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Abstract

The analysis of network data is an area that is rapidly growing, both within and

outside of the discipline of statistics.

This review provides a concise summary of methods and models used in the

statistical analysis of network data, including the Erdős-Renyi model, the exponen-

tial family class of network models and recently developed latent variable models.

Many of the methods and models are illustrated by application to the well-known

Zachary karate dataset. Software routines available for implementing methods are

emphasised throughout.

The aim of this paper is to provide a review with enough detail about many

common classes of network model to whet the appetite and to point the way to

further reading.
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1 Introduction

Network modelling has long been of interest to statisticians but in recent years it

has begun to rapidly evolve, attracting growing interest both within statistics and

more widely. A network is any dataset that is composed of actors or nodes upon

which we have relational data. These relationships may be directed or undirected;

they may be or discrete or continuous and are often continuous but measured as

discrete.

In recent times, analyses of network data have created headlines in both the peer-

reviewed academic literature and in mainstream media. [33], for example, concluded

that “people were most likely to become obese when a friend became obese” in

an analysis based on a large thirty two year social network study; this analysis

received widespread publicity in the mainstream media including the New York

Times. Subsequent studies by the same researchers have also claimed that network

effects are important in smoking [32], happiness [44] and alcohol consumption [95],

although these findings are not without controversy [80]. Furthermore, the onset

of Web 2.0 social networking sites such as Facebook and Linkedin have allowed

the comparatively easy collection of huge contemporary social network datasets

[e.g. 108]. Network analysis has also become a popular method of investigation

in the biological sciences in terms of protein-protein, gene-gene and gene-protein

interaction networks. Indeed “analysis of protein-protein interaction (PPI) networks

has become a major thrust in systems biology research” [120]. Other applications

of networks analysis include terrorist networks [71], sexually transmitted infections

[37], financial fraud [99] and co-citation networks [78], to name but a few.

In this paper we present a succinct review up to and including the current state

of the art in statistical network modelling. Section 2 provides an introduction to the

terminology and concepts from graph theory which are commonly used in network

analysis. Network visualisation methods are discussed in Section 3. Some of the

classical probabilistic models are outlined in Section 4 and more complex latent

variable models are introduced in Section 5. Goodness-of-fit and model validation

methods are briefly discussed in Section 6. In the concluding Section 7 we outline

some of the challenges that lie ahead. In an accompanying supplement we provide

results of all models applied to a larger Facebook network along with the code used

to create the figures and results presented, along with some not included in this

paper due to space constraints.

For simplicity of exposition, we confine our study to models for static binary

network data; thus the relationship between nodes is that either a link (edge) is

present or it is not, with relationships only considered at one occasion (static). While

more complex network data exists, we note that the network models developed for

such data are (thus far) extensions of the models discussed in this paper. We cite
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the literature in cases where such developments exist.

Other reviews and collections that give excellent overviews of social network

analysis and statistical modelling of network data include [116], [26], [118], [3] and

[50]. While these offer summaries of statistical network modelling that are possibly

more comprehensive than our own, we offer this document as an alternative and

more concise paper with a focus on brevity and on the relationships between various

statistical network models. This paper is intended to serve as a contemporary text

to provide introductory level material, with appropriate references. We note that

statistics is only one of many fields in which network analysis is a topic of interest.

A wide range of non-probabilistic models are available in the computer science,

machine learning and other literature; this review concentrates on the statistical

modelling of network data rather than on deterministic approaches.

1.1 Zachary’s Karate Club

We demonstrate ideas and examples throughout the paper using the well known

Zachary’s Karate club data [122]. This dataset was chosen for familiarity and for

compatibility with a wide range of the methods reviewed in this paper. While the

network is discussed in more detail in subsequent sections, here we provide some

context. The dataset consists of the friendship network of 34 members of a university

based karate club. It was collected following observations over a three year period

in which a factional division caused the members of the club to formally separate

into two organisations. While friendships within the network arose organically, a

financial dispute regarding the pay of part time instructor Mr. Hi tested these

ties, with two political factions developing. Key to the dispute were two members

of the network, the aforementioned Mr. Hi and club president John A. When the

dispute eventually led to the dismissal of Mr. Hi by John A., his supporters resigned

from the karate club and established a new organisation, headed by Mr. Hi. The

dataset exhibits many of the phenomenon observed in sociological studies, namely

the development of communities and emergence of prominent figures. It is thus ideal

for the demonstration of statistical models which seek to identify such behaviours

in a quantifiable manner.

2 Graph Theory & Descriptive Statistics

In this section we provide a brief review of the common terminology and notation

used in the literature, as well as a description of empirical network statistics.

3



2.1 Basic Definitions and Measures

A network is typically described using the language of graph theory. 1 A graph

G(N ,L) consists of a set of N nodes (or vertices) N = {n1, n2, . . . , nN} and a set

of L edges (or connections) L = {l1, l2, . . . , lL}, which denotes the links between

nodes. An adjacency or socio-matrix Y , of dimension N × N can also be used to

represent G, with

yij =

{

1 edge exists from node ni to node nj

0 otherwise

Note that this applies only for a binary network. Weighted (or valued) networks

are described using non-negative integer values for the entries in Y . Binary networks

are also expressible using an edge list E. This is a two column matrix with edge l

given by the lth row of E and where el1 is the node index of the source of edge l

and el2 is the destination node of the edge.

Reflexivity, Symmetry These terms refer to behaviour common within many ob-

served real world networks. A node ni is reflexive if it is adjacent to itself,

that is if yii = 1. This may or may not be possible in a network, depending

on the data in question. In friendship data, for example, an actor’s relation-

ship with themselves is typically ignored or treated as undefined, whereas in

protein-protein interaction data, proteins are often capable of self-interaction.

Ties within a network may be symmetric or reciprocal. For example, in many

instances we expect ties of friendship to be returned, or mathematically, that

between two nodes ni and nj , we have yij = yji. The graph representing an

asymmetric network is said to be directed, in which case it may be referred to

as a digraph. A symmetric network is also referred to as undirected.

Transitivity A third commonly observed phenomenon is that of transitivity. This

may be loosely interpreted as “the friend of my friend is my friend.” More

formally, a graph displays transitivity if nodes ni and nj being connected and

nodes nj and nk being connected implies that node ni is likely to be connected

to node nk. That is, if yij = 1 and yjk = 1 then this implies that P (yik = 1)

is greater than if yij and yjk are zero. There is no rigid definition of when a

graph is transitive, rather there are continuous measurements of transitivity

such as the ratio of number of triangles to connected triples in the graph.

1We do not discuss in detail the relationship between estimating graphical models and network analysis,

apart from noting that much of the terminology and statistics overlap. For example, estimation of a sparse

Gaussian graphical model by regularization of the inferred precision (inverse covariance) matrix using

lasso type methods is the subject of some recent research (see for example [46] and [83]). These methods

seek to establish which variables in a model are dependent and the resulting graph resembles a network.

However, this topic is not to be confused with network analysis where the links between nodes are the

data.
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Geodesic Distance, Connectedness and Diameter Graph theory also provides

tools to measure the connectivity structure of a network. The geodesic dis-

tance d(i, j) = mink y
[k]
ij > 0 denotes the degree of separation, or length of the

shortest path, between nodes ni and nj , where y
[k]
ij = 1 if there is a path of

length k between nodes i and j. If the geodesic distance is finite for all nodes

in the network, the graph is said to be connected. Otherwise, the graph is

unconnected.

