based representations may present certain potential advartegesan sometimes
provide a richer and more accurate representation of certain motifs, andreanviisual
representation (using a “sequence logo” [18]) that is often more easily understo@bme
of the more complex regular expressions for highly redundant motifs.



The shortness of SLiMs makes their discovery difficult, because of the resutfiogtyiin
distinguishing true positive from false positive matches. This difficulty théur

compounded by the degree of variation between instances of a linear motif. Thus, careful
evaluation in a realistic setting of biological discovery is needed to dageihmethods are
useful in practice. Many motifs lie in disordered regions of proteins, and this m@tioften
distinguished by greater evolutionary conservation among orthologues; thisypailmsys a
focus on evolutionarily conserved residues to increase the chance of discoveringatdsel m
[19]. Focussing on regions conserved in orthologues by masking out non-conserved
disordered residues, and discounting motifs recurrent simply amongst homoldbeus ra
than unrelated proteins, have been shown to greatly improve the performanadasf reg
expression based methods to both identify true instances of known motifs, and to discover
novel motifs [14,15], In this paper, we investigate to what extent the application of
evolutionary weighting and masking of protein sequences can improve the perfhanc
profile-based methods to discover short linear protein motifs.

Methods

A set of protein sequences is used as the query set. These sequences, or atsabsedref
believed to contain a common motif responsible for a functional activity. The ismbki€ly

to be relatively conserved between orthologues of the proteins in other related,Speci

contrast to generally unconserved surrounding disordered regions of the protein. We used the
relative local conservation scoring system described in Davey et al. 20a9 fh8kk out
unconserved residues of the query sequences before submitting the sequences kbEhe ME
program to discover over-represented SLiM profiles amongst the sequences [16].idmaddit

we used the SLiMBuild algorithm from SLiMFinder to produce weightings of tla¢edhess

of the query sequences to each other [15].

Additional masking of the query sequences to remove transmembrane regions and,domains
taken from UniProt annotation [20], was performed in order to increase the likelihood of
identifying linear motifs in the query sequences, by eliminating such sooftegh-scoring

false positives.

Previous work by Fuxreiter et al. has shown that disordered regions are efoicsiealt
linear motifs [21]. This has been confirmed by a separate analysis ofregptaily validated
motifs from the ELM database [22]. Both indicate that the residues that conmgrisetif

are likely to have high disorder propensities as compared to the flanking regiarieffAot
0.3 ensures a balance between reducing the search space excessivelgmadwisig regions
of the protein known to be ordered. From Davey et al. [22] 82% of known motifs have a
disorder score over 0.3 the cut-off used in this analysis.

Orthology detection and alignment generation

In order to generate alignments for the proteins in the benchmark datasetdvileeuseries

of metazoan Ensembl whole genomes downloaded in March 2010 [23]. We follow the
method used in the Gopher orthologous protein identification and alignment algorithm
described in Edwards et al. [24]. Each query sequence in the set was searchetASihg B
(masking out low complexity regions) against the metazoan proteome at ataégpe
threshold of & 10-4. The set of hits from this search was then used to search against the
database again at a relaxed threshold=0f@ but without complexity filtering. Sequences at



this stage had to have 40% global similarity to the original query for inclusiormdsie
similar sequence for each species was retained for inclusion in themahg Multiple
sequence alignments were then generated using the MUSCLE program [25].

We adopted the treatment of evolutionary information previously developed and evaluated
for SLiM discovery [15,26], since the problem of treating evolutionary informatibkeiy

to be very similar for both profile and regular expression discovery of linearsmotif
Improving public orthology resources such as those of Ensembl [23] may prove useful in
future implementations of the method, accelerating calculations.

Relative local conservation

Disordered regions have different patterns of conservation compared tarstluetgions of
protein sequences. Therefore, traditional multiple sequence alignments ardicoliaply
informative when analyzing the conservation of proteins that include disordereasteg
since the pattern of conservation is dominated by the pattern of order and disarstetlaer
sequence. To overcome this, we applied relative local conservation (RLC) md$}ing [
which assesses the conservation of disordered residues relative to adjacdatetis
residues, which we summarise briefly below.

