
-1-

A Modified Muskingum Routing Approach for Floodplain Flows:1
Theory and Practice2

3

J.J. O’Sullivana, S. Ahilana, M. Bruena4

(jj.osullivan@ucd.ie) (sangar.ahilan@ucd.ie) (michael.bruen@ucd.ie)5

6

aSchool of Civil, Structural and Environmental Engineering, Newstead Building, University7

College Dublin, Belfield, Dublin 4, Ireland.8

Correspondence to: J.J. O’Sullivan (jj.osullivan@ucd.ie)9

Tel:  +353 1 716321310

Fax.: +353 1 716329711

12

Abstract13

Hydrological or hydraulic flood routing methods can be used to predict the floodplain14

influences on a flood wave as it passes along a river reach. While hydraulic routing uses both15

the equation of continuity and the equation of momentum to describe the dynamics of river16

flows, the simpler data requirements of hydrological routing makes it useful for preliminary17

estimates of the time and shape of a flood wave at successive points along a river. This paper18

presents a modified linear Muskingum hydrological routing method where the floodplain19

effects on flood peak attenuation and flood wave travel time are included in routing20

parameters.  Developing the routing parameters initially involved routing hydrographs of21

different flood peak and duration through a 1-dimensional model of a generalised river reach22

in which a range of geometrical and resistance properties were varied. Comparison of23

upstream and simulated downstream hydrographs for each condition investigated, allowed the24

attenuation and travel time (storage constant, K, in standard Muskingum routing) of the flood25
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wave to be estimated. Standard Muskingum routing was then used to develop downstream1

hydrographs for each K value together with assumed storage weighting factors (x) ranging2

from 0 to 0.5. Flood peak attenuations were again determined through comparison of the3

upstream and routed downstream hydrographs and with these, linear relationships between x4

and these attenuations were developed. Actual weighting factors, corresponding to storage5

constants, were subsequently determined using these relationships for all attenuations6

determined from the 1-dimensional model simulations.  Using multi-variate regression7

analysis, the computed values of K and x were correlated to catchment and hydrograph8

properties and expressions for determining both K and x in terms of these properties were9

developed. The modified Muskingum routing method based on these regressed expressions10

for K and x was applied to a case study of the River Suir in Ireland where good agreement11

between measured and routed hydrographs was observed.12

13

Keywords: Overbank flow; Flood routing; Muskingum routing; Hydraulic and hydrological14
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1 Introduction17

Hydraulic or hydrological flood routing techniques are commonly used by engineers18

and hydrologists to predict the temporal and spatial variations of a flood wave through a river19

reach (Choudhury et al., 2002). The methodologies that have been developed vary in their20

complexity with more analytically rigorous methods having increased capacity to better21

accommodate the dynamics and influences of floodplain behaviour on the propagation of a22

flood wave in a natural channel.  The Muskingum method of hydrological flood routing is one23

approach. The popularity of the Muskingum method derives primarily from its minimal data24

requirements.  Knowledge of topographical catchment conditions are not required to25
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understand the propagation of a flood wave as these dynamics are represented in a calibration1

carried out using observed data (Gallati and Maione, 1977). The Muskingum approach2

represents a hydrological flood routing technique and is based on the equation of continuity3

and a relationship that describes storage in the system. At the opposite end of the spectrum,4

full-scale dynamic wave models based on the Saint-Venant equations provide a more5

sophisticated means of hydraulic flood routing (Tung, 1985). Hydraulic routing uses the6

equation of continuity and a momentum balance equation (the Saint Venant equations) and7

involves their numerical solution using finite difference or characteristic methods.8

Simplification of the momentum equation produces approximate solutions (e.g. monoclinal9

wave, convective diffusion) that are easier to calculate and may be adequate in specific cases.10

Advantages and disadvantages exist for using both hydrological and hydraulic flood11

routing techniques. Although hydraulic routing techniques can more adequately describe the12

dynamics of unsteady flows in canals and rivers, these methods are more demanding in their13

information inputs and require data to accurately represent the geometrical and resistance14

characteristics of the main channel and floodplain.  Initial and boundary conditions are also15

required.  Conversely, the data inputs and computational procedures for hydrological routing16

techniques are considerably simpler (Singh, 1988) and these methods are useful where17

preliminary estimates of the time and shape of a flood wave at successive points along a river18

are required, or where budgetary constraints may not facilitate full hydraulic routing.19

A modified linear Muskingum hydrological routing method suitable for floodplain20

flows is presented in this paper. The method is based on the standard Muskingum method.21

However, rather than determining the routing parameters through analyses of observed22

upstream and downstream hydrographs for given flows, the proposed method estimates its23

routing parameters from empirical relationships describing floodplain effects on flood peak24

attenuation and flood wave travel time. The method therefore has similarities with the25
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Muskingum-Cunge method (Cunge, 1969) in that flood routing parameters are determined1

from geometrical and resistance properties of the channel, thus avoiding the need for a2

calibration process. Development of the method involved a combination of 1-dimensional3

hydraulic modelling and standard Muskingum flood routing to determine storage constants, K4

and storage weighting factors, x, for a range of catchment and hydrograph properties.  Multi-5

variate regression analysis was used to correlate these computed values of K and x to these6

properties and expressions for determining both K and x were developed.  The modified7

Muskingum routing method based on these regressed expressions for K and x was applied to a8

case study of the River Suir in Ireland where good agreement between measured and routed9

hydrographs was observed. The method offers a simple and inexpensive method of10

estimating the time and shape of a overbank flood wave as it progresses along a river channel11

of low to moderate sinuosity and in which backwater and inertia influences are likely to be12

small.13

14

2 Muskingum Flood Routing15
The Muskingum method of flood routing (McCarthy, 1938), based on a simple storage16

– discharge relationship in river systems, is extensively used in river engineering (Gill, 1979).17