When the graph is unconnected, it can be decomposed into components, or

maximally connected sub-graphs. The diameter of a graph is defined to be the

largest geodesic distance (i.e. the length of the longest shortest path) between

any two nodes in the network.

Using this terminology, we can describe the Karate Club dataset in more detail.

The data is an undirected graph, consisting of 34 irreflexive nodes and 78 undirected

edges. The diameter of the Zachary Karate Club is 5 and a path of this length is

highlighted in Figure 2(a). While our dataset is connected, this is in fact because it

is the largest component of a larger dataset, with many members disengaged from

the political in-fighting within the group, and excluded for this reason [122].

2.2 Network Summary Statistics

While the set of edges L measures the interaction between all actors in the network

N , we may be interested in how actors interact at a more local level. This behaviour

within the graph can be summarised using various statistics; these are particularly

relevant to the models discussed in Sections 4.2 and 4.4.

The simplest way to quantify a node’s connectivity is to consider the number of

nodes with which it is incident. The degree of a node ni in an undirected graph is

the number of edges incident with the node, so that d(ni) = yi+ =
∑

j yij = y+i =
∑

j=1 yji. For a directed graph, the indegree is given by di(ni) = y+i and outdegree

by do(ni) = yi+.

Next, we consider a network at the dyadic level. This is where we only consider

the interaction between two actors in the network. A directed graph consisting of

two nodes can take one of three states: mutual when yij = yji = 1, asymmetric

when yij = 1 and yji = 0, or vice-versa, or null when yij = yji = 0. Counting how

often these states occur across the entire network is referred to as the dyad census.

In order to study higher degree network effects, particular types of sub-graph are

of interest, such as k-cliques (a sub-graph of k nodes where all nodes are connected

to each other), or k-stars (a sub-graph of k + 1 nodes in which k of the nodes are

connected through a single node) — of particular interest are 3-cliques, or trian-

gles, which illustrate transitivity at its most local level. Examples of these graph

structures are shown in Figure 1.
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Figure 1: Examples of k-cliques (top row) and k-stars (bottom row). Note that typi-

cally the k in k-cliques and in k-stars refer to the number of nodes and edges involved

respectively. That is, a k-star involves k + 1 nodes.

The total number of triangles in a graph, T (Y ), can be found directly by calcu-

lating T (Y ) =
∑

i≤j≤k yijyjkykl. Obtaining other summary statistics is less straight-

forward. [65] define statistics D0(Y ), . . . , DN−1(Y ) and P0(Y ), . . . , PN−2(Y ) as the

degree distribution and partner distribution of Y respectively. Di(Y ) is defined to

be the number of nodes in the network Y with degree equal to i. Pi(Y ) is defined

to be the number of dyads which are incident with each other and share exactly i

neighbours in common. Several statistics of interest may then be directly computed

using Di and Pi. For example, let Sk(Y ) and T (Y ) denote the number of k-stars

and triangles in the graph Y respectively. Then

Sk(Y ) =
N−1
∑

i=1

(

i

k

)

Di(Y ) for k ≥ 2

and

T (Y ) =
1

3

N−2
∑

i=1

iPi(Y ).

Applied to the karate dataset, we note that Mr. Hi was a member of both 5-

cliques in the network. There are also 43 triangles, in comparison with 77 edges,

indicating the high level of transitivity within the group.

For several more examples of summary statistics, see [93] and [116].
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Figure 2: Examples of some of the definitions used in graph theory. (a) shows the diameter

of the Zachary Karate Club network. (b) shows the clique involving nodes 0, 1, 2, 3 and

7, one of the two largest cliques in the Zachary network. See section 3 for more details

on network visualisation.

2.3 Centrality and Prestige

Highlighting actors of importance to the network is a common task of statistical

network analysis. Centrality measures are ways of representing this importance in

a quantifiable way. A node (or actor)’s importance is considered to be the extent

of their involvement in a network, and this can be measured in multiple ways.

Centrality measures are usually applied to undirected networks, with indices for

directed graphs termed prestige measures, although these methods are less developed

[116]. Common centrality measures include:

Degree Centrality The simplest way to quantify a node’s importance is to con-

sider the number of nodes it is incident with, with high numbers interpreted

to be of higher importance. Therefore the degree of a node provides local

information of its importance. Since the maximum nodal degree is N − 1, the

standardised centrality measure is:

CDo
(ni) =

y+i

(N − 1)
.

Closeness Centrality Nodes can also be indexed by considering their geodesic

distance to each other. The closeness centrality of node i is given by:

CC(ni) =
N − 1

∑N
j=1 d(ni, nj)

.
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Note that the geodesic distance between two nodes in distinct components is

undefined (or defined as infinite), and as such the closeness centrality measure

is only meaningful for a connected network.

Betweeness Centrality Another way to gauge a node’s influence is to consider its

role in linking other nodes together in the network. Denoting σjk as the number

of geodesics, or shortest paths, between nodes nj and nk, and let σjk(ni) be

the number of geodesics containing node ni. The betweeness centrality of node

ni is defined as

CB(ni) =
∑

j<k

σjk(ni)

σjk

1
(

N
2

) .

A criticism of this measure is that it assumes that two nodes will be linked

over only the shortest possible path, and that each geodesic is equally likely

to be taken. Other, more complicated measures such as information centrality

[106] attempt to reconcile this by considering the information contained in all

paths containing a specific node.

Eigenvector Centrality Eigenvector centrality is another measure of centrality.

The eigenvector centrality of each node can be found by computing the leading

eigenvector of the adjacency matrix Y . This measure of centrality takes all

connections in a network into account rather than just looking at shortest

paths between nodes. The eigenvector centrality can be seen as an alternative

to degree, where the connections are weighted according to node centralities

[16]. A number of properties and interpretations are given in [17]. Eigenvector

centrality is at the core of the PageRank [20] and the HITS [70] algorithms for

ranking networks that we introduce in Section 2.4.2.

As an illustration, the application of these measures to the Zachary Karate Club

network is shown in Figure 3. The five actors with highest centrality scores with

respect to each measure are shown more darkly. Note that Mr. Hi and John A, nodes

0 and 33 respectively, are selected by each measure, underlining their importance

within the network.

2.4 Community Finding, Clustering and Ranking

2.4.1 Community Finding and Clustering

Community finding and clustering methods are among the most common tasks of

network analysis and are usually concerned with partitioning networks into highly

connected sub-graphs. This is also referred to as community finding or clustering.

The focus of this paper is on statistical and probabilistic methods for network anal-

ysis, and so we provide only a cursory summary of the deterministic methods for

clustering.
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Figure 3: (a) Degree, (b) betweeness, (c) closeness and (d) eigenvector centrality measures

applied to the Zachary Karate Club network, where the actors with the five highest

centrality scores are shown more darkly. Note that nodes 0 and 33 are selected by each

measure.

One of the first methods to make use of centrality measures for community de-

tection was the Girvan-Newman clustering method [49]. The steps of the algorithm

are simply:

1. Calculate betweenness for all edges in the network.
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2. Remove the edge with highest betweenness.

3. Recalculate betweenness for all edges affected by the removal.

4. Repeat from step 2 until no edges remain.

By removing links with the highest betweenness centrality scores, and considering

nodes who remain linked as being closer to one another than those then separated,

a hierarchical clustering of the network becomes possible.

