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Abstract—The paper describes the use of algebraic linear programming for the minimum weight design
of steel portal frames subject to the constraints of the Kinematic Theorem of plastic collapse. Minimum
weight design is a classic linear programming problem which can be solved algebraically for classes of
frames with arbitrary geometric dimensions and arbitrary load magnitudes. In a recent paper, the process
of algebraic linear programming was reduced to the repeated application of a number of vector formulas
and a computer program was developed for the derivation of the solution charts for specific classes of
frames. In this paper the method is extended to the problem of frames subjected to multiple load cases.
It is shown that simple problems whose solution can normally be displayed in the form of two-dimensional
charts now require three-dimensional charts or a number of two-dimensional charts. © 1997 Civil-Comp

Ltd and Elsevier Science Ltd.

1. INTRODUCTION

The theory of plasticity has been well established
over the years [1, 2] and is widely used today in the
design of single-storey steel frames to resist ultimate
loads [3]. Minimum weight design using plastic
methods of analysis was established [4] as early as
1951 and can be carried out using standard linear
programming techniques [5]. Although design for
minimum weight, subject solely to the constraints
imposed by plastic theory, does not necessarily result
in frames of minimum weight overall, such methods
are useful at the preliminary stages of design for
frames with known geometry and loading. In the
1980’s, Brousse [6] and others [7, 8] used the concept
of algebraic linear programming to determine the
closed form solution for a number of minimum
weight design problems. More recently, the authors
have written a computer program, ALP, with the
capability of extending algebraic linear programming
techniques to new classes of frames[9, 10]. In this
context, a class of frames is defined as all frames
conforming to a specified geometric shape and
subject to a specified number of loads in specified
directions and locations. Subject to these restrictions,
the frame dimensions and load magnitudes are
arbitrary over certain ranges.

In this paper, the application of algebraic linear
programming to classes of frames subject to multiple
load cases is considered. The effect of the added
constraints on the optimisation problem is shown and
the feasibility of solving the resulting algebraic linear
programming problem is discussed.

2. ALGEBRAIC LINEAR PROGRAMMING FOR
MULTIPLE LOADS

The minimum weight design for the simple class
of frames illustrated in Fig. 1 is derived here for
combinations of dead, wind and imposed loads (a
more detailed exposition is given in Ref. 11). For this
class of frames, there exist three possible collapse
mechanisms, illustrated in Fig. 2. Corresponding
to these mechanisms, there are three inequalities,
derived using the Kinematic Theorem, which provide
the constraints to the optimisation problem. How-
ever, the inequality for the beam mechanism is less
stringent than that for the frame mechanism and
so it can be ignored.

Also, a collapse mechanism resulting from
dead load alone will always be less critical than the
corresponding mechanism in which combined dead
and imposed load is present. Therefore, only three
combinations of load need to be considered: dead
load acting with imposed load, dead load acting
with wind load, and dead load acting with imposed
and wind loads. The optimisation problem involves
three constraints for each of the sway and frame
mechanisms, one for each of the three load com-
binations. However, five of these constraints can be
discarded as being less stringent than others or as
leading to trivial solutions. Using the load combi-
nation factors recommended by BS 5950 [12], the
remaining inequalities are as follows for sway
mechanism: :

dead + wind: 2min(x,, x») = 1.4a (1



and for frame mechanisms:
dead + imposed:
@2p + 2min(x, x2) +2x =214+ 1.6 (2)
dead + wind:
2p + 2)min(x;, x2) + 2x, > 1.4 + 1.4a 3)
dead + wind + imposed:
(2p + 2)min(xy, X2) + 2x, = 1.2 + 1.2+ 1.22 (4)

where X = X]/(Pd[). X2 = Xz/(Pdl), x£= Q“h/(Pdl),
B = P,/P; and where P; and P; are the (unfactored)
dead and imposed components, respectively, of the
central vertical load, Q. is the horizontal wind load
at the eaves and X, and X- are the plastic moments
of resistance of the rafters and columns, respectively.
The optimisation problem is that of minimising
X+ S%; subject to Inequalities (1)-(4), where
S =L /h.

The algebraic solution to this problem consists of
two stages:

(i) identification of all possible vertices of the
simplex and determination of the conditions
under which each vertex is feasible;

(ii) determination of the conditions under which each
vertex is optimal

Consideration of the multiple load combinations
has the effect of introducing two loading parameters,
o and f, into the linear programming problem.
With only one loading parameter, o, it was possible
to identify intervals of « for which each vertex
was valid. These intervals in o were then ranked
in increasing order and the vertices of each interval
considered in turn. For the multiple loadings
problem, it is only possible to rank the limits of «
for specified intervals of . For example, the vertex
associated with Inequalities (1) and (3) in the region
of design space, x: < X; is:

(1, x2) = (0.7(1 — pa),0.72)

This vertex satisfies Inequality (2) for o > 88/7 and
satisfies Inequality (4) for « > 68 — 1. The first of
these limits on « is the more stringent for f < 7/34;
the second for f > 7/34.

For all intervals of « and B, the coordinates
for each of the valid vertices and the corresponding
ranges in « and f are given in Table 1. The ranges
for all vertices are illustrated graphically in Fig. 3.
It can be seen clearly in the figure that the
vertex denoted V3 is bounded on the left side by
the line, o« =8f/7, while f < 7/34 and that the
line, &« =68 — 1, becomes the lower limit when
B> 17/34.
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Fig. 1. Dimensions and loading for a class of pitched-roofed
frames. Plastic moment of resistance for each rafter is X; and
for each column is X.

