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Abstract 

For slab bridge decks with wide transverse cantilevers, the plane grillage analogy is shown to 

be an inaccurate method of linear elastic analysis due to variations in the vertical position of 

the neutral axis. The upstand grillage analogy is also shown to give inaccurate results, this 

time due to inappropriate modelling of in-plane distortions. A new method, known as upstand 

finite element analysis, is proposed which is sufficiently simple to be used on an everyday 

basis in the design office. The method is shown to give much better agreement than the others 

when compared with an elaborate three-dimensional solid finite element model. Single- and 

two-span bridge decks with solid and voided sections are considered for both longitudinal and 

transverse bending stresses.  

 

1  Introduction 

The Plane Grillage Analogy is a popular method among bridge designers of modelling slab 

bridge decks in two dimensions. It involves the idealisation of the bridge slab as a mesh of 

longitudinal and transverse beams all located in the same plane.  Implicit in the method is an 

assumption that all parts of the bridge cross section bend about a single neutral axis which is 

generally taken to be the centroid of the deck.  The depth of this neutral axis below a datum 

(usually horizontal) is assumed not to vary throughout the bridge.  Finite element analysis 

(FEA) is used extensively by designers for everyday bridge design, but is most often limited to 

planar analysis using plate bending elements, which, like the plane grillage method, assumes a 

constant neutral axis depth. 

 Slab bridge decks with wide edge cantilevers are known to have neutral axes of 

variable depth. Figure 1 illustrates a bridge deck in which the neutral axis rises significantly 

towards the edges as the cantilevers attempt to flex about their own centroids.  It has been 

reported (O’Brien and Keogh 1996) that the neutral axis depth may also vary in the 

longitudinal direction in some cases.   

 Variability of neutral axis depth, when significant, results in the incorrect 

representation by a planar analysis of the behaviour of the bridge deck.  The problem can be 

overcome by the use of a three-dimensional analysis method. Such methods do not require all 

members representing parts of the deck to be located in the one plane.  Consequently this 

approach does not require a pre-assumed neutral axis position, and allows for a rational 

handling of cases in which the neutral axis depth varies.  Many 

Neutral

Axis

 

Figure 1  Slab bridge deck with wide edge cantilevers  

showing non-uniform neutral axis  
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such three-dimensional techniques have been suggested, ranging from space frame methods to 

Finite Element Analysis (FEA) using solid, brick-type elements.  While these methods can be 

successfully used to model a variable-depth neutral axis, they are generally excessively 

complex for everyday use in design offices. This paper addresses this problem by proposing a 

simplified but accurate three-dimensional (3d) analysis method, referred to here as upstand 

finite element analysis (upstand FEA). The method is simple enough to be used in design 

offices for everyday design and is significantly more accurate than plane grillage or plane 

finite element analysis, particularly for bridge slabs with wide cantilevers. 

2  Three Dimensional FEA   

In order to compare the accuracy’s of alternative simplified methods of analysis, it was 

necessary to apply a considerably more accurate method to a range of bridge decks. A 

program from the DYNA3D package, NIKE3D (Maker et al 1991), was used for this purpose 

to construct three-dimensional solid models from solid ‘brick’ elements. The program was 

tested by comparing analysis results for simply supported beam models with exact theoretical 

values. In addition, a model bridge deck, similar to the type of bridge considered here, was 

constructed from Glass Reinforced Cement (GRC).  Results from this experiment were found 

to be generally similar to those from the 3d FEA analysis. However, repeated runs of the same 

experiment showed variations in results of up to 5% and it was concluded that such an 

experiment was only sufficient to confirm the approximate accuracy of the FEA program. 

 

3 Grillage Analysis Methods 

 The theory governing grillage analysis is well established (Cusens & Pama 1975, Bhatt 

1986) and the method is widely used among practitioners. Results have been compared to 

models and full-size bridges in the past (Best 1974, West 1973) and the method has been 

found to be reasonably accurate for many shapes of structure, loading conditions and support 

arrangements. However, plane grillage has been found by the authors (O’Brien and Keogh 

1996) to be inaccurate for slab bridges with wide cantilevers. 