Residues are marked as belonging to one of two structural states: ordereddarelds using
the IUPred disorder prediction program (short setting, threshold 0.3) [27]. Only sesidue
within, 25 residues to either side that were in the same structural stateowgrared. Then
the residues in each column of the alignment were scored for conservation.

The RLC is calculated for each residue using a multiple sequence aligointteafprotein

with its orthologues. We used Ensembl release 60 metazoan proteomes to generate the
alignments [ref]. Then the residues in each column of the alignment were sgored fo
conservation. For each residue, this was compared against the background meanioonservat
in a window of 25 residues to either side of the residue across the sequence. Strongly
conserved residues are given a high score with more variable residuea fypvescore [ref].
The RLC score for the residue is calculated (in the manner of a standavte)ksc
subtracting the background mean conservation and normalizing by dividing by trerdtand
deviation of the window. This results in normalized scores that are comparabéeetw
residues in different protein sequences, irrespective of differences inaficergatterns.
Scores above 0 indicate above average relative local conservation.

There are a number of alternative search strategies possible foriegptdibrmation on
conservation. One method would be to use absolute conservation level levels relative to
orthologues from defined species. However, previous work has shown that for discovery of
motifs in predominantly disordered intracellular eukaryotic protein regionseldée local
conservation compared to nearby residues of the motif is more powerful [19]. Actprding
we adopted this approach, since the dataset to which we were applying this amalys
primarily intracellular motifs. Extracellular motifs, where therenisch less protein disorder,
may well benefit from other approaches.



Evolutionary weighting

The aim of evolutionary weighting is to appropriately reduce the statistipport for motifs

that are over-represented because of large-scale sequence homology Ogietggcent)

among a subset of the proteins investigated, rather than because of convergenhdoduti
common motif among unrelated proteins. This is achieved by grouping query sequences int
unrelated protein clusters (UPCs). Proteins within a given search setnatysed iteratively

by BLAST (E-value threshold of 10-3) to determine relatedness. Proteins idettmy

BLAST to be related were grouped into a UPC. Each protein in the cluster is not obviously
related to any protein in another cluster. While a similar correction could besimmgly

achieved by only choosing one of the related proteins in the motif search [14] the approach
taken here is favoured because short motifs typically evolve faster than domajise [(Ba

often only a subset of the related proteins may possess the motif. The weightingeatesqu
occurs after the assignment of proteins into UPCs. This is to ensure thatithetgiis

calculated based on the full sequence and not the masked regions which may loknguisiea
homology assignment.

Profile-based discovery of motifs using meme

MEME uses expectation maximization methods to identify over-representdd matie

guery set [16]. The program was presented with the unmasked dataset, the masked dataset
the weighted dataset and the masked and weighted dataset to judge the impaatfof each
these methods on the performance. The evolutionary weighting was calculated using
SLiMBuild [24] and the masking by using the RLC masking from SLiMFinder [15] as
described above.

The datasets were given as the input to MEME running with the expectationetteatvould

be zero or more motif instances in the query set. The minimum length of the motifst\whs s
3 and the maximum length at 10. Low complexity filters were switched off. Tiidepr

search is carried out after the sequences are filtered for disorder; therevger limit on the
length of disordered sequence considered, except that the motif discovery metjuies
motifs of at least three residues in our analysis.

MEME has an option to weight sequences. To apply evolutionary weighting, we incorporated
knowledge regarding the distances among sequences generated in the UPC buildisg proce
to weight the sequences appropriately. A minimum spanning tree normalizationedde us
weight sequences as described in SLiMDisc [26]. This is derived from a matni of t
sequence similarity of the sequences. The distances ranged between Zenalzre zero
indicates no similarity, and 1 indicates identical sequences. The weightstisezpience

(W) were then estimated from the average distances to all other sexj(f@head the

number of other sequences (N), as follows:

W=(1-S,)/N

Consider the sequences A, B, C, and D. If A andeB@% similar to each other and 0%
similar to C and 25% similar to D, and D and C @¥& similar to each other. A and B have a
distance 0.5; A and C have a distance of 1; anddAlahave a distance of 0.75. A will have



a score of 0.56, B will have a score of 0.56, G aalve a score of 1 and D will have a score
of 0.69. This ranks the sequences in order of tmiilarity to all other sequences.

