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Abstract— Digital control of power converters has been an
area of considerable research interest in recent times. One of
the problems which arises in these systems is that of the limit
cycle oscillations that occur due to quantization in the feedback
loop. This paper investigates the limit cycle oscillations that occur
in the digitally controlled version of the buck converter with a
proportional-integral controller. The amplitude and frequency
of the oscillations that may occur on two duty cycle levels are
investigated and related to the controller gain parameters. The
analysis shows that it is not possible to guarantee that limit
cycle oscillations on two levels will not occur simply by adjusting
the gain parameters, and yields a condition which will prevent
oscillations on two levels from occurring.

I. INTRODUCTION

The area of digital control in power electronics has attracted
considerable research interest in the last number of years.
Digital control has numerous potential advantages over the
more traditional analog control. These include low power
consumption, lower sensitivity to parameter variations, and the
possibility for increased complexity and flexibility of control
laws [1]. The buck converter is widely used in a variety
of applications in power electronics, for example in portable
electronic devices.

The existence and containment of limit cycle oscillations
which arise in these systems owing to the quantization effects
of the analog-to-digital (A/D) converter and the digital pulse-
width modulator (DPWM) are of interest [2]. These limit cy-
cles are undesirable as they degrade output voltage regulation
[3], alter the output spectrum, cause increased power losses,
and their amplitude and frequency are difficult to predict [1].
Previous work [1], [4], on digitally controlled power converters
has focused on the describing function approach, in which it is
assumed that the limit cycles are of a sinusoidal nature. This
is not always the case in converters of this nature and does
not guarantee that limit cycles will not occur [5]. Using this
approach time domain simulations are often required in order
to ascertain that limit cycle oscillations will not occur over a
range of operating conditions. Other work in this area has used
an incremental energy approach [5], and a statistical method
for predicting when limit cycle oscillations occur [6], which
yield expressions for the probability of limit cycles occurring.
Ref. [7] analysed a digitally controlled buck converter with an
integral controller, and conditions for the prevention of limit
cycles in this system were derived. In this paper, we extend
this form of analysis to a system with a PI controller.

Fig. 1. Switching power converter from [4]

Fig. 2. Synchronous buck converter

II. MODEL OF SYSTEM

The circuit which we will consider is the dc-dc switch-
ing power converter shown in Fig. 1, where the switching
converter is the buck circuit from Fig. 2. The purpose of an
ideal buck converter is to convert an input voltage Vin to a
lower output voltage dVin, d ∈ (0, 1). Switches S1 and S2 are
switched in a complementary fashion. If switch S1 is open for
a time dTs and closed for a time (1− d)Ts, where d is called
the duty cycle and Ts is the switching period, then the output
voltage of the converter will be given by v ≈ dVin in steady
state. From Fig. 1, we see that the output voltage v is compared
to a reference voltage Vref , which is the desired output of the
system, generating error voltage ve. This is quantized by the
A/D converter, generating a signal vq, which is then passed
to the compensator, which generates the duty-cycle command
dc, according to a control law. dc is then quantized to a signal
d by the DPWM, which opens and closes the switches as
previously described. In what follows, we shall assume that
all circuit components are ideal, except for the capacitor, the
equivalent series resistance (ESR) of which is given by rc,
which was not included in [7], that the error voltage ve is
sampled at the frequency fs =

1
Ts

at the start of a switching
period, and that there is no quantization in the compensator.



The buck circuit is described by the equations
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with δ = 1 for the switch S1 closed and δ = 0 for S1 open,
where Rn = R + rc. Instead of the current i it is convenient
to consider the new variable u = R

Rn

1
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σ
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simplify the equations. We will let W = [v, u]T , and (1)
becomes
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that after the equation (2) acts for the time dTs with δ = 1
and then the time (1 − d)Ts with δ = 0, a starting value W0

is transformed into W1 = eATsW0 +N(d)Vin, where
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and the matrix exponential is given by

etA = e−σt
[

cosωt sinωt
− sinωt cosωt

]
, t real. (3)

We shall use the following equations to model the feedback
system, assuming a proportional-integral compensator:

d(n) = QDPWM[dc(n)], dc(n) = −Kpvq(n)−Kidi(n− 1)
(4)

di(n) = di(n− 1) + vq(n), vq(n) = QA/D[v(n)− Vref ].

The function QDPWM rounds dc to the closest value of the
form jqDPWM, where qDPWM is the quantization step of the
DPWM and j is a positive integer, subject to the condition
that d ∈ (0, 1), and the function QA/D rounds the value of
ve to the closest value of the form lqA/D, where qA/D is the
quantization step of the A/D converter and l is a positive or
negative integer. When vq(n) = lqA/D, we say that the voltage
v(n) lies in the l-th error bin.