 Upstand grillage modelling is a simplified three-dimensional technique, which is 

essentially an extension of the plane grillage method.  It has been suggested in the past for the 

analysis of bridges with variable-depth neutral axes (Hambly 1991).  Figure 2(a) shows a 

single-span slab bridge deck with edge cantilevers. The length to depth ratio of the cantilevers 

is 6:1 which is the maximum considered practical. Figure 2(b) shows the equivalent upstand 

grillage model which was analysed using the STRAP computer program (ATIR 1991).  This 

model is similar to a plane grillage except that each grillage member is located in the plane 

containing the centroid of the relevant portion of bridge. Therefore it is not necessary to 

assume an overall neutral axis position. For the example illustrated, all members are located 

on two planes, one for the edge cantilevers and one for the main part of the deck.  The grillage 

members in each plane are connected by vertical beams with large flexural rigidities. Trial and 

error established a value which was effectively infinite while not being so large as to cause 



4 

round-off errors. As has been suggested by other authors (Hambly 1991), all of the nodes were 

restrained against in-plane rotation. 

 
(a)  Bridge deck 

 
(b)  Upstand  Grillage  Model 

 

Figure 2  (a) Single span bridge deck and (b) upstand grillage model 

 The upstand grillage model of figure 2(b) was analysed under the action of 

opposing uniform moment, applied at either end of the bridge deck.  This applied 

loading on a slab with cantilevers has the effect of generating in-plane forces. 

Unfortunately a grillage is ineffective at providing a realistic representation of a slab 

subjected to in-plane forces due to the tendency for the beams to bend individually in 

a similar manner to a Vierendeel girder. This behaviour is clearly not consistent with 

that of a slab.  

 A plane grillage analysis, using the STRAP program, and a 3d FEA were also 

carried out on the bridge of figure 2(a). Figures 3(a) and 3(b) show the longitudinal 

bending stress at the top fibre of the bridge deck at 1/8 span and 1/2 span respectively 

for each of these analyses.  Only half of the bridge deck is shown as it is symmetrical; 

the cross section is included in these figures for clarity.  Further details and results 

from these analyses have been presented elsewhere (Keogh and O’Brien 1996). 
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(b)  1/2 Span 

Figure 3  Top fibre longitudinal bending stress from various analyses  

at (a) 1/8 span and (b) 1/2 span  

 Assuming that the results from the 3d FEA model are correct, it can be seen 

from figure 3 that that the upstand grillage is generally more accurate than the plane 

grillage.  This is most evident in the edge cantilever at 1/2 span and in the main part of 
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the deck at 1/8 span.  An exception to the general trend occurs in the edge cantilever at 

1/8 span.  In this region, the upstand grillage makes a poor prediction of stress, which 

is in fact worse than the plane grillage. Investigation of the 3d FEA model revealed 

that significant in-plane shear distortion occurs in this region.  The restraining of 

nodes against in-plane rotation is counter-productive in such a case and is the reason 

for the poor prediction.  

4  Upstand FEA 

The finite element method has been used extensively in the analysis of bridge decks 

for some time.  It is regarded by many bridge designers to be the most versatile 

method available and indeed the only one capable of dealing with certain bridge forms 

(Hambly 1991 and Cusens and Pama 1975).  Although the method is used by bridge 

designers primarily for plate bending problems, it was pioneered by Turner et al. 

(1956), for in-plane analysis of two-dimensional elastic structures.  The method was 

extended to the bending of slabs by Zienkiewicz and Cheung (1964) who also 

demonstrated the ability of the method to deal with various boundary conditions, 

variable slab thickness and slab orthotropy. In recent years, software have become 

available for personal computers which allows the use of plane finite element models 

for everyday analysis of bridges in the design office. 

4.1  Upstand Finite Element Analysis 

 The upstand FEA method which is developed here is similar to the upstand 

grillage method discussed in the previous section, but with the grillage beams replaced 

by finite elements.  The elements are located on different planes, according to the 

geometry of the bridge deck, and these planes of elements are connected, once again, 

by vertical beams with infinite flexural rigidity.  As the model is three-dimensional, 

the elements will have to resist in-plane forces and deformations as well as out-of-

plane bending.  The method is introduced here by means of a simple example.  It will 

then be further developed to cover other forms of bridge deck. 

 An upstand FEA model of the single-span bridge deck of figure 2 has been 

formulated and analysed using the STRAP computer program.  The model can be seen 

in figure 4 along with some typical dimensions in mm.  It is simply supported at each 

end and is acted on by opposing uniform moment.  As with the upstand grillage 

model, the vertical members have effectively infinite flexural rigidity. The finite 

elements are capable of modelling both in-plane distortion and out-of-plane bending. 