Datasets

For the purposes of benchmarking the effectivenéize evolutionary weighting and

relative local conservation masking method we tdatasets from a number of papers in the
field, to facilitate comparisons among methods. fiits¢ dataset was from [14]. It used a gold
standard literature based dataset from the ELMoada&&a[29].

The second dataset is a more realistic test afidh@al operation of the program using
protein-protein interaction data downloaded from tuman Protein Reference Database
(HPRD) [30] taken from [19]. The aim of using thiataset was to test the ability of the
program to uncover motifs in a dataset that is kmtmbe noisy. Both datasets are available
from the authors of the original manuscripts areiacluded in the supplementary material.

Results

Evolutionary weighting and masking out non-conserve regions improves
discovery of motifs in disordered regions in a stashard dataset

Table 1 shows the results for the ELM dataset oflnmotifs, occurring mainly in
disordered regions of proteins. This compares MESVEHility to recover known motifs
under different conditions with a regular expressitethod, SLiMFinder. Regular expression
approximations of the profiles are shown in Tabte facilitate comparison of the results.
Overall, it is clear that the MEME default is natefficient as SLiMFinder at recovering
known motifs (see Table 2). However, after theusmn of both evolutionary weighting and
masking out non-conserved residues, the performainoeth methods are approximately
equivalent. However, they don'’t give identical iesuSLiIMFinder returns 3 motifs that
MEME with weighting and masking fails to identify the top ten motifs, namely SH3, 14-3-
3_1 and RB; the latter motif was identified by tefault MEME programme but lost in the
modified version. However, MEME with weighting anthsking does identify the NRBOX
motif that would not have been discovered by eiglaMFinder or MEME default,

indicating that the approach may be complementarggular expression searching.
SLiMFinder returns 41% of the true positives whNHEME with evolutionary weighting and
masking returns 72%. The false positive rate faMFlinder is 59% with 28% for MEME.

Table 1 Performance using experimentally validated ELMs (dataset from14]),
searching for protein short linear motifs in disordered regions of progins

SLIMFinder with MEME with

Number evolutionary weighting Evolutionary

of Regular Expression from ELM and RLC masking weighting and RLC
ELM Name proteins database (Rank) MEME default (Rank) masking (Rank)
TRG_ER_KDEL_1 17KRH][DENQ]EL K.{0,2}DEL$ (1) DEL (35) DEL (1)
LIG_Dynein_DLC8_1 4KR].TQT S.K.TQT (1) K[AESV]TQ[TE][PD] (1) [KV][SAE]TQT 91)
LIG_PCNA 13Q..[ILM]..[FHM][FHM] [IL].S[FH]F (1) Q.[SRT][IL][DM ]SFF (1) [LI].SFF (3)
MOD_SUMO 29[VILAFP]K.[EDNGP] [FIVIK.E (1) [IVIK[IQE]E[PE] (1) [IVIKEE (1)
LIG_SH3_2 9P..P.[KR] P..P.R{0,1}P (1) -

LIG_CYCLIN_1 22 [RK].L{0-1}[FYLIVMP] RRJ{0,1}L{0,1}F (1) [GE]JL[SYR[ED ]L.[KEJ[HLR]L (5) K[KR][KR] (1)




LIG_CtBP 26P.[DEN]L[VAST] P[ILM]DL (1) PLDLS (1) PLDLS (1)