Other deterministic community finding methods have been proposed, such as

spectral clustering [101, 85] which is based on an eigenvectors decomposition of the

graph Laplacian. The Laplacian matrix is given by

L = I−D−1/2YD1/2

where I is the identity matrix, D is the diagonal matrix with the degree of the nodes

on the diagonal and Y is the adjacency matrix. As per [85], in order to cluster into

K components, the K largest eigenvectors are stacked as the columns in an N ×K

matrix. This matrix is then row-normalised to have unit length. Treating the rows

as points in R
K , a clustering routine such as k-means is used to cluster the nodes.

See [113] for a tutorial on spectral clustering that compares and evaluates the more

popular methods.

[119] note that such methods are biased towards clusters of equal size. [84]

mitigated this problem when they introduced modularity based methods, which are

amongst the most popular. Suppose that nodes in the network are partitioned into

clusters, where ci records the cluster membership of node ni. The modularity [84]

of the partitioning is defined as

Q =
1

2M

∑

{(i,j):ci=cj}

[

yij −
yi+yj+
2M

]

,

where M is the number of edges in the graph. Many community (or cluster) finding

algorithms aim to find the partition of the nodes into clusters that maximise the

modularity [36], but it is a computationally challenging problem [18, 19]. Note that

the use of modularity for community finding is not without criticism, in particular

as they seek to divide the network into non-overlapping clusters [e.g. 43].

More recently, methods for finding overlapping communities (or clusters) have

been developed [e.g. 87] including the CFinder algorithm [1] that uses k-cliques to

construct overlapping communities.

2.4.2 Network Ranking

Network ranking problem is another interesting task in analyzing network data.

One of the most used ranking methods is the PageRank algorithm presented by [20]

which is at the basis of the Google search engine. In this context, the web pages
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and the hyperlinks are respectively the nodes and the edges of the network. The

PageRank (PR) of the node ni is defined as

PR(ni) =
1− d

N
+ d

N
∑

j=1

yji
yj+

PR(nj)

where the parameter d, called the damping factor, takes values between 0 and 1.

[20] suggest setting d equal to 0.85. The rank of a node then depends on the number

of nodes from which they are refereed, weighted by their ranks. Many extensions

to this method have been developed, and we refer to the survey papers [10, 98] for

further details.

Another ranking method for networks is the Hypertext Induced Topics Search

(HITS) algorithm [70]. This alghorithm assigns ranking values to nodes which

identify both good link targets (authority score) and good link sources (hub score).

The authority score for node ni is defined as

ai =
N
∑

j=1

yjihj

and the hub score

hi =
N
∑

j=1

yijaj .

2.4.3 Semi-supervised Learning

Semi-supervised learning methods are useful tools for classification, ranking and link

prediction problems. They use the information given by some labeled nodes in the

network to estimate the unknown labels of the other nodes. Two main approaches

for semi-supervised learning in graph are presented in [123, 124] and [25]. [123, 124]

propose an algorithm which makes use of a kernel matrix based on dyadic links.

This method has a good predictive power, but it is not able to handle very large

networks due to high computational complexity. For that reason [25] proposed a

new method called discriminative random walks (D-walks) which allows to classify

the unlabelled nodes according to a class betweenness measure that depends on the

passage times during random walks performed in the input graph. Further details

on semi-supervised learning can be found in [125] and [126]. New extensions to

these methods for sparse large network have been recently proposed in [81].

2.5 Software

igraph [34] is a free open source software package that allows the efficient manipu-

lation of directed and undirected graphs, potentially consisting of millions of nodes

and edges. It is available to download in several formats, including as a package in
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R [89]. igraph can perform various operations from graph theory, including calcu-

lating (at nodal level) the degree, closeness, betweenness and eigenvector centrality,

and PageRank of a graph, decomposing a graph into its connected components,

generating sub-graphs from a given graph, or generating random graphs using sim-

ple criteria. It also provides functions to calculate graph modularity and perform

community finding algorithms, and can visualise graphs (see Section 3), both in two

and three dimensions.

The statnet [53] suite of R packages, including sna, ergm and network [21,

54, 22], provide tools to obtain network summary statistics and both node and

graph-level indices for a variety of centrality measures.

spa [35] is an R package to fit semi-parametric models for semi-supervised learn-

ing.

3 Visualisation

Visualisation plays a central role in both the exploratory and reporting stages of

statistical analysis of networks and may even form the basis of a network model.

Visualisation is of particular importance for exploration of small networks or net-

works with low rank structure. When dealing with larger problems, visualisation

of the entire network usually leads to the “hairball” problem; the structure is too

complex to project onto only two or even three dimensions and the edges overlap

heavily. In this section we give a brief overview of some visualisation methods for

network data.

3.1 Adjacency Matrix Visualisations

Direct visualisation of the adjacency matrix may be the simplest way to visualise

a network. The rows and columns of the adjacency matrix are reordered such that

the nodes are grouped into highly connected clusters; this is a form of seriation

[5] of the adjacency matrix of the network. A heat-map plot of the matrix then

demonstrates the degree to which the nodes are clustered. For example a network

displaying no clustering will appear as a random matrix of dots whereas a highly

clustered network with three clusters will appear as a matrix with three distinct and

highly connected blocks about the diagonal and sparse connections between these

blocks.

Alternatively, structural equivalence may be highlighted by ordering the nodes

such that nodes grouped together, in the same block, relate to other nodes in a

similar way. For an example of adjacency matrix visualisation, see Figure 4(a), and

for further details on the theory on the blocking and structural equivalence, see

Section 4.3.
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3.2 Layout Algorithms

Many network visualisation methods consist of laying out the nodes on the plot

and adding the links as line segments (or arrows) connecting the nodes . A layout

algorithm is often chosen to minimise some criterion which tries to quantify the

simplicity of the plot (e.g. the length of the links and the amount of crossover of

the links in the plot).

Visualisation of large graphs is especially prone to “hairball” plots. That is, there

are so many overlapping links that the nodes (and potentially interesting structure

within the network) are completely obscured. However, even very small graphs can

be subject to this issue if the layout algorithm is poorly chosen (see Figure 5(a), for

example). Planar graphs are graphs that may be depicted without crossing links,

but these are rare for anything but very small and sparse networks. Link routing

layout algorithms seek to minimise the frequency of the link crossings.

Visualisation is used to find and to highlight structural properties in the graph.

This may include clustering of nodes, etc. The selection of a layout algorithm appro-

priate to the individual network depends on which features of the dataset the user

wishes to explore; for example colouring nodes by a particular attribute and using

a layout algorithm that places connected nodes closer together than unconnected

node pairs may highlight clustering-by-attribute. This section summarises some of

the common algorithms.

There are broadly speaking five main methods of node layout for plotting net-

works (besides a random layout):

1. Minimum cut: the nodes in the network are laid out to minimise the number

of edges that cross each other. Results may be similar to the smallest space

methods described below.

2. Smallest space: this set of closely related methods aim to find the optimal

locations in Euclidean space such that the distances are as close as possible to

the (inconsistent) network based distances. The two most common methods

are:

(a) Force-directed: A force is calculated with a positive component be-

tween connected nodes and a weaker negative component between all node

pairs. The nodes are laid out randomly and all forces are calculated. The

nodes are accordingly moved and these two steps are iterated until con-

vergence. This is equivalent to an energy or stress minimisation of the

graph as a system. The “forces” are often physics inspired. For exam-

ple, in the Fruchterman-Reingold [47] and Kamada-Kawai [68] algorithms

the positive force is analogous to a spring force and the negative force is

analogous to the electrical force. The key difference is that the spring /

attractive force is calculated between geodesic distance in Kamada-Kawai
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Figure 4: Four common visualisations for graphically displaying a network dataset.