The method performs best in river systems where inertia effects and backwater influences are18

small and where model parameters are appropriately chosen to represent the hydraulic19

behaviour of the system (Chang et al., 1983). The linear Muskingum model uses continuity20

and storage relationships expressed as:21

Continuity: tt
t OI

dt
dS

 (1)22

Storage:   ttt Ox1xIKS  (2)23
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where St, It and Ot are simultaneous amounts of storage, inflow and outflow respectively at a1

given time t, K is a storage constant expressing the ratio between storage and discharge in a2

river reach and x is a dimensionless weighing factor that varies between 0 and 0.5 for natural3

rivers. This weighting factor describes the relative importance of inflow and outflow to4

storage. The storage time constant, K, equates closely to the flow travel time through the5

river reach (McCuen, 1998). If K and x are known, routing is performed using:6

OCICICO tt3tt2t1t   (3)7

in which, C1, C2 and C3 are routing coefficients given by:8

  t5.0Kx1
Kxt5.0

C1 


 (4)9

  t5.0Kx1
t5.0Kx

C2 


 (5)10

 
  t5.0Kx1

Kx1t5.0
C2 


 (6)11

where parameters are as defined for Eq. 2 and in which t is the time step and It-t and Ot-t12

are the inflow and outflow discharges at time t-t.  Once C coefficients (which sum to unity)13

are determined, Eq. 3 is used repeatedly to determine outflow discharges, Ot, at any time.14

Values for K and x that describe the storage characteristics of a river reach are usually15

derived from observed upstream and downstream hydrographs extracted from historical flow16

records. These methods are well reviewed and are broadly represented in five classifications:17

(a) graphical method; (b) least squares method; (c) method of moments and method of18

cumulants; (d) direct optimisation; and (e) those based on the Saint-Venant equations (Singh19

and McCann, 1980). More recently, Yoon and Padmanabhan (1993), identified a further20

three methods for linear model parameter estimation.  These algorithms included forward and21

backward optimisation using t-statistics, an outliers filtering estimation method and a22

quadratic programming algorithm.23
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Graphical methods are commonly applied. The standard trial-and-error graphical1

approach used by McCarthy (1938) for the linear Muskingum model involves plotting2

  tt OxxI  1 , known as the weighted discharge term, against the accumulated storage for3

different assumed values of x. Different values of x in Eq. 2 produce a family of curves that4

vary from being heavily looped to being reasonably linear.  The particular value that generates5

the narrowest loop and can be best fitted with a straight line is considered the best estimate of6

x. The inverse slope of this line gives the required value of K. Although the graphical7

method is generally satisfactory (Chow, 1964; Linsley et al., 1975; Viessman et al., 1972;8

Wilson, 1990), it is time consuming to apply.  Furthermore, no objective-selection criteria9

exists for choosing the appropriate value of x and the method therefore, requires a level of10

subjective interpretation to determine a value that optimises the linear relationship (Gelegenis11

and Serrano, 2000; Yoon and Padmanabhan, 1993; Chang et al., 1983). Muskingum routing12

parameters have also been estimated using a least-squares scheme based on minimising the13

sum of squares of the deviations between observed storage and computed storage for given14

inflow and outflow hydrographs (Gill, 1978; Birkhead and James, 1997; Al-Humoud and15

Esen, 2006).  The underlying principles of the graphical and the least-square methods are the16

same and both methods should produce similar parameter values. The method of moments17

and the method of cumulants are similar and are based on relating the first and second18

moments or cumulants of the instantaneous unit hydrograph (IUH) of the Muskingum reach19

to the Muskingum routing parameters, K and x (Dooge, 1973). The method of direct20

optimisation is based on minimising the difference between observed and computed21

hydrographs to determine directly the routing coefficients of the Muskingum model without22

explicitly estimating K and x (Gelegenis and Serrano, 2000).23

More recent advances in computer technologies have allowed the traditional24

Muskingum routing methods to be linked with hydrodynamic software packages for the25
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analysis of surface water drainage in natural catchments (see for example the HEC-HMS and1

TOPMODEL hydrological models).  These are based on the Saint-Venant equations that are2

derived from the principles of conservation of mass and momentum and can be written in3

their 1-dimensional form as:4

0
x
yV

x
Vy

t
y











 (7)5
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
 (8)6

(I) (II) (III) (IV)7

where y is the flow depth, V is the flow velocity, g is the acceleration due to gravity, So is the8

river bed slope, Sf is the slope of the energy line, x is the longitudinal distance and t is the9

time. These equations are simultaneous, quasi-linear, first-order partial differential equations10

of the hyperbolic type and are not amenable to general analytical solutions. The first term (I)11

in Eq. 8 is the local inertia term, the second (II) is the convective inertia term, the third (III) is12

the pressure differential term and the fourth (IV) accounts for the friction and bed slopes.13

Numerical methods for solving the Saint-Venant equations are broadly classified in two14

categories: (a) approximate methods; and (b) complete numerical methods. Approximate15

methods are based on the equation of continuity only or on a significantly curtailed equation16

of momentum.17

Kinematic and diffusion wave models can be constructed to solve Eq. 7 and Eq. 8 by18

assuming that the significance of some terms is negligible compared to that of others (Moussa19

and Bocquillon, 1996). Models that neglect inertial terms (I and II) are known as diffusion20

wave models (Cunge, 1969; Bajracharya and Barry, 1997; Moussa and Bocquillon, 2009) and21

models that neglect both inertial and pressure terms (I, II, III) are referred to as kinematic22

models (Smith, 1979). The full Saint-Venant equations have also been solved for Muskingum23

routing applications using numerical techniques in channels with cylindrical and irregular24
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cross-sectional geometries without the need for simplifying assumptions (Amein and Fang,1