We thus obtain the autonomous three-dimensional discrete-
time piece-wise linear discontinuous dynamical system given
by:

W (n+ 1) = eTsA(W (n)−W ∗
j ) +W ∗

j , (5)
dc(n+ 1) = dc(n)−Kp(vq(n+ 1)− vq(n))

−Kivq(n), (6)

with the quantized quantities d(n) and vq(n) given by (4) and
where

W ∗
j = (I − eTsA)−1N(dj)Vin, (7)

We see from (5) that for d = dj a trajectory in W is simply a
logarithmic spiral winding clockwise in towards W ∗

j and thus
any trajectory in W consists of consecutive spiral segments
winding in towards a value W ∗

j as dc changes from one

quantization level to another. Considering the effect of the
voltage value v on dc, we see that from the proportional
part, when vq(n) changes from quantization level lqA/D to
(l + m)qA/D, there is a jump in the value of dc(n) of
magnitude −KpmqA/D. For the integral part, we see that a
value of vq(n) = lqA/D will cause the value of dc(n + 1) to
change by a value −KilqA/D. Thus, for any W ∗

j for which
v∗j lies in the zero-error bin, i.e. vq = 0, and we have

that dc ∈
[
dj − qDPWMVin

2 , dj +
qDPWMVin

2

)
, then [v∗j , u

∗
j , dc]

represents a fixed point of the system. As long as a trajectory
remains at a particular duty cycle level dj , we have that
W̃ (n + p) = epTsAW̃ (n), where W̃ (n) = W (n) − W ∗

j .
If we assume that the relation σ � ω � 1

Ts
holds, we

have that W ∗
j+1 −W ∗

j ≈ [1, δu]
T
q̃, where we denote δu =

σ
ω −

σ2+ω2

ω rcC and q̃ = qDPWMVin.

III. LIMIT CYCLES ON TWO DUTY CYCLE LEVELS

Limit cycles in the system occur when an oscillation hap-
pens over two or more duty cycle levels. As in the case in [7],
these may be single-loop limit cycles, in which a trajectory
rotates once around the fixed points in the (v, u)-plane in an
almost circular fashion before returning to the point it started
at, or multiple-loop limit cycles, in which a trajectory rotates
several times around the fixed points in the (v, u)-plane before
returning to the point it started at.

However, unlike the case in [7], the frequency of these limit
cycles is not fixed, and depends on the gain coefficients Kp

and Ki, as well as the position of the reference voltage with
respect to the fixed points.

A. Possible amplitudes and frequencies of limit cycles
We will consider a single-loop limit cycle rotating around

fixed points in the (v, u)-plane. If the trajectory is P iterations
long, then the frequency of oscillation will be ωosc = 2π

PTs
.

While a single-loop limit cycle is obviously constrained to
having integer values of P , in a multiple-loop limit cycle
the number of iterations it takes to rotate around the fixed
points may vary from loop to loop, and thus the average
number of iterations may not necessarily be integer. We will
therefore consider P real, rather than integer, in what follows.
We consider a trajectory as in Fig. 3 starting at the switching
point to the right of the zero-error bin, winding first around
the left fixed point and then around the right fixed point and
we recall that the distance between two adjacent fixed points
is approximately [1, δu]

T
q̃. The trajectory takes the form

W̃1 = ep1TsAW̃0 (8)
W̃2 = e(P−p1)TsAW̃1 − e(P−p1)TsA [1, δu]

T
q̃ (9)

where W̃n are switching points between duty-cycle levels. As
W̃2 = W̃0 − [1, δu]

T
q̃, we have that

W̃0 = [I − ePTsA]−1[I − e(P−p1)TsA] [1, δu]
T
q̃ (10)

As ṽ(p) = e−pσTs (cos(pωTs)ṽ0 + sin(pωTs)ũ0), we see
that the peak voltage of this trajectory will occur when dṽ(p)

dp =
0. Solving this equation, we find that

ppk =
1

ωTs
tan−1

[
1− σ

ω
ṽ0
ũ0

ṽ0
ũ0

+ σ
ω

]
(11)



Fig. 3. Limit cycle in the (v, u)-plane. Trajectory marked in blue dots,
switching points marked in red circles, zero-error bin boundaries marked in
vertical black lines. Equilibrium points in red squares.

Fig. 4. d (in blue) and dc (in red) versus p for limit cycle in Fig. 3.