Zachary’s Karate Club data is shown here, using the package igraph [34] for R. The

blockmodel example makes use of the sna [21] package. (a) shows a plot of the adjacency

matrix with rows and columns re-ordered to group equivalence classes. (b) shows a plot

of the adjacency matrix with rows and columns re-ordered to group nodes close together

in a hierarchical tree. The full dendrogram appears on the top and left. (c) shows a circle

layout. (d) shows a tree layout using the Reingold-Tilford algorithm [91].
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Figure 5: Four common layout methods for graphically displaying a network dataset.

Zachary’s Karate Club data is shown here, using the package igraph [34] for R. (a) shows

a random layout. (b) shows a layout using the Fruchterman-Reingold algorithm [47].

(c) shows a layout based on multidimensional scaling. (d) shows a layout based on a

singular-vector decomposition of the adjacency matrix.

and Euclidean distance in Fruchterman-Reingold. (Note that the plots in

Figures 2 and 3 were generated using the Kamada-Kawai algorithm).

(b) Multidimensional scaling: The distance between two linked nodes is
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taken to be zero and between unlinked nodes is one. Multidimensional

scaling seeks to find the layout in a d-dimensional Euclidean space that

maximises a similarity to this distance matrix. Alternatively, geodesic

distances can be used in the multidimensional scaling algorithm.

3. Spectral/eigenvalue decompositions: A decomposition of the network

based on eigenvectors of the adjacency matrix, or of the product of the adja-

cency matrix with its transpose, is taken. Coordinates based on the first two

eigenvectors of this decomposition then provide the layout.

4. Tree/hierarchical: e.g. Reingold-Tilford [91]. The nodes are arranged in a

tree-like structure with branches as links. Nodes at the same level are hori-

zontally aligned.

5. Shape based: Nodes are arranged superimposed on a shape, for example a

circle, star or sphere.

Finally, graph coarsening is a family of methods that aid the visualisation of

large networks that are too complex to cleanly depict. A clustering of the graph

(such as hierarchical) is performed based on the links. The graph of the clusters

(at some chosen level) may be drawn using one of the above methods and graphs

within clusters also drawn. Thickness of links in the upper graph(s) may be denoted

using the number of links between the clusters. Interactivity plays a key role in this

task as the user can effectively zoom in and out to view the visualisation of the

graph at different granularities [39] provides a model for this process. There are

other visualisation methods [e.g. 103], but the more popular methods tend to be

examples or combinations of the above. [57] provides a survey of methods up to the

year 2000.

3.3 Choosing a Layout Algorithm

Choosing a layout algorithm is usually a matter of trial and error, however knowl-

edge of the characteristics of the network along with a pre-specified visualisation

goal are useful in guiding this choice. There are also guiding principles to be found

in [69] and [57]. These are problem specific, interactive and iterative. [112] provides

a review of the current state-of-the-art in visualisation of large graphs.

3.4 Software

There are many software packages available for the visualisation of network data

using the above methods. The R packages designed for network analysis such as

igraph [34], network [22] and RSiena [111] contain visualisation tools using the

common layout algorithms. Visone [9] includes an interface to R and Pajek [8] may

be invoked from R. Other popular visualisation packages include Tulip [6], Gephi
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[7] and Cytoscape [100]. It is worth noting that Cytoscape is extensively used in

biological network visualisation applications.

4 Classical Models

These models assume a likelihood function for the network data given some under-

lying parameters. Estimates for these parameters are then inferred from the data.

The models range in complexity from having a single scalar parameter for link prob-

ability to increasingly elaborate models constructed on counts of network summary

statistics.

4.1 Erdős-Rényi

The Erdős-Rényi model [40, 41] is the most basic probabilistic model for network

data. The model assumes that the presence and absence of edges between all pairs

of nodes are i.i.d., where yij = 1 with probability θ and yij = 0 with probability

1− θ. Hence, the probability of a particular network is given by

P (Y |θ) =
∏

i,j

θyij (1− θ)(1−yij),

where the product is over all pairs i 6= j if the graph is directed and i < j if the

graph is undirected.

The Erdős-Rényi model has been studied extensively in the statistics and prob-

ability literature [see 38, for example]. In particular, the asymptotic properties of

the model, as N → ∞, have been studied in detail. The interplay of the values of

p and N have a strong impact on the asymptotic model behaviour.

For example, suppose that np → λ, then if λ < 1 the largest components will

be of order log(N) in size, if λ > 1 a giant component of order N occurs and if

λ = 1 the largest component will be of order N2/3. Further, suppose that for some

c, np = log(N)+c. Then, the distribution of the number of isolated nodes converges

to a Poisson distribution with parameter e−c as N → ∞.

However, due to the assumption of independent edges and equal probability of

connectivity between pairs of nodes, the model is not appropriate for modelling

many real world networks. Instead, it serves as a Null model, one in which there

exists no structure.

This may be illustrated with a straightforward application to the Karate dataset.

It is straightforward to estimate the maximium likelihood estimate θ̂ = 0.1375. It

then follows that the degree distribution should follow a Binomial(33, 0.1375) dis-

tribution. Figure 6 shows the clear discrepancy between the observed and expected

degree distribution for the data under the model. In particular, under this model

the probability of any node having degree higher than 14 is only 5× 10−5, yet the
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influential actors Mr. Hi and John A have degree of 16 and 17 respectively. It

is also straightforward to construct a confidence interval for the expected number

of triangles in the network. Again the network behaviour deviates from model as-

sumptions: the observed number of triangles 43, is far greater than that in the 95%

confidence interval {7.4, 23.4}.
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Figure 6: A line plot illustrating the differences between the observed degree distribution

for the Karate dataset and its expected distribution under the Erdős-Rényi model.

4.2 p1 and p2

The p1, p2 and related models are essentially logistic regression models for the

network dyads. They are a step up in complexity from the Erdős-Rényi model

which models all ties as equally probable given a fixed probability of an individual

tie for the network. The assumption of the independence of dyads in the p1 and p2

models implies that these models cannot capture common features of networks that

involve more than two nodes, such as transitivity, clustering, etc.

4.2.1 The p1 model

This model for directed graphs was introduced by [62]. There are four possible

states of linkage between two nodes ni and nj :
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1. No link

2. ni links to nj only

3. nj links to ni only

4. ni links to nj and nj links to ni.

These four types of relationship are modelled respectively by the four terms below,

with the probability of the entire network given by the exponent of the weighted

sum:

P (Y = y) ∝ exp



θ
∑

i,j

yij +
∑

i

αi

∑

j

yij +
∑

j

βj
∑

i

yij + ρm



 , (1)

where y is the observed adjacency matrix and m =
∑

i<j yijyji is the number of

mutual links.

The p1 model thus contains three additional sets of parameters compared to the

Erdős-Rényi model. Thus there is still the network-wide base rate of link probability,

θ. The other parameters are for productivity α, attractiveness β and mutuality ρ.

α and β are vectors with a separate value for each node.

When ρ and all α and β are zero, the model defaults to the Erdős-Rényi model.