1970; Dooge et al., 1982; Wang et al., 2006).2

Cunge (1969) included the effects of geometrical and resistance properties of a river3

reach in the original Muskingum method to develop the Muskingum-Cunge (M-C) model.4

Cunge showed that the Muskingum formula for solving flood routing problems is identical to5

a finite-difference approximation of the linearised diffusion wave equation, this equation6

being derived from the Saint-Venant equations by neglecting the inertial terms. In the M-C7

flood routing procedure, the necessity of calibration that characterises the Muskingum method8

is not required and the routing parameters, K and x, are obtained from hydraulic properties of9

the reach using:10

c
xK 

 (9)11

and12












xcBS

Q1
2
1x

0

(10)13

where parameters are as described above and where c is the flood wave celerity, x is the14

longitudinal channel distance increment, Q is the discharge and B is the average bed width of15

the channel.16

The time step, t, used in the M-C routing procedure is appropriately chosen to fully17

define the shape of the inflow hydrograph.  A dependency exists between t and x in M-C18

routing procedures and the choice of increments is therefore important to ensure that x is not19

significantly smaller than the distance travelled by the flood wave in a single time step, t.20

This x interval chosen in the M-C routing method is therefore based on t, c, Q, the channel21

top width and the longitudinal channel slope, So. The flood wave celerity, c, is obtained from22

the slope of the discharge - area curve for a given discharge, Q. Details of the M-C method23
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are discussed in Volume III of the Flood Studies Report (FSR) (NERC, 1975). Tang et al.,1

(1999a) investigated the properties of the M-C method for flood routing, using several2

hypothetical flood hydrographs in a prismatic channel with significant floodplains.  Results3

indicated that the M-C method suffers from a loss of outflow volume which depends on bed4

slope and floodplain roughness.  Furthermore, it was observed that an initial leading edge dip5

and trailing edge oscillation occur in the rising and recession limbs of the hydrograph6

respectively.  These oscillations become more significant as the roughness of the floodplain7

increases, but gradually disappear with decreasing bed slope.8

The standard linear Muskingum routing method assumes that K and x remain constant9

and these are determined by analysis of measured inflow and outflow hydrographs.  The10

method therefore, does not accommodate changes in these parameters that would reflect more11

accurately the routing of storm sequences in the river reach beyond the calibration range12

(Kundzewicz and Strupczewski, 1982).  More recent developments to the method however,13

do allow for parameter variability with changing characteristics of the inflow hydrograph (see14

for example Perumal, 1992a; Guang-Te and Singh, 1992; Al-Humoud and Esen, 2006).15

Perumal (1992a) developed a multi-linear Muskingum flood routing method based on a time16

distribution scheme.  The physically based Muskingum method is used as the linear sub-17

model in this method and the parameters are varied at each time step for the routing of18

prescribed flow zones in the inflow hydrograph.  Guang-Te and Singh (1992) proposed three19

versions of the linear Muskingum method with variable parameters.  In these methods, the20

reach travel time (which depends on the storage, channel characteristics and discharge) is21

obtained from a simplification of the Saint-Venant equations.  Al-Humoud and Esen (2006)22

proposed two approximate methods for the estimation of linear Muskingum flood routing23

parameters.  The first method requires the computation of the slopes of the inflow and outflow24

hydrographs at their point of intersection, and the computation of the maximum storage25
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within the reach. The second method requires the computation of the inflow and outflow1

hydrographs at two specific points.2

Although the current paper is based on a linear Muskingum method, the relationship3

between   tt OxxI  1 and St is usually nonlinear and Gill (1978) proposed the following4

storage relationship for the Muskingum model:5

  mttt Ox1xIKS  (11)6

where m is an exponent that defines the nonlinear relationship between accumulated storage7

and weighted flow. This exponent cannot be directly determined from inflow and outflow8

hydrographs and therefore, alternative parameter estimation methods have been presented (see9

for example Gill, 1978; Tung, 1985; Yoon and Padmanabhan, 1993; Mohan, 1997; Kim et al.,10

2001; Geem, 2006; Chu, 2009). Gill (1978) proposed a routing scheme for the nonlinear11

model based on the segmented curve method where coefficients are determined by a least12

squares method. However, the technique is somewhat arbitrary in its process of selecting13

three points on the segmented curve for solving simultaneously the continuity (Eq. 1) and14

storage (Eq. 11) equations of the nonlinear method (Tung, 1985).  Tung (1985) proposed15

procedures using the Hook-Jeeve (HJ) pattern technique in combination with simple linear16

regression (LR), the conjugate gradient (CG), and the Davidon-Fletcher Powell (DFP)17

techniques and used the state variables technique for routing. The approaches were compared18

with Gill’s methodology which showed that HJ+CG and HJ+DFP techniques produced better19

estimations of the routing parameters. Yoon and Padmanabhan (1993) proposed a nonlinear20

least-squares regression technique which directly fits the nonlinear model.  The estimation21

proceeds iteratively from an initial assumption of the parameters using the Marquardt22

algorithm (Marquardt, 1963).  In addition, this method has internal logic that analyses the data23

and computes reasonably accurate values of the parameters to be estimated. This serves to24
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expedite the optimisation process. Mohan (1997) suggested a calibration technique for1

determining K, x and m based on a genetic algorithm that avoids the need to make initial2

assumptions. Kim et al. (2001) proposed a harmony search algorithm for estimation of the3

same parameters and observed that the technique outperformed other genetic, heuristic and4

mathematical algorithms, evolutionary programming and non linear programming.  Geem5

(2006) presented a Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique for parameter6

estimation in nonlinear Muskingum models.  The BFGS algorithm is a branch of the quasi-7