The elements were isotropic and hence only the depth was required to define their 

stiffness.  The depth of the elements was taken to be equal to the depth of the portion 

of slab which they idealised.  All the elements were assigned typical material 

properties for concrete. 
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Figure 4  Upstand FEA of Single Span Bridge Deck with Wide Edge Cantilevers 

 The model geometry, material properties and loading were identical to those 

used in the upstand grillage model of the previous section.  It is therefore possible to 

compare the results of this analysis directly with those from the previous section.  

Figures 5 (a) and (b) show the top stresses at 1/8 and 1/2 span locations.  The upstand 

FEA analysis program gave bending moments and axial forces in each element and 

the stresses due to these were added. The results from the 3d FEA, the plane grillage 

analysis and the upstand grillage analyses of the previous section are also shown in 

this figure. 

 The upstand FEA is seen to compare almost exactly with the 3d FEA and the 

lines in the figures are almost indistinguishable in most cases.  This provides a great 

improvement over the upstand grillage and the plane grillage with little increase in 

complexity. The technique will be extended to bridge decks with more complex 

geometry’s in the following sections. 
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(a)  1/8 Span     (b) 1/2 Span 

Figure 5  (a) Top Longitudinal Stress from Various  

Analyses at 1/8 Span  (b) at 1/2 Span 
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4.2  Upstand FEA of Two-Span Bridge Deck 

To further develop the upstand FEA method, a two-span bridge deck with wide edge 

cantilevers was analysed under the action of its self-weight.  The formulation of the 

upstand FEA model for the two-span case follows directly from the single-span model 

of section 4.1, and uses the same element dimensions and properties, as the cross-

sections of these two models are the same. The upstand FEA model is illustrated in 

Figure 6. 

 

 
 

Figure 6  Upstand FEA of Two-Span Bridge Subjected to Self-Weight 

 

 The top stresses from this model were compared with those from a 3d FEA 

using the NIKE3D program.  The top stresses were taken this time at 0.1m below the 

top surface of the bridge as this location was convenient for data processing purposes. 

In order to simplify the presentation of results, the bridge deck was notionally divided 

transversely into 12 longitudinal strips of equal width and labelled as shown in figure 

7. The average top stress over each longitudinal strip predicted by the 3d FEA model, 

is  presented in figure 8(a).  As the bridge deck is symmetrical, results are only 

presented for one half (transversely) and for one span.  Figure 8(b) shows the same 

quantity as predicted by the upstand FEA analysis.  A plane FEA of this bridge deck 

was also carried out the results of which are shown in figure 8(c). It was considered 

more appropriate to compare the results of the upstand FEA with a plane FEA rather 

than a plane grillage. This shows that the improved accuracy is not due to the use of 

finite elements, but rather due to the three-dimensional nature of the model. 
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Figure 7  Transverse Subdivision of Two-Span Bridge Deck into Strips (‘C’ indicates 

cantilever strip, ‘M’ indicates main deck strip) 
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(a) 3d FEA 
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(b) Upstand FEA 
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(c) Plane FEA 

Figure 8  Predicted Top Longitudinal Stress in Two-Span Bridge Deck 

 

 Figure 9 shows the predicted longitudinal top stresses from each of the 

methods for each longitudinal strip (C1 to M4) in turn. 
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(a)  Cantilever Strip C1 
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(b)  Cantilever Strip C2 
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(c)  Main Deck Strip M1 
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(d)  Main Deck Strip M2 
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(e) Main Deck Strip M3 
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 (f)  Main Deck Strip M4 

Figure 9  Top Longitudinal Stresses in Two-Span Bridge Deck 

 The predictions of stress from 3d FEA and the upstand FEA follow the 

expected pattern, with zero stress at the end support, maximum compressive stress 

(here shown negative) at 3/8 span, zero stress near 3/4 span and maximum tensile 

stress at the central support.  In addition to this, the figures show how the stress varies 

transversely across the bridge deck.  The maximum stress occurs towards the centre of 

the bridge and diminishes towards the edge cantilever. The predictions of stress from 

the plane FEA also follow the expected pattern along the span, but do not show the 

stress varying transversely to the extent that it does for the other analysis methods.  In 

fact the plane FEA predicts an almost uniform (longitudinal) stress across the width of 

the bridge deck, except for the edge of the cantilever (C1) where it drops slightly over 

the support.  This is due to the inability of the plane FEA to model the variation in 

neutral axis location. 