If ρ is zero the model is that link probability of a dyad is solely dependent on the

degrees of the nodes involved. Allowing different values for ρ for each dyad leads

to identifiability problems for the parameters. However, in the discussion of [62],

[42] describe a model which “allows the effect of reciprocity to depend in a linear

manner on the two actors in a dyad”. This is achieved by having a dyad specific

ρij = ρ+ ρi + ρj and the ρi are normalised to sum to zero.

The full p1 model may be expressed as a GLM as follows (reproduced from [110]):

P (yij = y1, yji = y2)

= P (yij = y1)P (yji = y2|yij = y1)

= (exp (y1(θ + αi + βj)) + exp (y1(θ + αi + βj + ρ) + θ + αj + βi)) /k
(1)
ij

× exp (y2(θ + αj + βi + y1ρ)) /k
(2)
ji , (2)

where k
(1)
ij and k

(2)
ji are normalising constants with

k
(1)
ij = 1 + exp(θ + αi + βj) + exp(θ + αj + βi)

+ exp(2θ + αi + βj + αj + βi + ρ) (3)

k
(2)
ji = 1 + exp(θ + αj + βi + y1ρ). (4)

This formulation can be used for model fitting for the p1 model as a Generalized

Linear Model / Logistic Regression. According to [63], available software for fit-

ting the p1 model includes UCINET (sites.google.com/site/ucinetsoftware), NetMiner
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(netminer.com) and StOCNET (gmw.rug.nl/ stocnet/StOCNET.htm). The ergm pack-

age for R [54] (see Section 4.4) may also be used to fit the p1 model by setting the

model as dependent on the edges, sender, receiver and mutual terms.

4.2.2 The p2 model

This is an extension of the p1 model introduced by [110]. Essentially, the productiv-

ity α and attractiveness β are treated as random effects drawn from two underlying

distributions. The p2 model is thus a Generalized Linear Mixed Model. It was

formulated with node specific attributes (covariates) in mind that play a part in

determining productivity and attractiveness. These are modelled as fixed effects. If

this covariate information is not available then the p2 model is a more parsimonious

version of p1 where productivity and attractiveness are draws from two underlying

distributions with mean zero and variances to be estimated from the data.

When covariate information on the nodes is available, two additional parameters

per node attribute γ1 and γ2 must be estimated. These relate to the effects of the

node attributes on productivity and attractiveness. StOCNET [63] may be used to

fit the p2 model. It can also be fit using R software for Generalized Linear Mixed

Models such as lme4 and MCMCglmm.

4.3 Block Models

Blockmodelling is a methodology which decomposes a network by mapping multiple

nodes to one of a series of clusters (these are sometimes called positions or groups),

C = C1, . . . , CK . The interaction between members of these clusters is described by

the set of blocks B = B11,B12, . . . ,BKK , where Bij denotes the interaction between

nodes in Ciand Cj . Nodes are mapped to the same cluster if they are considered to

be equivalent with respect to some well defined specification. The network is then

represented by the block interaction within and between clusters. Blockmodelling

therefore provides a platform to describe a network at both a global and local level.

An excellent overview of non-probabilistic blockmodelling methods and the many

forms of equivalence in use is given in [26, Chapter 5].

Blockmodelling was first incorporated into a statistical framework with the in-

troduction of the stochastic blockmodel [61]. This model sought to combine the

probabilistic methodology of [62] with the blockmodelling approach first outlined in

[79] by introducing the concept of stochastic equivalence. In effect this states that

the conditional distribution of Yij depends only on the cluster membership of nodes

ni and nj [116, Chapter 16].

Initial attempts to apply the stochastic blockmodel concentrated on the case

where block membership is known a priori in the form of attribute data. [115]

applied a particular version of this model by incorporating the stochastic blockmodel
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into the p1 model (Section 4.2). By introducing the indicator variable

dijkl =

{

1 nodes ni and nj are in clusters Bk and Bl

0 otherwise

and introducing λ, a matrix of parameters of dimension B × B which describes

blockmodel interaction, the p1 model then becomes

P (Y = y) ∝ exp(ρm+ θ
∑

i,j

yij +
∑

k

∑

l

λkl

∑

i

∑

j

yijdijkl

+
∑

i

αi

∑

j

yij +
∑

j

βj
∑

i

yij). (5)

In the more general case where attribute data is unknown, block membership

assignation must be assigned with the use of latent variables [86]; see Section 5.2

for more details.

4.3.1 Software

The R package sna [21] may be used to fit stochastic blockmodels and thus estimate

block structure in network datasets.

4.4 Exponential (family) Random Graph Models

Exponential (family) Random Graph Models (ERGMs) are a family of models that

attempt to address the issues arising out of the assumption of dyadic independence

in the p1 and p2 models. They are also referred to as p∗ (p star) models and are

an extension of the Markov Graphs [45] which adds triangle statistics to the p1

model (Section 4.2). Subsequently, [117] generalised the model to include arbitrary

network statistics. More recently, [75] propose a further extension of the ERGM

model with the addition of a offset term to adjust for network size. [4] and [92]

provide good introductions and [93] and [118] summarise recent developments in

ERGM modelling.

As outlined in Section 4.2, p1 and p2 models cannot capture structure in networks

pertaining to more than node pairs (e.g. transitivity). ERGMs do not assume dyadic

independence and model the whole network as a single realisation arising from a

distribution summarised by a collection of network sufficient statistics (Section 2.2).

Specifically, the probability of the observed network y is in exponential family form

which is proportional to the exponent of the sum of the network sufficient statistics

times some unknown parameters:

P (Y = y) = exp
(

θ′S(y)− γ(θ)
)

(6)

where θ are the parameters of the model, S(y) are the network sufficient statistics

and γ(θ) is a normalising constant. This normalising constant is often very diffi-

cult to obtain as it involves summing over all possible networks with the observed
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sufficient statistics, S(y). This space contains 2N(N−1)/2 elements, so for a network

of just 10 nodes there are 3.52 × 1013 possible network configurations. Therefore

fitting ERGMs necessarily involves approximating this constant.

The network summary statistics are chosen by the analyst and may be calculated

on higher than order two interactions. Typical choices include the number of edges,

the number of triangles and the number of k-stars for various k values. [30] examine

ERGMs with the degree sequence as a sufficient statistic.

Fitting the ERGM then involves finding estimates of the parameters for each of

the network statistic terms in the model. There are several approaches to fitting

ERGM models without recourse to summing over all possible networks; these in-

clude maximum pseudolikelihood estimation [107], Monte Carlo MLE [e.g. 109] and

MCMC [e.g. 24]. More recently, [29] propose using a large deviations approximation

to the normalising constant.

Maximum pseudolikelihood fitting involves computing change statistics for the

network and finding a pseudo MLE for the parameters using a pseudolikelihood

approximation of the likelihood. The pseudolikelihood approximation [11] which is

the product of the full conditionals for each dyad given the rest of the observed

network is computed; the log-odds of a particular dyad being linked is θ times the

change in the observed network sufficient statistics in switching from that dyad

being linked to unlinked.

Following [92], denoting the change in network statistics when Yij is switched

from 1 to 0 as dij , the log-odds of Yij being one, given the rest of the network is

log

(

Pr(Yij = 1|ycij)

Pr(Yij = 0|ycij)

)

= θ′dij(y) (7)

where ycij) is all entries of the adjacency matrix except ij. Note that only the

change statistics that involve Yij need be included in the calculation. Estimation

of the parameters θ then proceeds via maximum likelihood estimation in a manner

similar to logistic regression.