Newton method based on mathematical gradients that searches for an optimised solution of8

the unconstrained nonlinear equations. Chu (2009) combined a Fuzzy Inference System9

(FIS), implemented in an adaptive network framework with a nonlinear Muskingum model to10

estimate the outflow hydrograph. However, the calibration procedure for finding the correct11

values of the three parameters K, x and m to determine this outflow hydrograph is complicated12

(Kim et al., 2001).13

14

3 Methods15

A multi-stage process (Fig. 1) that included 1-dimensional HEC-RAS modelling of a16

generalised river reach, standard Muskingum routing and regression analysis was adopted for17

developing expressions for storage constants (K) and weighting factors (x) for use in the18

modified Muskingum method that is presented. The process begins with implementing a19

generalised HEC-RAS model using input flow hydrographs and geometric properties to20

determine travel times and relative attenuations which are then input into a regression model21

to develop equations for estimating Muskingum model parameters.  The following paragraphs22

explain the process in detail.23

24

Fig. 125
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1

3.1 HEC-RAS Model of Generalised River Reach2

The HEC-RAS model of the generalised river reach was executed in dynamic mode3

for an extensive range of geometrical and resistance properties. HEC-RAS (Hydraulic4

Engineering Centre – River Analysis System) is a 1-dimensional link and node river model5

developed by the US Army Corps of Engineers that discretises and solves the dynamic Saint-6

Venant equations using an implicit, finite difference method. Theoretical hydrographs of7

varying peak and also, hydrographs of varying duration were key inputs to the model.8

9

3.1.1 Hydrographs of Varying Peak Flow10

Hydrographs for a range of peak flows were developed using a methodology (Fig. 2)11

and associated software from Work-Package 3.1 of the Irish Flood Studies Update (FSU)12

programme (O’Connor and Goswami, 2010) that utilises a historical record of flow data.13

14

Fig. 215

16

Any gauged location where a record of good quality data was available would17

therefore be suitable and one such site with a long and continuous flow record was chosen.18

Hydrograph development involved the following:19

(1) The annual exceedence series of the maximum flood events for the selected site was20

identified from recorded data (shown for a single event in Fig. 2 (a)).21

(2) Annual exceedence flood hydrographs were isolated from the flow record by discarding22

the complex segments on each side of the peak, leaving the single-peak hydrograph23

component (Fig. 2 (b)).24

(3) The isolated flood hydrographs were then standardised to have a peak value of unity by25
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dividing all its flow ordinates by the peak flow.1

(4) This unit peak is assumed to represent the 100 percentile flow and hydrograph widths2

were determined at percentiles of 98, 95, 90 …. 10 and 5.3

(5) Widths corresponding to these flow percentiles were averaged over the annual4

exceedence series and the rising limb of the theoretical flood hydrograph was5

approximated by fitting a modified form of the Gamma curve to these widths.   The shape6

of the full unit hydrograph was obtained by the addition of an exponential recession curve7

drawn from the point of inflection of the modified Gamma curve (Fig. 2 (c)).8

(6) The required hydrographs were generated by scaling up the derived unit hydrograph for9

peak flows of different return periods (2, 5, 25, 50, 100, 500 and 1000 years were used).10

A base flow for the particular return periods was added at each ordinate (Fig. 2 (d)).11

12

Fig. 313

14

Annual maximum flow series in most Irish catchments follow a Generalised Extreme15

Value (GEV) Type I distribution (NERC, 1975) and based on this distribution, flood quantiles16

for the hydrographs in Fig. 2 (Panel D) vary from 91.41 m3/s for the 2-year event to 153.9017

m3/s for the 1000-year flood.18

19

3.1.2 Hydrographs of Varying Duration20

The hydrographs developed using this methodology have the same base length and21

therefore flood volume is determined solely by the flood peak. The relationship therefore,22

between flood volume and flood peak is not fully defined.  Floods result from natural23

processes and to fully account for the random nature of their generation, duration needs to be24

included if flood volume is to be accurately related to peak.  Although attempts to develop25
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relationships between volume and peak of direct runoff for catchments elsewhere in the world1

have been made (see for example Rogers, 1980, Mimikou, 1983, Singh and Aminian, 1986),2

no validated relationship exists for Irish catchments and an attempt to develop such a3

relationship in the FSU was inconclusive (O’Connor and Goswami, 2010).4

In the absence of a validated method that reflects the increased flood volumes that5

would usually be associated with floods of longer duration, a simple approach where flood6

duration is included independently of flood peak was implemented. The approach involved7

developing a triangular hydrograph of the same volume as the 1000-year hydrograph in Fig. 28

(Panel D) and linking this volume to the hydrograph characteristics by:9

Volume = QT2
1

PB  (12)10

where TB is the hydrograph base width and QP is the flood peak (153.90 m3/s).  The duration11

of the 1000-year hydrograph corresponding to this volume is approximately 265 hours.  This12

duration (TB) was linked to the time to peak, TP, by the Flood Studies Report (NERC, 1975)13

relationship:14

PB T52.2T  (13)15

By further scaling the 1000-year hydrograph, the approach facilitated the development of a16

second set of hydrographs of different flood durations (Fig. 2 (e)).17

18

3.1.3 Geometrical and Resistance Properties in HEC-RAS Model19

The basic HEC-RAS model geometry (Fig. 3) included basic bankfull (Bbf) and20

floodplain (bfp) widths of 25 m and a bankfull depth (h) of 2.5 m.  This bankfull depth21

produced a bankfull flow for the flood hydrograph of the median flow having a 2-year return22

period and ensured that floodplains in the generalised model would be active for larger floods.23