LIG_AP_DAE_1 8[DE][DES].[F].[DEJ[LVIMFD] D.F..F.S..P (1) DDEF[GSPE]FQ (1) [GAIDF (1)
LIG_14-3-3 3 6[RHK][STALV].[ST].[PEDSIF] S.P.S.T.P (3) R[TSINSA65) -
LIG_RB 25[LI].C.[DE] L.C.E (6) LVCFE (1) -
LIG_Clathr_ClatBox_1 15{ILM].[ILMF][DE] L{1,2)DL.{0,2}D (12) [DEJ[ST]INSD][ LI[DEJLLF] (9) [LGIL[DG]LD[SG](1)
LIG_14-3-3 1 AR[FSWY].S.P RS.S.P (3) RS[IPRT]S[ALMT]P (29) S[AIS_EIP (1)
LIG_RGD 15RGD R.D.V (7) RGD (6) RGD (3)
LIG_HP1_1 6P.V.[LM] - -
LIG_NRBOX 9L.LL - [KNJH[AKP]LLS[RN]LL[RQ] (21) L[KRS][QY]LL (1)
[FHIMY][NS][EANS][CE][VENS]
MOD_N-GLC_2 5N.C - [CEHRV][VAF][MKLV][EAGS][
NE] (42)
TRG_lysEnd_APSsAcLL 10 [DER]...L[LVI] -

All proteins contain at least one experimentalliedmined motif instance. The regular
expression that matches the annotated ELM regxfaession is returned for each method
along with its rank (in brackets). No result reeains indicated by

Table 2 Summary of performance using experimentally validated ELMs (see Tablg)
SLiMFinder MEME default MEME with Weighting and RLC masking

Number of First hits 8 6 9
Number in Top 10 12 9 11
Total 17 17 17
Percentage First Hit 47% 35% 53%
Percentage Top 10 71% 53% 65%

Profile methods complement regular expression metlus with a realistic
biological discovery test dataset

Table 3 shows the results for the HPRD datasetiwt@presents a more realistic motif
discovery example, since not all proteins contamlalated instance of the motif. Thus, this
represents a typical question that would be askezkperimentalists trying to discover
motifs in their protein-protein interaction data.the case of HPRD SH2_GRB2 example,
both weighting and masking were required to idgritie motif, since analysis without either
or without both failed to identify the motif (Addinal file 1: Table S1). A summary of the
findings of these HPRD search results (Table 4rttandicates the benefits of applying
both weighting and masking. MEME with weighting andsking does not perform quite as
well in terms of identifying the true motif in thiep of the list (Table 4); but it is equivalent in
terms of identifying the true motif within the t4Q, identifying 4 motifs that SLiMFinder
failed to identify in the top 10 (Table 3). SLiMHer returns 21% of the true positives whilst
MEME with evolutionary weighting and masking retsi®f6. Again, this indicates that the
two methods are complementary.



Table 3 Performance for MEME searching for short linear motifs in a realisticmotif discovery scenario

SLiMFinder
with
Number of evolutionary
Hubgene proteins(with Regular expression from weighting and MEME with evolutionary
HPRDID Symbol  motif) Complex name Motif name (from ELMELM database RLC Masking Meme Default weighting RLC Masking
150 GRB2 164 (146) Grb2 LIG_SHS3 P..P - -
164 (103) LIG_SH2_GRB2 Y.N Y.N[LMV] (3) NK[NEK]WNRY[KV][DN]I KNRY[KPV][ND]ILP (1)
(2)

215 YWHAH 47 (13) 14-3-3 Eta LIG_14-3-3 1 R[SFYW}S [KR]S.S.P(1) - PKIHRSASEP (17)
350 CLTC 35 (15) Clathrin, heavy LIG_Clathr_Clatbox_1 L[ILM].[ILMF][DE] LLDL (4) - LLDL[EDM][DS][FA]QP (18)

polypeptide
453 CCNA2 25 (23) Cyclin, A2 LIG_CYCLIN_1 [RK].L{A}FYLIVMP] - A[CK]R[RNI]LFG (7) SA[CK]R[NR]LFG (8)
607 FNTA 10 (2) Farnessyltransferas e MOD_ASX_betaOH_E C[*"DENQ][LIVM]..$ - C[DT]IS (30) CIDTIIS (17)

alpha subunit GF
627 IGTAS 15 (7) Intergin alpha 5 LIG_RGD RGD - KBBDA (25) RGIDQ] (34)
1456 PCNA 65 (13) Proliferating cell nuclelalG_PCNA Q..[ILM]..[FHM][FHM] Q..[IL]..FF (1) TL[YES]SFF (3) TL[YES]SFF (2)

antigen
1574 RB1 110 (28) Retinoblastoma 1 LIG_RB [LI].CHP - - -
3288 PPARG 22 (15) Peroxisome proliferatbtG_NRBOX L.LL L.RLL (1) HKILHRLLQ (4) [LTIVSIHKLY QJAL][IL] (2)