However, the properties of the approximation are not well known. Measures of

model fit are problematic as networks cannot be easily simulated from the fitted

model. Furthermore, logistic regression assumes independent observations; this as-

sumption is clearly wrong for network data, potentially leading to biased parameter

estimates and standard errors which may be too small [93, 92].

For these reasons, Monte-Carlo based inference is preferred, where possible. Note

that this does not imply that a Bayesian perspective is necessarily taken, although

Bayesian estimation of ERGMs has recently been addressed in [24]. Frequentist

MCMCmethods for ERMGs (MCMCMLE) refine approximate parameter estimates

by comparing the observed network against a set of simulated networks given a

parameter configuration [104, 65]. Essentially, a computationally feasible sample of
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networks consistent with the observed summary statistics is used in lieu of the set

of all consistent networks.

Starting with an arbitrary estimate θ(0), MCMC is used to sample M networks

from an ERGM with these parameters. Denoting these sampled networks via their

adjacency matrices Y (1), . . . , Y (M) then the MCMC log-likelihood is given by

logPM (Y |θ) = θ′S(Y )− log(γ(θ(0)))

− log

(

1

M

M
∑

m=1

exp
(

θ′S(Y (m))− θ′(0)S(Y (m))
)

)

(8)

The limit as M → ∞ of this MCMC log-likelihood is equal to the log-likelihood of

the ERGM. The argmax of θ is referred to as the MCMCMLE of the network. The

performance depends on the choice of θ(0); a poor choice leads to convergence to a

local maximum. [48] suggest an iterative procedure: start with the maximum pseu-

dolikelihood solution for θ(0) as the initial choice then calculate the MCMCMLE;

now use this as θ(0) to obtain a new MCMCMLE and iterate until convergence (i.e.

change in the MCMCMLE θ is below a specified threshold).

The other issue is in sampling networks from an ERGM with specified parame-

ters. A Gibbs sampler is developed in [104] and this work revealed some shortcom-

ings of the ERGM specification. In both inferential approaches, model degeneracy

may be an issue. Simply put, degeneracy refers to the situation in which only a few

networks have appreciable probability given the model. These few networks may

include the full or empty networks and will not be useful in practice. If degener-

acy or near degeneracy occur then the parameter estimates may not converge and

maximum pseudolikelihood estimators will yield misleading results in these cases.

In these cases, the model is poorly specified and no estimation procedure will fix

this (see [55] for further details on degeneracy in statistical models of social net-

works). Networks simulated from the fitted model “bear little resemblance at all to

the observed network”.

Therefore new specifications of ERGM models have emerged with network sum-

mary statistics specifically chosen to address the degeneracy problems. These in-

clude conditioning on the number of edges [104] or the inclusion of alternating k-

stars and alternating k-triangles [93]. [64] note that “geometrically weighted degree,

edgewise shared partner, and dyad-wise shared partner statistics [are] equivalent to

the alternating k-star, k-triangle, and k-twopath statistics, respectively”. Alternat-

ing refers to setting successive signs of the network statistic to be plus and minus

when indexing over the order of the statistic. For example, if 2-triangle counts have

a positive sign then 3-triangle counts are given a negative sign, etc.

[64] discuss goodness of fit for ERGM models. They propose comparison of ob-

served network statistics with the sample distributions of other statistics calculated

on networks simulated from the fitted model. They examine the degree distribu-
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tion(s), edgewise shared partners distribution and the geodesic distance distribution.

Assessment is performed visually using boxplots summarising simulated values with

observed values overlaid or via a performance metric based on these (such as p-values

for the observed statistic under the empirical distribution of statistics).

Extensions of ERGMs to dynamic network datasets include [56].

4.4.1 Software

The ergm package [54] which is part of the statnet [53] suite of packages provides

comprehensive toolsets for the analysis of network data using ERGMs. The add on

Bergm package [23] contains a collection of functions implementing Bayesian analysis

for ERGMs using Markov Chain Monte Carlo. SIENA (available as standalone

package or as an R package RSiena [111]) also fits ERGM models.

5 Latent Variable Models

These models seek to explain the structure exhibited by network data via an addi-

tional layer of modelling. A broad class of model can be used in such a setting - as

[60] notes, any statistical model for a network in which the nodes are exchangeable

may be expressed as a latent variable model. The network data is modelled as

dependent on a latent or unobservable set of random variables, which are in turn

subject to some modelling assumptions that impose structure. The nested, hierar-

chical structure of such models means that they can sometimes be expressed as a

probabilistic graphical model [67, 66, 114, 14]. Inference is then performed, usually

in a Bayesian framework, to obtain parameter estimates or posterior densities given

the observed network.

5.1 Latent Space Models

Latent space models were introduced by [58] under the basic assumption that each

node ni has an unknown position zi in a d-dimensional Euclidean latent space. Net-

work edges are assumed to be conditionally independent given the latent positions,

and the probability of an edge (ηij) between nodes ni and nj is modelled as a func-

tion of their positions. Generally, in these models the smaller the distance between

two nodes in the latent space, the greater their probability of being connected.

An important feature of these models is that they easily and naturally account for

reciprocity and transitivity (Section 2.1).

In the case where additional edge covariate information xij is observed, these

models can account for homophily by attributes. Node covariate information is

typically converted to edge covariates using sums or differences (either directed or
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absolute); thus an edge is more (or less) likely to occur between actors that have

similar attributes than between those who do not.

P (Y |Z,X, θ) =
∏

i 6=j

P (yij |zi, zj , xij , θ). (9)

The Distance Model and the Projection Model

[58] proposed two main latent space models; the distance model and the projection

model. The former is the most widely used for its simple interpretation, since it

depends directly on the distance between the actors in the social space. The most

used distance is the Euclidean distance, but any distance dij = d(zi, zj) satisfying

the triangle inequality dij ≤ dik + dkj for all {i, k, j} triples may be used. This

model supposes the network to be intrinsically symmetric since it has the feature of

being reciprocal ; if yij = 1 then the probability of yji = 1 is large. So the distance

model is particularly suitable for undirected graphs or directed graphs that exhibit

strong reciprocity. The distance model is:

ηij = log odds(yij = 1|zi, zj , xij , α, β) = α+ β′xij − |zi − zj |. (10)

The projection model is more adequate for strongly asymmetric graphs since it

is founded on the assumption that the probability of observing an edge between two

actors i and j depends on the angle that they create in the Bilinear latent space;

if the angle is small the probability of having an edge is large, and if the angle is

obtuse the probability of having an edge is small. So the projection model is:

ηij = log odds(yij = 1|zi, zj , xij , α, β) = α+ β′xij −
|z′izj |

|zj |
. (11)

The Latent Position Cluster Model

[52] proposed the Latent Position Cluster Model (LPCM), a new model which ex-

tends the latent space distance models to allow for model based clustering of the

nodes. A spherical Gaussian mixture model structure is assumed for the latent

positions:

zi ∼
G
∑

g=1

λgMVNd(µg, σ
2
gI) (12)

where λg is the probability that a node belongs to the gth group, and
∑G

g=1 λg = 1;

this structure allows for clusters of highly connected nodes.
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The Sender and Receiver Random Effects

[59] proposed to take into consideration the degree heterogeneity ; the tendency of

some actors to send and/or receive edges more than others. This method allows

the modelling of asymmetric networks within the distance model. [76] proposed

a model that explicitly considers all the four features noted above. In undirected

graphs there is only one parameter, δi, called the sociality factor. This denotes the

propensity of each actor ni to form edges with other actors.