The main channel side slopes and the floodplain boundaries were inclined at 45o giving24
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trapezoidal geometries in both the inbank and overbank zones. The basic hydraulic resistance1

of the main channel (nmc) and floodplains (nfp) was expressed in terms of Manning’s n and2

assigned values of 0.03 and 0.25 respectively. The high base value of nfp was chosen to3

ensure that measurable attenuations were observed in model simulations. The basic model4

length (L) was 50 km and its longitudinal slope of the floodplain (Sfp) was set at 1 m/km. In5

total, 65 variations of these basic properties were tested in eight sets of simulations, denoted6

by A to H and in which one property was varied at a time (Table A1).  Case A investigated7

the effect of channel length (L), Case B investigated the effect of the longitudinal floodplain8

slope (Sfp), Case C varied the floodplain hydraulic resistance (nfp), Case D the floodplain9

width (bfp), Case E, the transverse floodplain slope () and Case F, the main channel10

hydraulic resistance (nmc). The influence of flood peak (QP) and flood duration (TB) was11

explored by routing the two sets of hydrographs (Fig. 2 Panel D and Fig. 2 Panel E) through12

the generalised model in the Case G and Case H simulations respectively. For each set of13

simulations, the effect of changes in a specific property on flood attenuation and travel time14

was examined by comparing input and output hydrographs.15

16

3.2 Standard Muskingum Routing Model17

The travel time of the peak of the flood wave determined for each simulation from the18

input and output hydrographs in the HEC-RAS model was assumed equal to the storage19

constant (K) in the standard Muskingum routing method (Fig. 1 Panel A).  Estimation of20

corresponding weighting factors (x) was more involved.  For each value of K, in combination21

with assumed values of x (increasing incrementally from 0 to 0.5 where low values reflect22

high attenuation and vice versa), standard Muskingum flood routing of the inflow23

hydrographs was repeatedly performed using Eq. 3, together with Eqns. 4, 5 and 6 to generate24

a series of outflow hydrographs.  Peak outflows were determined and comparison of these25
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with the peaks of the inflow hydrographs (Fig. 3 (b)) allowed a series of relative attenuations1

to be determined, from:2

% Relative attenuation = 100
Q

QQ
1P

2P1P 
 (14)3

where QP1 and QP2 are the peaks of the inflow and outflow hydrographs (Fig. 1 Panel A).4

Linear relationships between these relative attenuations from the Muskingum routing and5

assumed weighting factors (x) were developed.  These relationships were used to determine6

actual weighting factors for the relative attenuations calculated by comparison of the inflow7

and outflow hydrographs for each HEC-RAS simulation (Fig. 1 Panel B).  This produced a8

weighting factor for each of the 65 simulations for which corresponding storage constants9

were directly determined, covering the full range of geometrical and resistance properties that10

were assessed for the different inflow hydrographs.11

12

3.3 Regression Analysis13

Using multi-variate regression analysis, the computed values of the storage constants14

and weighting factors were correlated to catchment and hydrograph properties and15

expressions for determining both K and x in terms of these properties were developed.16

17

4 Results18
Estimated values of K and x from both the HEC-RAS hydraulic modelling and the19

standard Muskingum routing are shown in Table A1 and variations of these routing20

parameters with catchment and hydrograph properties are shown in Fig. 4 and Fig. 521

respectively. Variations in both flood peak (QP) and transverse floodplain slope () were22

shown to have only a small influence on storage weighting factors and were excluded from23

the analysis.24
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1

Fig. 42

3

Fig. 54

5

Results confirm that increasing floodplain length (Case A) and width (Case D), as6

noted by Wolff and Burges (1994), increases the capacity of the overbank zone to attenuate7

and delay the propagation of a flood wave along a channel.  Longitudinal slope (Case B) is8

also important.  Steep catchments have the capacity to convey floods more rapidly than those9

that are more mildly graded and the increased conveyance is reflected in reduced travel time10

(Fig. 4 (b)) and attenuation (Fig. 5 (b)). These trends are consistent with the findings of Wolff11

and Burges (1994); Tang et al., (1999b) and Ghavasieh et al. (2006) where large attenuations12

with sharp reductions in the variability of the cumulative distribution were observed in low13

gradient catchments. Tang et al., (1999b) reported that the Muskingum Cunge flood routing14

method suffers a certain amount of volume loss that depends on the longitudinal slope of the15

channel. Increasing the lateral slope of floodplains (Case E) results in a geometry in which16

overbank flow is continually redirected back towards the main channel.  Channels therefore,17

with steep lateral slopes will convey an increased proportion of the flood volume in the main18

channel.  Furthermore, floodplain resistance in the generalised river model was higher than19

that in the main channel. The reduced attenuations and higher wave speeds with reduced20

travel times (Fig. 4 (e)) in geometries with increasing transverse slopes are exacerbated given21

that a diminishing proportion of the total flow is being influenced by the higher floodplain22

roughness values. Increases in main channel (Case F) and floodplain resistance values (Case23

C) produce increased flood attenuation and travel times.24
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The full influence of floodplains on flood wave attenuation is complex and is also1

influenced by flow peak magnitude (Case G) and the resulting overbank depth. At low return2

periods (typically less that 2 years), flows will not significantly inundate the floodplain and3

will not be affected by the additional attenuation associated with the floodplain. Fig. 4 (g)4

indicates that the wave speed is relatively high for these in-bank events. At flows that5

produce low overbank depths (return periods of less than 5 years), floodplain influences6

increase attenuation and travel times. Case H simulations assessed flood duration on relative7

attenuation and flood wave travel time. When combined, flood peak (QP) and duration (TB)8

define the flood volume. Floods with low volume hydrographs but sharp peaks and thus short9

durations experience significantly higher attenuation than those with higher volumes.  Floods10

that are characterised by high volumes on the rising limb of the hydrograph will tend to11

occupy floodplain storage that is available and once occupied; this storage is no longer12

available for the remainder of the flood.  The attenuation provided by the floodplain in these13

cases is thus limited.  In contrast, hydrographs with low rising limb volumes, disperse most of14

the flood volume to storage and contribute therefore, to comparatively high relative15

downstream attenuations.16

17

5 Development of Muskingum Model Parameters18

The influences of the geometrical, resistance and hydrograph properties on K and x in19