 By comparing the stresses at C1 and C2 predicted by each of the three analyses 

(figures 9 (a) and (b)), the 3d FEA and upstand FEA predictions are seen to be in very 

close agreement along the entire span.  The stress predicted by the plane FEA does not 
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agree as well with these.  This disagreement is more pronounced in the edge of the 

cantilever at C1 (figure 9 (a)) than at the inside of the cantilever at C2 (figure 9 (b)).  

The plane FEA predicts significantly higher stresses in the cantilever than the other 

two analyses.  This is due to the fact that the plane FEA assumes a neutral axis which 

does not rise in the edge cantilever.  This causes the second moment of area of the 

cantilever to be too large, and thus to attract too much moment.  Secondly the moment 

which it attracts induces a higher stress because the distance from the assumed neutral 

axis to the top fibre is too large. 

 By comparing the stresses at other transverse locations (figures 9 (c) to (f)) it 

can be seen that all three analyses predict stresses which are generally in close 

agreement, but that those predicted by the plane FEA deviate a little from the other 

two analyses, especially above the support.  This is due to the fact that in the plane 

FEA, the incorrect neutral axis location in the cantilever caused an increased moment 

to be attracted to the cantilever.  As the total moment at a section must remain 

constant, the moment, and hence stress, in the remainder of the deck must be lower 

that the true value. 

 A comparison has also been made between the transverse stresses predicted by 

both the 3d FEA model and the upstand FEA model.  In the upstand FEA model it 

was necessary to consider both bending moments and axial forces in the transverse 

direction to arrive at the stresses in this direction.  The stress in the transverse 

direction, again at 0.1m below the top surface of the bridge deck, can be seen at 

various span locations, as predicted by the two analyses, in figure 10. 
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Figure 10  Top Transverse Stress in Two-Span Bridge Deck at Various Locations 

 It can be seen from this figure that for each analysis method, similar transverse 

stresses are predicted at C1, C2, M1 and M2 (refer to figure 7) for all span locations, 

i.e., in the cantilever and near it, the transverse stress is substantially independent of 

location longitudinally along the deck.  At M3 and M4, there is a significant variation 
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in transverse stress at different span locations.  This is predicted by both analyses 

which are in reasonable agreement here.  Although a significant variation in stress is 

predicted by both methods of analysis from C1 to M2,  it can be seen that both predict 

a similar maximum value, and both predict a similar distribution of stress across the 

width of the deck.  The main variation appears to be in the prediction of the location 

of the maximum transverse stress.  The 3d FEA predicts this to occur further into the 

deck than the upstand FEA does.  It is felt by the authors that this discrepancy is due 

to the rapid transition from the cantilever to the main part of the deck. This would be 

expected to have a more pronounced effect on the transverse stresses than on the 

longitudinal stresses.  The comparison of shear stress between the two models is not 

made here as it is the subject of ongoing  research  at Trinity College Dublin (O’Brien 

et al. 1997). 

4.3  Upstand FEA of Voided Slab Bridge Deck 

Longitudinal voids are often incorporated into slab bridge decks in the United 

Kingdom and Ireland in order to reduce their self-weight while maintaining a 

relatively high second moment of area.  In order to determine the accuracy of upstand 

FEA for this form of construction, the two-span bridge deck of section 4.1 was 

modified to incorporate longitudinal voids in the main part of the deck.  Solid sections 

were maintained above the end and central supports to simulate the presence of 

diaphragm beams.  This structure was then analysed using a 3d FEA model under the 

action of its own self-weight.  Figure 11 (a) shows the longitudinal elevation of the 

bridge indicating the position of the solid sections above the supports.  Figure 11 (b) 

shows a cross-section through the voided part of the bridge deck and gives dimensions 

in metres. A cross-section through the voided part of the 3d FEA model can be seen in 

figure 12. As the 3d FEA program, uses finite elements with straight sides, the circular 

voids were approximated by octagonal voids. The diaphragms were also incorporated 

into the 3d FEA model. 