To determine the minimum weight solution, each
region in o — f space is considered in turn. For each
region, the conditions under which particular vertices
are optimal are considered through a comparison of
slopes with that of the objective function. For this
simple example, there are no more than two vertices
in any region. It has been found using ALP that
for S°< 1/(1 + p), the first of the pair listed in
Fig. 3 is optimal for all ranges (i.e. VI, V3, V4
and V6). The second of the pair is optimal in all
cases when S°> 1/(1 + p). The solution for this
optimisation problem is presented in the form of a
three-dimensional design chart in Fig. 4.

3. MINIMUM WEIGHT DESIGN OF MORE COMPLEX
CLASSES OF FRAMES SUBJECT TO MULTIPLE LOAD
COMBINATIONS

For the simple class of frames illustrated in
Fig. 1, integration of multiple load case combinations
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Fig. 2. Possible collapse mechanisms for the class of frames

illustrated in Fig. 1, including hinge rotation magnitudes:

(a) sway mechanism; (b) beam mechanism; (c) frame
mechanism.



Table 1. Valid vertices of the simplex and the range for which each vertex is valid

Range of « Range of f
Vertex and
associated inequalities X X2 Lower Upper Lower Upper
A 8 3 7
7+ 88 —a(7+7p) Ta d 34
V1 —
10 10 i 28+ 1 71 -
6 34 H
8B 7
0 e 0 eV
a0 7+8p 7+88 7 34
20 + 10p 20 4+ 10p DB 7
0 3 33 None
8 1 " 2
= g % 7 a+p) 34
10 10 66— 1 1 i Q2 +p)
T+p) 34 6(1 + p)
1 Q2+p)
s 7 7 ey T 0 61+ p)
10 10 (6+68) 3
(2+p)
B+ 7p) None 8 £ p) None
86 I i .
& 71 + %) 7(1 + 2) 7 I+p) 34
20 + 10p 20 + 10p % ¢ 1 T Q2+p)
b T+p) 34 6(1 + p)
28+1 68— 1 3 C+p)
Vi 6+ 68 —a(l +7p) Ta 6 34 6(1 + p)
10 10 28+1  (6+68) Q4P Nope
6 B+ 7p) 6(1 + p)
28+1 68— 1 a4 2+p)
V7 31 +a+p) 3(1+a+ph) 6 34 6(1 + p)
52 +p) 52+p) 26+ 1 (6 + 6p) (2 +p) Nane
6 B+ 7p) 6(1 + p)

into the optimisation procedure increased both the
algebraic complexity of the procedure and the
complexity of the resulting solution (three vertices
for a single load case versus seven vertices for
multiple load cases). There are 20 possible collapse
mechanisms of the more complex example illustrated
in Fig. 5. Consideration of this class for multiple
load combinations obviously involves a substantial
increase in the complexity of the optimal design
solution. Considering the 20 collapse mechanisms
for three load combinations results in a total of
60 inequalities which form the constraints of the
optimisation problem. In fact, it has been shown [10]
that 44 of these constraints can be discarded as being
less or equally stringent to others. For the remaining
16 inequalities, however, it has been determined
that it is necessary to consider 17 intervals of f
(as compared to just three for the previous example)
in order to solve the optimisation problem. Due to
the large number of collapse mechanisms it would be
reasonable to expect that there would be a significant
number of alternative optimal solutions for each
interval of o — f space. This would result in the

division of the S° axis of the design chart into a
significant number of different regions. The impli-
cation is that it would not be possible to illustrate the
solution in a form similar to Fig. 4.
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Fig. 3. Ranges of « and f$ for which vertices are valid.
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Fig. 4.

As the identification of optimal solution involves a
comparison of the slopes of the lines bounding each
inequality with the slope of the objective function, the
number of distinct regions of S? in the solution chart
cannot exceed the number of different slopes. For
the class of frames illustrated in Fig. 5, there are
only seven distinct slopes. Thus, while it may not be
possible to illustrate the solution in the form of a
three-dimensional chart, it is possible to illustrate it
in the form of not more than six two-dimensional
charts, one for each interval of S°.

4. EXAMPLE

A pitched roof portal frame, from the class
illustrated in Fig. 1, is to be designed for mini-
mum weight where /=10m, A=6m, p=0.15,
Py =40kN, P,=60kN and O, = 10 kN.

Solution: The nondimensional parameters are
calculated as a«=0.15, f=1.5 and S$°= 1.67. As
o < 4/17 and the point (0.15, 1.5) is above the line,
o = 8f/7, in Fig. 3, only V1 and V2 are valid vertices
of the simplex. The slope, S°, exceeds the value,
1/(1 + p) given in Fig. 4. Hence the optimal vertex is
V2 with coordinates (from Table 1) of:
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Fig. 5.

_(7+88 1+8B
(xi,x2) = (20 + 10p° 20 + 10p

) = (0.884, 0.884)

The optimal plastic moments of resistance are hence
(0.884)(40 x 10) = 353 kNm for both the rafters and
the columns.

5. CONCLUSIONS

Algebraic linear programming has been applied
to the minimum weight design of the class of frames
of Fig. 1 subject to multiple combinations of dead,
imposed and wind loads. It has been shown that it
is possible to represent the solution in the form of
a three-dimensional design chart. The complete
preliminary design of minimum weight for any frame
whose geometry and loading conform to this
standard can be obtained directly from this chart.

The application of the method to more complex
classes of frames subject to multiple load combi-
nations is shown to involve a great quantity of
algebraic manipulation. The solutions for such
problems can be presented in the form of a series of
two-dimensional charts.
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