Fig. 4 and Fig. 5 were included in a multi-variate regression analysis to generate expressions20

for these routing parameters. The floodplain width (bfp) and the bankfull width (Bbf) were21

expressed as a single parameter defined by (bfp/Bbf) that is consistent with other overbank22

flow research (for example Knight and Shiono, 1996). The expressions are:23

24
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Application of Eq. 15 requires that  > 0 and therefore horizontal floodplains are4

represented by a near-zero value of .  Similarly, the equation assesses floodplain effects and5

therefore peak flows should exceed bankfull discharge capacities in a given river reach. It6

should be noted that Eq. 15 and Eq. 16 are based solely on the influences of the assessed7

parameters on relative attenuations and delays of flood peaks determined by the HEC-RAS8

modelling of the variations in the generalised river reach.  The values of parameter exponents9

are therefore based on the simulated data only and as with regression models of this type,10

parameters that may intuitively be considered to be important do not necessarily come to the11

fore in the analysis. The negative influence of floodplain roughness (nfp) in Eq. 16 is a case in12

point. It would be expected that significant floodplain roughness would result in reasonably13

large storage and yield low storage weighting factors.  However, in the HEC-RAS modelling,14

increasing floodplain resistance increased the proportion of flow being conveyed in the main15

channel for all flows investigated, with the result that simulated attenuations were low.  The16

performance of these indices is shown in Fig. 6 where the routing parameters, K and x, are17

plotted on linear scales against those calculated using Eq. 15 and Eq. 16.18

19

Fig. 620
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1

Fig. 6 indicates that Eq. 15 and Eq. 16 reproduce reasonably well the simulated data2

for most of the geometrical, resistance and hydrograph properties. However, some limitations3

exist.  Simulated weighting factors (x) are shown to vary most significantly with flood4

duration (TB).  The poor fit in this case may result from the assumption of independence5

between the flood peak (QP) and the flood duration (TB) that was made when including6

duration as a parameter in the regression model. In addition, the clustering of nfp values in7

Fig. 6 indicates the low influence of this property on the routing parameters determined using8

the equations.9

10

6 Illustration of Modified Muskingum Flood Routing Method11

The routing method presented was applied to the River Suir in Co. Tipperary, Ireland.12

The River Suir is typical of most Irish rivers in terms of its scale and its low main channel and13

floodplain sinuosity. A 16.8 km reach between the New Bridge (Station No. 16008) and14

Caher Park (Station 16009) gauging stations was tested (Fig. 7). Both stations, in addition to15

a third station at Killardry (Station 16007), where the flow of the main tributary (River16

Aherlowe) that joins the Suir between New Bridge and Caher Park is measured, are17

characterised by good quality, digitised 15-minute flow records from 1954 to 2007. Other18

less significant tributaries also join the river between these stations but are not gauged. The19

catchment areas to the New Bridge and Caher Park gauging stations are 1120 km2 and 160220

km2 respectively and the area to Killardry on the Aherlowe River is 273 km2. The flood21

history of the river in this area also indicates that significant floodplain inundation is frequent.22

23

Fig. 724

25
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Illustrating the method involved application of the modified Muskingum method using1

Eq. 15 and Eq. 16 to route a selection of measured hydrographs at New Bridge through the2

River Suir reach and comparing these at Caher Park to those obtained from both measured3

data and from a HEC-RAS model of the river system.  The HEC-RAS model was developed4

from 35 recently obtained cross-sections between New Bridge and Caher Park that defined5

the main channel geometry and floodplains to a width of approximately 30 m from the6

channel banks of the Suir and Aherlowe rivers.  This data was augmented by LIDAR data to7

further define the floodplain topography to widths of approximately 500 m on each side of the8

main channel.  Longitudinal distances between measured cross-sections in the reach were9

approximately 400 m and this resolution in the model was increased through cross-section10

interpolation.  The lower reach of the River Aherlowe was included in this model.  At present,11

85% and 70% of the Suir and Aherlowe catchments respectively are covered by grassland12

pasture and this land use is dominant in the floodplains.  A Manning’s n value of 0.05 for13

grassland pasture with areas of brush described the hydraulic resistance of the floodplain and14

a coefficient of 0.04 that is typical for a reasonably straight, clean channel at full stage with15

some obstructions and marginal vegetation defined the main channel resistance (Cowan,16

1956; Chow, 1959; Hollinrake and Millington, 1994).17

The majority of natural hydrographs are complex and are characterised by kinks and18

multiple peaks that reflect both the temporal variability of the storm and the spatial19

heterogeneity of the catchment. Although it is theoretically possible to resolve a complex20

hydrograph into a series of simple hydrographs, the routing of simple hydrographs from21

isolated storm events extracted from long flow records was used in this study.  Isolating these22

events was a laborious task and was assisted by FSU hydrograph processing software that23

facilitated the identification of simple hydrographs at the three gauging stations for three24
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specific storm events.  These events related to periods in December 1954/ January 1955,1

August 1986/ September 1986 and October 2004/ November 2004 (Fig. 8).2

3

Fig. 84

5

Measured outflow hydrographs at Caher Park can potentially be influenced by a6

number of tributary inflows (Fig. 7) for which no flow data is available. Their impacts on the7

peak and timing of the flood hydrographs in the main River Suir, therefore is uncertain. To8

ensure that the measured outflow hydrographs at Caher Park were not unduly influenced by9

these tributaries and that measured data offers a basis for testing the modified method,10

measured hydrographs at New Bridge and Killardry (Fig. 8) were routed through the HEC-11