 This bridge deck was also analysed using an upstand FEA model.  The 

modelling procedure was similar to that used in previous sections except for the 

addition of the voids. The process generally adopted for modelling voided slabs with 

isotropic elements is to calculate an ‘equivalent depth’ of element.  This depth is that 

which gives a second moment of area for the element equal to the second moment of 

area of the voided section which it represents. It is clear that the area of such an 

equivalent element is not equal to that of the corresponding voided section.  This is 

not normally a problem in a two-dimensional plane analysis, as in-plane axial forces 

are not modelled.  However, in an upstand FEA, in-plane axial forces do exist. The 

stiffness of each portion of the deck results from a combination of the element 

stiffness, its area and its distance from the bridge neutral axis at that point.  

Consequently it is essential that the upstand FEA idealisation of a voided slab has 

both the correct area and second moment of area. 
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Figure 11  Voided Bridge Deck with Wide Edge Cantilevers (dimensions in metres) 

 

Figure 12 Cross-Section Through 3d FEA Model of  

Two-Span Voided Bridge Deck 

This may be achieved by the addition of extra longitudinal beams to make up the 

shortfall of second moment of area or by the use of a program which allows flexibility 

in the definition of these two properties. For this study, the depth of the elements were 

chosen to give the correct area and the shortfall in second moment of area was 

assigned to longitudinal beams. 

 Figure 13(a) shows the top longitudinal stress predicted by the 3d FEA for 

each of the transverse locations C1 to M4.  Figure 13(b) shows the same quantity 

predicted by the Upstand FEA (with additional beams). Both of these graphs show the 

same pattern as was observed for the solid bridge deck.  That is zero stress at the end 

support, maximum compressive stress at 3/8 span, zero stress near 3/4 span and 

maximum tensile stress at the central support.  The variation of stress transversely 
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across the bridge from M4 to C1 which was observed in the solid bridge deck is again 

observed in both of these figures. 

 Figure 14 provides comparisons of the stresses of the preceding figure for two 

typical transverse locations, C1 and M1.  The predictions from the two analyses 

compare well with each other.  Some disagreement is evident at the central support in 

M1 but this is quite small and localised. One possible cause for this disagreement is 

the complexity incurred by the rapid change from voided to solid section at this 

location. 
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(b) Upstand FEA 

Figure 13  Top Longitudinal Stress in Voided Bridge Deck 



16 

Span Location

-4

-2

0

2

4

6

8

End 1/8 1/4 3/8 1/2 5/8 3/4 7/8 Support

Stress (N/mm2)

3d FEA

Upstand FEA

 
 (a)  Cantilever Strip C1 

Span Location

-4

-2

0

2

4

6

8

End 1/8 1/4 3/8 1/2 5/8 3/4 7/8 Support

Stress (N/mm
2
)

3d FEA

Upstand FEA

 
(b) Main Deck Strip M1 

Figure 14 Top Longitudinal Stress in Voided Bridge Deck 

5  Conclusions 

An upstand FEA technique has been proposed for the analysis of slab bridge decks 

with edge cantilevers.  In this technique, the edge cantilever and the main bridge deck 

are idealised by separate layers of simple finite elements, each located at the centroid 

of that part of the deck which they represent and connected by vertical beams of 

infinite flexural rigidity.  The finite elements must be capable of in-plane distortion 

and out-of-plane bending. 

 For a single-span bridge deck with wide edge cantilevers, both the plane 

grillage and the upstand grillage analysis methods are shown to be inaccurate in 

predicting longitudinal bending stresses when compared to a 3d FEA. The proposed 

upstand FEA method on the other hand gives excellent results. The differences in 

accuracy are attributed to variations in the depth of the neutral axis and in associated 
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in-plane distortions. Similar results are reported for longitudinal stresses in a two-span 

deck. 

 Predictions of transverse stresses from the upstand FEA and the 3d FEA were 

found to compare reasonably well.  Both analyses predicted a similar maximum 

transverse stress and a similar distribution across the width of the deck.  However, a 

discrepancy was noted in the location of the point of maximum stress. 

 A voided slab bridge deck, again with wide edge cantilevers, was also 

analysed using the upstand FEA technique.  The presence of the voids complicated the 

modelling and, for the software used, required the addition of extra beams in order to 

maintain both the correct area and second moment of area of the voided sections.  The 

model was analysed under the action of self-weight and a 3d FEA was carried out for 

comparison.  The predictions of top longitudinal stress from the upstand FEA once 

again compared very well with those from the 3d FEA. 
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