ηij = log odds(yij = 1|zi, zj , xij , α, β) = α+ β′xij − |zi − zj |+ δi + δj . (13)

In directed graphs the sociality effect in the dyad yij depends on two parameters:

the sender random effect δi and the receiver random effect γj .

ηij = log odds(yij = 1|zi, zj , xij , α, β) = α+ β′xij − |zi − zj |+ δi + γj (14)

where δi ∼ N (0, σ2
δ ) and γi ∼ N (0, σ2

γ), and the variances σ2
δ and σ2

γ measure the

heterogeneity in the propensity to send and receive edges. For undirected networks,

there is a single sociality effect for each node. A fit of this model with two groups

to the Karate club data is provided in Figure 7. The model correctly identifies the

two factions to which each actor belongs and the social random effects are higher

for the more central nodes, with Mr. Hi and John A having the highest values and

therefore the largest plotting symbols (pie charts) in Figure 7.

The Mixture of Experts Latent Position Cluster Model

[51] proposed the mixture of experts latent position cluster model to extend the

latent position cluster model within a mixture of experts framework, assuming that

the mixing proportions (λ1, . . . , λG) are node specific and can be modelled as a

Multinomial logistic function of their covariates wT
i = (wi1, . . . , wip) where the

probability of belonging to each of G−1 clusters are compared to a baseline cluster,

usually g = 1. The distribution of zi is assumed to be:

zi ∼
G
∑

g=1

λg(wi)MVNd(µg, σ
2
gI) (15)

where

λg(wi) =
exp(τg0 + τg1wi1 + . . .+ τgpwip)

∑G
g′=1 exp(τg′0 + τg′1wi1 + . . .+ τg′pwip)

(16)

(τ10, . . . , τ1p) = (0, 0, . . . , 0) and
∑G

g=1 λg(wi) = 1.
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Figure 7: Plot of the posterior latent positions for two groups under the Latent Position

Cluster Model for Zachary’s Karate Club dataset. Random sender effects are depicted via

the size of the nodes and the pie charts illustrate the posterior probability of belonging to

each of the two groups. The R package latentnet [74] was used to perform the inference

and create the image.

5.1.1 Estimation

For all variants of the latent space models presented above the log-likelihood is of

the form:

loglikelihood = logP (Y |η) =
∑

i 6=j

{ηijyij − log(1 + exp(ηij)} (17)

To estimate the model the main approaches suggested are maximum likelihood

estimation and a fully Bayesian approach that involves MCMC sampling.

The maximum likelihood approach is a fast method that provides points esti-

mates of the distances between the nodes since the log-likelihood is a convex func-

tion of the distances. The drawback of this approach is that the latent positions

should be approximated using multidimensional scaling of the distances since the

log-likelihood is not generally a convex function of the latent positions. The set

of latent positions found with this approach provides good starting values for non-
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convex optimisation methods. Another drawback is that the estimation is done in

two steps; in the first step the maximum likelihood estimates of the latent space

model is computed considering no clusters, and in the second step the maximum

likelihood estimates of the mixture model conditioned on the latent positions esti-

mated at the previous step are calculated.

A fully Bayesian approach allows the estimation of all the parameters and the

latent position simultaneously e.g. via MCMC sampling. This approach usually

gives better results than the two stage MLE, but it is more computationally and

algebraically intensive.

Similarly to [2] who use a variational approximation to fit a mixed-membership

stochastic blockmodel, [97] propose a variational Bayesian inference routine to ap-

proximate the posterior distribution of the parameters in the LPCM. More recently,

[90] propose a likelihood approximation using case-control sampling to improve the

efficiency of fitting the LPCM model.

5.1.2 Software

The R package latentnet [74, 73] provides two-stage maximum likelihood estima-

tion, MCMC based inference and minimum Kullback-Leibler [102] estimation for the

LPCM for both Euclidean and Bilinear latent spaces. gbme [59] is R code which uses

an inner kernel product that is similar to the projection model, but does not provide

modelling or estimation of clusters. VBLPCM [96] is an R package that performs fast

variational Bayesian inference of the LPCM for Euclidean latent spaces.

5.2 Latent Block Models

5.2.1 Stochastic Block Model

Blockmodels were discussed in Section 4.3 and they are latent variable models in

the case where the cluster memberships are unknown. The stochastic blockmodel

as formulated by [105] and [86] introduced cluster membership as a latent variable

where P(ni ∈ Ck) = θk. Let A denote the cluster membership of each node, where

Ai = k if node ni belongs to cluster Ck. The dyadic state Yij is modelled as

P(yij | A) = η(Ai, Aj), where η is the model for interactions; the most common

model assumes a K ×K matrix of probabilities, denoted as B, and η(Ai, Aj) is a

Bernoulli model with probability bAiAj
. Inference for this model may be performed

via Gibbs sampling.

Recent studies have considered the stochastic blockmodel within a broader con-

text. [12] studied the connections between modularity (Section 2.4) and stochastic

block models, while [13] discusses some of the asymptotic properties of a class of

models of which stochastic blockmodels are a subset. [94] and [31] also consider
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the asymptotic performance of the method with respect to the misclassification of

nodes, [94] comparing the method (favourably) to spectral clustering (Section 2.4),

[31] within a maximum likelihood estimation framework.

5.2.2 Mixed Membership Stochastic Block Model

The Mixed Membership Stochastic Blockmodel (MMSB) [2] combines the approach

of [86] with the latent Dirichlet allocation model of [15]. In this framework, as

in in Sections 4.3 and 5.2.1, a directed graph Y is generated by K clusters, C =

{C1, . . . , CK}, with any two nodes in the same cluster being considered stochastically

equivalent.

However, in contrast to other latent class models in Sections 4.3, 5.1 and 5.2.1,

the position of a node i may change depending on which node j in the network it

is interacting with. Each node may therefore have multiple cluster memberships

within a network; node i has an individual probability πik of belonging to cluster

k while interacting with another node in the network. Indicator variables −→z i→j

and −→z i←j then denote sender and receiver cluster membership for each interaction

between nodes i and j respectively. Once cluster membership is accounted for,

nodal interaction yij is modelled, as in Section 4.1, as a Bernoulli with a K × K

probability matrix B of inter and intra block interactions.

Networks are thus assumed to be drawn from the following data generation

procedure:

• For each node ni ∈ N :

– Draw a K dimensional mixed membership vector −→π i ∼ Dirichlet(−→α )

• For each pair of nodes (ni, nj) ∈ N ×N :

– Draw membership indicator for the initiator, −→z i→j ∼ Multinomial(−→π i)

– Draw membership indicator for the receiver, −→z i←j ∼ Multinomial(−→π j)

– Sample the value of their interaction, yij ∼ Bernoulli(−→z i→jB−→z i←j)

A number of extensions and alternatives to the MMSB model have recently

been developed. [121] develop a dynamic mixed membership stochastic blockmodel

(dMMSB). [77] and [82] develop overlapping stochastic block models that allow

nodes to have full membership of more than one block, thus providing an alternative

version of mixed membership.

5.2.3 Application to Karate Dataset

While [2] implement a variational approximation to the model in order to perform

inference on a network, to our knowledge no software is as yet publicly available.