RAS model of the river system (that excludes the tributary network for which no data is12

available) and compared to observed hydrographs at Caher Park. The good agreement13

between the hydrographs routed in the HEC-RAS model and those measured at Caher Park14

for the three events investigated (Fig. 9), indicates that the contribution of the tributary flows,15

other than that from the Aherlowe River, is not significant.16

17

Fig. 918

19

Parameters in Eq. 15 and Eq. 16 apply only to a single reach and cannot easily be20

extrapolated to a river system that includes a tributary network.  For validation of the21

modified method therefore, Caher Park hydrographs for the three storm events that exclude22

the contribution from the Aherlowe River were required.  These were approximated by23

routing the observed hydrographs at Killardry through a HEC-RAS model of the river from24

this location to Caher Park and subtracting these hydrographs from those measured at Caher25
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Park. The resulting hydrographs are referred to as ‘adjusted’ hydrographs. Although this1

process is somewhat artificial and backwater effects from interactions between the shared2

floodplain of the main channel and tributary are not included in the analysis, the effects are3

likely to be local and in the context of a 16.8 km reach, the approach was considered4

acceptable. Comparison of the adjusted hydrographs with those determined by routing the5

measured hydrographs at New Bridge using the modified Muskingum procedure allowed the6

performance of the approach to be illustrated.7

The testing of the Muskingum method using Eq. 15 and Eq. 16 was based on assigning8

appropriate values to parameters that describe the geometry and hydraulic resistance of the9

channel and floodplains together with the characteristics of the flood hydrographs.10

Geometrical properties of the main channel and floodplain were determined from survey data11

and where necessary, averaged over the river reach. The floodplain slope (Sfp) and length (L)12

are FSU catchment descriptors for which numerical values are readily available. Main13

channel and floodplain Manning’s resistances were estimated to be 0.04 and 0.05 respectively14

and flood peaks and durations were determined from measured inflow hydrographs at New15

Bridge.  This data is summarised in Table 1 for the 1954/ ’55, 1986 and 2004 flood events.16

For the initial testing of the method, the floodplain widths (bfp) in Table 1 were computed by17

averaging (for 400 m intervals over the 16.8 km reach) the floodplain widths predicted from18

the HEC-RAS model when routing the measured hydrographs at New Bridge to Caher Park.19

20

Table 121

22

Caher Park hydrographs using the modified Muskingum method (referred to as23

‘Muskingum’) with these averaged floodplain widths are shown in Fig. 10 with the adjusted24



-24-

Caher Park hydrographs. The Caher Park hydrographs from the HEC-RAS model (referred to1

as ‘HEC-RAS’) are also shown for comparative purposes.2

3

Fig. 104
5

Although strong correlations between the Muskingum and HEC-RAS routed6

hydrographs are evident in Fig. 10, the usefulness of the proposed method as presented is7

limited in that the floodplain widths are derived from hydraulic routing.  To improve the8

predictive capacity of the method, floodplain attenuation indicators (FAIs) that were9

developed for the Irish Flood Studies Update (FSU) were utilised. FAIs are flood polygons10

that define the active river floodplain in Irish catchments for the 10-year (Q10), the 100-year11

(Q100) and the 1000-year (Q1000) floods from normal depth modelling at FSU nodes12

(approximate intervals of 500 m) on the main river network.  The approach is based on the13

assumption that the median flood, Qmed with a return period of 2 years is equivalent to the14

bankfull flow in all rivers. Given that bankfull recurrence intervals in many rivers are in the15

order of 1 – 3 years (see for example Richards, 1982; Petit and Paquet, 1997; Castro and16

Jackson, 2001), this simplifying assumption is reasonable. The median flood is determined17

using an FSU relationship (Sweeney and Murphy, 2010) for ungauged catchments given by:18

19

1085SDRAINDFARLSAARBFIAREA10237.1Q 185.0341.0217.2306.1922.0937.05
med

20
 ARTDRAIN1 408.0 (17)21

22

where AREA (km2) is the catchment area of the river to the outlet point being considered,23

S1085 (m/km) is the average slope of the river between 10% and 85% of its length from the24

outlet, SAAR (mm) is the annual average rainfall on the catchment, FARL is a flood25

attenuation factor for reservoirs and lakes, BFI is the baseflow index, DRAIND (km-1) is a26
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simple index that relates the length of the upstream hydrological network (km) to the area of1

the gauged catchment (km2) and ARTDRAIN is an index of the arterial drainage extent2

defined as the percentage area of benefiting lands with respect to the total catchment area.3

Simple multiplication of Qmed by appropriate growth curve factors defined the4

magnitudes of Q10, Q100 and Q1000. Floodplain flows were determined by subtracting Qmed5

values from these flood quantiles and corresponding floodplain flow depths were determined6

iteratively at all nodes using the Manning equation based on the geometry at that node and a7

resistance coefficient that was consistent with the land use at the node.  Incorporating these8

depths into a Digital Terrain Model (DTM) facilitated the production of flood polygons for9

Q10, Q100 and Q1000 for the Irish river network.10

The return periods for the 1954/ ’55, 1986 and 2004 floods in the River Suir varied11

between 5 and 10 years.  The Q10 FAI was therefore the most relevant polygon from which to12

estimate floodplain widths and an averaged value of 100 m was determined from the flood13

extent at all nodes between New Bridge and Caher Park. Hydrographs developed from the14

modified Muskingum approach using this floodplain width of 100 m are shown in Fig. 1115

with those generated from hydraulic routing and those developed from observed data.16

17

Fig. 1118

19

6.1 Discussion of Results20

Visual comparisons of the hydrographs in Fig. 10 and Fig. 11, although somewhat21

subjective, provide a quick and simple means of assessing the performance of the modified22