AR
3334 DYNLL1 52 (5) Dynien light chain 1 LIG_DynieDLC8_1 [KR]L.TQT - [MV]SI[CY][DSIKI[ES]TQT KSTQT (10)

P (95)

3786 NEDD4 28 (17) NEDD4 LIG_Ww_1 PP.Y PP.Y (7) PPE3) PPPYSSI (2)
3833 TRAF6 22 (19) TRAF6 LIG_TRAF6 .P.E..[FYWHDE]. - - -
4015 CTBP1 26 (14) C-terminal binding LIG_CtBP P.[DEN]LVAST] D.P[IL]ID (6) - PILIIDLS (1)

protien
4946 CCNA1 20 (20) Cyclin Al LIG_CYCLIN_1 [RK].L{Q}FYLIVMP] - A[CK]R[RN]LFG (3) A[CK]R[RNI]LFG (1)
5462 GIPC1 26 (7) GIPC1 LIG_PDZ 1 [ST].IVIL]$ S.\($) - -
5639 YWHAG 206 (28) 14-3-3 gamma LIG_14-3-3 1 R[SF]YS.P R.RS.S.S (1) SRSRSRS[KR]SR (51) [SKISRSRSERK(30)
8968 EPS15 24 (10) Eps15 LIG_EH NPF TNPF (1) TNSHB) TNPF (1)




9045  UBE2l 87 (78) Ubiquitin conjugating MOD_SUMO [VILAFP]K.[EDNGP] VK.E (2) M[KM]VKDEY (18) VEIVYE (7)

enzyme E1
9347 GGA2 19 (2) GGA2 LIG_AP_GAE_1 [DE][DES].F.[DEVIMF DDF..F..A (1) D[DL]FG[GDE]F (6) D[DL]FG[GDE]F (7)
D
9424 YAP1 15 (8) YES associated protein  LIG_WW_1 YPP - [PL][PD]PPY (50) H[CT][TY][LP]PPPY (6)

The HPRD dataset used, its name and the numbeot&ips in that dataset along with the ELM knowmrtediate some interactions with the
protein hub are shown. The regular expressionmetuhighest that matches the annotated ELM amdrits(in brackets) for SLiMFinder and
MEME with and without RLC masking and evolutionagighting are shown. No result returned is indiddig



Table 4 Summary of the results in a realistic motif discovery scenario (see TaB)

SLiMFinder MEME default MEME with Weighting and RLC masking

Number returned 12 14 17
Number of first hits 7 0 5
Total 21 21 21
Number in Top Ten 12 6 12
Percentage Returned 76% 67% 81%
Percentage Top 10 57% 29% 57%
Percentage Top Hit 33% 0% 24%

Thus, the addition of the evolutionary weightingld&LC masking is able to increase the
ability of MEME to identify the correct motif in éhtop 10 results returned. This indicates the
likely benefits of including evolutionary weightirrind RLC masking ide novo motif
discovery, particularly for motifs lying in structlly disordered regions, which are strongly
represented within both test datasets.

It might be expected that the motifs returned byNEEare richer, containing more
information, since the profile representation heespotential to encode more information.
Table 5 shows the SeqLogo representation of a saafphe motifs. Additional file 2: Table
S2 indicates that for the ELM dataset, of motitsimeed by both methods, for eight of them,
MEME was more informative (motif less likely to acdoy chance), one was equal, and for
two SLiMFinder was more informative. For the moreldgically realistic HPRD dataset
(Additional file 3: Table S3), all 17 comparable tifowere more informative for MEME.
This feature of MEME, that it tends in a realigétting to return more informative motifs,
may be valuable, since it may be detecting trudlstids that are missed by regular
expression searching. However, we cannot excluglpalsibility that it is simply over-fitting
to the available data.