Conversely, a collapsed Gibbs sampler is available as part of the R package lda [27],

with no supporting documentation other than the user’s manual. Since collapsed
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Gibbs samplers have recently been successfully applied to [88] we believe that it is

implemented in a similar manner.

A collapsed Gibbs sampler run of 100,000 iterations was performed on the karate

data, with two blockmodels assumed to underpin the model as chosen by BIC.

Uniform priors were set for all parameters. The results from the sampler provide a

nice illustration of the differences between blockmodel estimates and other methods,

such as latent-space models, which explicitly attempt to cluster nodes. The estimate

for the interaction matrix B takes the values

B̂ =

(

0.00 0.45

0.44 0.30

)

.

Note that the probability of interaction is higher on the off-diagonals, that is between

the two blocks. This is because blockmodels group nodes whose behaviour is similar,

rather than explicitly partitioning highly connected nodes. We can also note that

the second block is a great deal smaller than the first. We can therefore think of

the second block as having strong influence over the first block, who do not link

with each other. In particular, note that nodes 0, 32 and 33 have strong probability

of membership to the second group, which corresponds with their strong centrality

scores from Section 2.

We also provide a plot of the fit when three blocks are modelled in Figure 8,

with three chosen here to highlight the compositional property of the blockmodel

memberships as a 3-composition simplex reduces to a two-dimensional plot. In this

case

B̂ =









0.70 0.00 0.00

0.00 0.02 0.90

0.06 0.78 0.75









,

where bottom left corresponds to the first block, bottom right is the second and the

top is the third.

5.2.4 Software

Algorithms for Variational Bayesian inference under the MMSB are detailed in [2].

A collapsed Gibbs sampler of the model is available as part of the R package lda

[27].

6 Goodness-of-Fit and Validation

There is much scope for further work on the assessment of goodness-of-fit and model

choice in the network analysis setting. Quantitative methods of model assessment

currently fall into four overlapping categories; (1) comparison with ground truth /

nodal attributes, (2) link prediction, (3) goodness-of-fit diagnostics and (4) model
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Figure 8: Plot of the posterior latent groupings under the MMSBM for Zachary’s Karate

Club dataset. The R package lda [27] was used to produce the plot.

comparison via e.g. information criteria. We provide only a brief summary of these

methods here.

Comparison with ground truth involves comparing aspects of the fitted

model to observed nodal attributes. For example, in the Karate club dataset it is

known to which two clubs the actors split; thus any community detection algorithm

that separates the nodes into clusters that are consistent with this split is deemed

to be a good model. Such comparison is valid only when the ground truth is not

incorporated into the model and can only be used to validate a model on a problem

for which the community structure is known. Of course, it is unusual to have

this luxury in practice and one of the following methods should be used in applied

network analysis. Comparison with a ground truth is more often used to validate a

method of model comparison.

Link prediction involves comparison of the predictive probabilities under the

fitted model for all possible links with the observed links / non-links. This method

is used for generative models and inspection of the fit is often performed visually.

For example, two boxplots of the probabilities of a link are created; one for the

non-links and one for the links. If the probability of a link is systematically lower
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for the non-links than the links then the model is deemed to be a good fit to the

observed network. In the case of the latent space model, [58] define a network as dk

representable if there exists a set of nodal positions in k dimensional Euclidean space

such that the distances between only the linked nodes are all less than a threshold

distance. Conversely, only all non-linked nodes are separated by a distance greater

than this threshold. For such cases, the boxplots described above will be entirely

non-overlapping. Such analysis is applicable to any probabilistic model where the

likelihood of individual links is computable.

Goodness-of-fit diagnostics as detailed in [64] represent perhaps the most so-

phisticated and developed methods for model validation. This method was devel-

oped specifically for the ERGM (Section 4.4) class of models but has also been

applied to the latent space models [73]. Indeed, the method is applicable to any

fitted model from which networks are readily simulated. The method is motivated

by the observation that “when ERGM parameters are estimated and a large num-

ber of networks are simulated from the resulting model, these networks frequently

bear little resemblance at all to the observed network” [55]. The method involves

simulation of networks from the fitted model; summary statistics (such as degree

distribution, shared partners distribution, geodesic distance, etc) derived from these

simulated networks are then compared with the corresponding observed values. [64]

advocate using such higher order statistics that are not functions of the ERGM

parameters to “provide a strong independent criterion for goodness of fit”. Com-

parison is first performed visually; for example the observed degree distribution is

overlain on the boxplots of the degree distributions of the simulated networks.

Model comparison may involve either comparison of competing models under

an information criterion such as BIC or assessment of both models’ goodness-of-fit

as above. BIC is used in [52] to choose the number of clusters or communities

present in a network fitted using the Latent Position Cluster Model (Section 5.1).

[64] perform a comparison of parameter selection using AIC to selection based on

statistics derived from the goodness-of-fit diagnostics above with consistent results.

7 Conclusion

We have presented a concise summary of a number models, methods and software

for the statistical analysis of network datasets. We explored classical models in

which the presence of a link between two nodes depends on the network graph

structure and latent variable models in which the presence of a link in the network

depends on the presence of a latent variable. We have considered only binary static

networks as these are the most analysed family of networks in the literature. Our

inclusion of a recurring example [122] and reference to software makes this paper

32



a useful tutorial and pathway into the subject of statistical network analysis. We

suggest software (mainly in the form of R packages) to apply most of the methods

and models described in the paper.

In recent times, network data has become pervasive. Modern data collection

methods can allow for network data to be collected over time with greater ease than

previously. When analysing temporal network data it is common to aggregate across

time-points or to consider single time snapshots of the network, and to analyse these

data using static network techniques. However, proper dynamic methods for social

network analysis is a rapidly growing area. Current methodology in the statistical

literature typically involves adding a smoothed-over-time component to a model for

static network data [e.g. 121]. There is much scope for modelling innovations for

such temporal data.

We have considered only binary networks; i.e. an edge either exists or does not

but takes no other values. Other network types in the literature include weighted

edges and these are typically modelled in similar fashion to binary networks but

replacing the logistic part of the model with e.g. a Poisson likelihood. However,

other parts of the model may require alteration; for example when fitting ERGMs

the binary link based network summary statistics are no longer appropriate and

need to be extended to more general situations [see 72].

Many challenges remain in the field of statistical analysis of network data. Per-

haps the greatest challenge is scaling current methodology to huge graphs. The

internet provides a wealth of network datasets, with the world-wide-web itself form-

ing perhaps the largest. Most (or all) statistical methods in this paper may be cast

as modelling the links and non-links as samples from a stochastic process driven

by some underlying structure. Therefore, these methods necessarily scale as O(N2)

where N is the number of nodes. This makes extension of such methods to net-

works with more than a few thousand of nodes impracticable. In contrast, many

descriptive and algorithmic approaches to analysing network data exploit network

sparsity. However, [28] does provide a model-based analysis that exploits sparsity

in a mixed membership stochastic blockmodelling setting. [90] use a stratified case-

control sampler to reduce the computational complexity of the likelihood evaluation

to O(N). This approximation can in principle be applied to any statistical method

based on computing the likelihood of all possible links in the network.

References

[1] B. Adamcsek, G. Palla, I. J. Farkas, I Derényi, and T. Vicsek. CFinder: locat-
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[40] Paul Erdős and Alfréd Rényi. On random graphs I. Publicationes Mathemat-

icae Debrecen, 6:290–297, 1959.
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