Muskingum routing method presented in this paper. Unsurprisingly, adjusted Caher Park23

hydrographs in Fig. 10, correlate closely with those of the modified Muskingum method in24

which floodplain widths were extracted from results of the HEC-RAS routing.  However,25



-26-

given that floodplain widths are based on outputs from a hydraulic model, this approach is of1

limited use.  More meaningful assessments of the method as a predictor of outflow2

hydrographs are shown in Fig. 11.  Here, good agreement is again observed between3

hydrographs from the modified Muskingum method in which floodplain widths are4

determined from the FAI catchment descriptor, and the HEC-RAS and adjusted hydrographs.5

The goodness-of-fit between the Muskingum and adjusted hydrographs was qualitatively and6

less subjectively tested using the range of goodness-of-fit criteria recommended by Jewitt and7

Schulze (1999). Goodness-of-fit statistical tests measure the deviation of a simulated output8

from an observed input data set and different tests are applied to assess different hydrograph9

components. Root mean square errors (RMSE) determine the magnitude of error in the10

computed hydrographs and were estimated using the relationship by Schulze et al. (1995)11

given by:12
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where Qcomp(t) and Qobs(t) are the computed and observed discharges at a number of different14

time steps n. Given that peak outflow is important in a single event hydrograph model,15

percentage errors in computed and observed peak flow rates, peak timing and volume were16

determined using the following equations (Green and Stephenson, 1985):17
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where Epeak, Etime and Evolume are percentage errors in peak flow, timing and hydrograph1

volumes respectively, Qp-comp and Qp-obs are computed and observed peak flows, tp-comp and2

tp-obs are computed and observed times to peak flow and Vcomp and Vobs are computed and3

observed hydrograph volumes.4

Even though the RMSE, Epeak, Etime and Evolume statistics may assess model5

performance effectively, differences in the shape of computed and observed hydrographs may6

not be accounted for fully. To overcome this, Nash and Sutcliffe (1970) proposed a7

dimensionless coefficient of model efficiency (E), given as:8

F
FFE

2
o

22
o  (22)9

in which  2n

1i
)t(comp)t(obs

2 QQF  


and  2n

1i
m)t(obs

2
o QQF  


.10

The coefficient of efficiency in Eq. 22 provides a well accepted measure of fit between11

computed and observed hydrographs, its value increasing toward unity as the fit of the12

simulated hydrograph progressively improves. Values of E that exceed 0.8 (Green and13

Stephenson, 1986) are considered to reflect a good correlation between the adjusted and the14

Muskingum and HEC-RAS hydrographs in this study. Results of these statistical tests where15

the Muskingum and HEC-RAS hydrographs at Caher Park in Fig. 11 are compared to16

adjusted hydrographs developed from observed data are shown in Table 2.17

18

Table 219

20

Table 2 shows that the modified Muskingum method produces outflow hydrographs that21

compare favourably with the adjusted hydrographs and are comparable to those developed22

through HEC-RAS modelling.  The differences that exist between both the Muskingum and23

HEC-RAS hydrographs and the adjusted hydrographs are likely to result from the simplifying24
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assumptions inherent in both methods. In reality, main channel and floodplain momentum1

exchanges in the River Suir may increase flood wave attenuation and decrease travel time.2

However, the modified routing parameters were developed from a multi-variate analysis of3

data from 1-D modelling of a generalised channel in which the energy losses from these4

interactions are not included. Furthermore, the influences of geometrical, resistance and5

hydrograph properties in this analysis were assessed independently in these analyses.6

Similarly, main channel and floodplain interactions are unaccounted for in the HEC-RAS7

hydrographs developed from 1-D modelling of the River Suir study reach. The impacts of8

these interactions however, appear low and the relationships in Eq. 15 and Eq. 16 are9

considered to provide reasonable estimates for K and x in the presented method.  The10

satisfactory performance of the modified method further implies that the storage equation in11

Muskingum routing methods is a substitute for the momentum equation in hydraulic routing12

approaches in typical Irish rivers and therefore it is reasonable to relate the routing parameters13

to channel and flow characteristics (Perumal, 1992b).14

It should be noted however that the limitations of the approach are the same as in most15

hydrological or Muskingum flood routing methods and therefore, the results from this method16

should be confirmed if applied to river reaches where backwater and inertia effects are17

significant, where floodplain sinuosity is excessively high or where significant lateral18

momentum exchanges between main channel and floodplain zones are influential.  The19

method however, does provide a simple and inexpensive method for obtaining preliminary20

estimates of the time and shape of a flood hydrograph as it travels overbank along a river21

reach.22

23
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7 Conclusions1

A modified linear Muskingum routing method suitable for floodplain flows is2

presented in this paper. Muskingum flood routing methods are based on storage – discharge3

relationships in river systems and can satisfactorily produce outflow hydrographs in river4

systems where inertia effects and backwater influences are small.  However, values of the5

routing parameters, x and K, that describe the storage characteristics of a river reach are6

usually derived analytically from observed upstream and downstream hydrographs extracted7

from historical flow records.  The proposed method uses explicit relationships for K and x8

described in terms of standard geometrical and resistance properties of channels with9

floodplains together with properties of standard inflow hydrographs.  The relationships were10

based on regression analysis of computational data generated through 1-dimensional11

modelling of a generalised river reach.  The expressions are:12
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Application of the method requires that  > 0 and therefore horizontal floodplains are14

represented by a near-zero value of . Furthermore, the modified method assesses floodplain15

effects and therefore flows must be sufficient to produce out of bank conditions. Application16

of the method in a reach of the River Suir, Co. Tipperary, Ireland was shown to produce17

outflow hydrographs that compared favourably to those developed from measured flow18

records.19

20

21

22
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