Table 5 Sample of Sequence Logos from the MEME output from Tablé&

ELM Name  MEME Defined Regular Expression SeqLogofiMEME

Lig_Dynein [KV][SAE]TQT 2, S

Lig PCNA [LI].SFF %:L F
S




3

Lig Cyclin 1 K[KR][KR] =, K
LR
o5,

A o BT 2RO 11 13213

-
Lig CtBP PLDLS o S
4 L
A= L=

O— o— a4 o = oem

L T g e e R IR EEE ]

a
3

Lig KDEL DEL P
1
o

—

R o D) ESOE 11 1318

In the example of Lig_Dynein the profile accuratefptures the lack of flexibility in the

final three positions. These three residues aneelllconserved and contribute hydrogen
bonds to the interaction. We examined the availatslectures using the ligplot software [31],
where the profile allows Serine, Glutamic Acid akdnine at position two in the motif. No
structures were available for the case of Valingoaition 1. In the case of Serine (PDB id: 1
F95) and Alanine (PDB id: 3E2B) at position twcert is no evidence of these residues
contributing hydrogen bonds to the binding [32,38]the case of Glutamic Acid (PDB id:
2PG1) it does contribute a hydrogen bond to thexaation [34]. Thus, motifs with a charged
rather than a small residue at position two maeteadistinct mode of binding.

The approaches described here will be useful fatepmics experiments where the user
expects that associations and interactions areatgetlby short linear motifs. Accordingly,

we have made scripts available to facilitate caltooh of the weights for submission to
MEME, as well as for the masking out of non-conedrkesidues at
http://bioware.ucd.ie/meme.html. Developers inte@s$n contributing to the further
development of this freely available software argted to apply for access to the subversion
software repository. Applications of this approatiould cite this paper, but also MEME
[16]. Other tools employed such as IUPred [27], BOA35], Muscle [25], ClustalW [36]
should be acknowledged as appropriate.



Discussion

In the search for linear protein motifs the redentis has centred on regular expressions.
Whilst the methods that have transferred from Dighscription factor searching such as
MEME and NestedMica [37] have been applied to ne®drching in proteins, profile-based
methods have not typically been applied in SLiMatlases such as ELM, phospho.ELM and
MiniMotif. Regular expression based definitions @édeen preferred for a number of
reasons, from ease of use to the fact that theynciude subjective annotations from expert
curators of the databases. However, in the moweote automated methods of protein linear
motif discovery, there are a number of advantag@scorporating profile-based definitions,
as these may increase the informativeness of tltiésnaoder certain circumstances.

It is of interest to speculate on possible reasdnsthe MEME-based approach adopted here
may give different results to regular expressioprapches such as SLiMFinder. One
possible reason is that certain motifs may evaiva Wway that is best described by a regular
expression, and therefore regular expressiondaié more power to detect them, whilst
other motifs evolve in a way that is more easilgtaeed by a profile representation, with
requirements for a specific subset of residuegéin positions that do not match the
common ambiguity sets implemented in regular exgioessearching. We would have
anticipated that profile representations will beeamore powerful for motifs with many
occurrences, since the profile definitions are nageroximate when there are only a few
sequences, but we find no clear suggestions tatllat¢his is the case (Tables 1 and 2). The
two search strategies differ in another subtle wath the MEME approach, the sequence
weighting occurs before motif discovery, whereagh\@LiMFinder motifs are selected

within the entire protein dataset and then rankezhaards, on the basis of statistical support.
It is possible that this may favour SLiMFinder wiear a motif is found in only a small
subset of the related proteins. In the 8 test degaghere the motif is found in less than 30%
of the interacting proteins, SLiMFinder finds th@rect motif more often than MEME, 5
times compared to 3 times.

The discovery of linear motifs in interaction set&l proteomics experiments is only one step
in the process of determining the functionalitypobteins or sets of proteins in an interaction
network. Profile-based methods will be useful ia gnocess of searching for further
instances of motifs identified in one experimenida the success of profile-based searching
methods in complementing sequence based searchdagrain recognition, [38,39], we
anticipate that profile-based approaches shouttalee their place alongside regular
expression methods in SLiM identification (e.g. MBearch [40]).
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