So, by specifying a number of iterations P , which determines
the frequency of oscillation of a limit cycle, we may find the
switching point to the right of the zero-error bin from (10)
by varying p1. Using (ṽ0, ũ0) from (10) in (11), we find the
amplitude of a limit cycle at frequency ωosc as

r = e−ppkσTs (cos(ppkωTs)ṽ0 + sin(ppkωTs)ũ0)−
q̃

2
(12)

If Vref is placed such that the fixed points are symmetrical
about Vref , then we see that the amplitude of a limit cycle
at a certain frequency is at its largest. As Vref moves away
from this point, the amplitude of the limit cycle decreases,
until a point is reached at which limit cycles are no longer
possible. We note that as p1 increases, the switching point
moves closer to the zero-error bin boundary, and the amplitude
of the limit cycle decreases. If we assume that the limit
cycle remains approximately symmetrical about Vref , then the
smallest possible limit cycle for a particular value of P will
occur when we have that ṽ0 =

qA/D
2 − qDPWMVin

2 .

B. Relationship of limit cycles to gain coefficients
If we consider a limit cycle on two duty cycle levels

confined to the ±1 and 0-error bins, as shown in Fig.3, then
we seek to find a relation between the amplitude and frequency
and the controller gains. If we have Nb iterations in the +1

error bin after the right switching point, with N0 iterations in
the zero-error bin, and Nc iterations in the −1-error bin before
the left switching point, and we consider the excursion of this
limit cycle in dc as shown in Fig 4, we see that

Ki(Nb − 1)qA/D = 2KpqA/D −KiqA/D +Ki(Nc − 1)qA/D

which we rearrange to find

Kp

Ki
=
Nb −Nc + 1

2
(13)

We have that Nb +N0 +Nc = p1, and so we find that
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2
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We may approximate Nb and N0 as angles in the (v, u)-plane
as follows
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Using these relations in (14), we find
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So, we see that it is the ratio of Kp

Ki
which is important in

determining the amplitude and frequency of the limit cycles
seen in the system, rather than the absolute values, provided
of course, that the excursion in dc does not overlap to another
DPWM quantization bin. We note that as we are continuing the
approximation that P and p1 are real, we are considering real
values of Nb, Nc and N0 here, whereas in reality these values
will all be integer. Therefore rather than having a single value
of Kp

Ki
at which a particular limit cycle is possible, the same

limit cycle will be possible over a limited range of values.
However, if the first points once the trajectory leaves the

zero-error bin are the points at which switching occurs then the
switching in the limit cycle occurs only due to the proportional
gain, as shown in Fig. 5. We have that the distance between
the two values of dc just before the duty cycle level changes is
KiN1qA/D, where N1 is the number of iterations the trajectory
spends on one side of the zero-error bin. Provided that the two
values of dc are symmetrical about the quantization boundary,
then the value of Ki can be made arbitrarily small and it
will still be possible for this limit cycle to exist, provided
the necessary symmetry exists in the system. Thus, we cannot
guarantee that limit cycle oscillations on two duty cycle levels
will not occur simply by adjusting the gain coefficients in the
system.

We plot in Fig. 6 the predicted amplitude versus frequency
range from (10), (11) and (12) and we plot in Fig. 7 the
corresponding predicted value of the amplitude versus Kp

Ki

from (17). In both plots the top black lines are for the
maximum output amplitude, which will happen when Vref
is close to being halfway between two fixed points, and the
bottom black lines are for the smallest amplitude limit cycles
possible, which are found by letting the switching point ṽ0
lie on the edge of the zero-error bin, i.e. ṽ0 =

qA/D
2 + q̃

2 .We



Fig. 5. Representative plot of d (in blue) and dc (in red) versus p for a limit
cycle where switching occurs only due to the proportional term. Quantization
boundary shown in dashed black line.

see, therefore, that a range of amplitudes are possible at a
particular frequency, and the smallest amplitude possible at
that frequency is dependent on qA/D. Values from simulation
show a relatively good match with the possible amplitudes and
frequencies of limit cycles, as well as the possible range of Kp

Ki

at which these can occur. In general, we see that increasing
the value of the ratio Kp

Ki
leads to a decrease in the amplitude

and frequency of the limit cycles which may exist. We note
that even with large values of Kp

Ki
limit cycles may still exist,

owing to switching occurring as in Fig. 5.
In order to prevent a limit cycle on two duty cycle lev-

els from being possible, therefore a sufficient condition is
that the largest amplitude limit cycle is confined to being
within the zero-error bin, as was found in [7]. The peak-to-
peak largest amplitude limit cycle is approximately given by
1+e−

πσ
ω

1−e−
πσ
ω
qDPWMVin (which is found by letting P = 2p1 = 2π

ωTs

in (10) which yields ppk ≈ 0) and thus the condition

qA/D >
1 + e−

πσ
ω

1− e−πσ
ω
qDPWMVin (18)

must be satisfied in order to prevent limit cycles on two duty
cycle levels occurring.

IV. CONCLUSION

We have developed an analytical model of a digitally
controlled buck converter in order to predict the possible
frequency and amplitude of limit cycles on two duty cycle
levels which occur in the system. We have also related this
frequency and amplitude to the controller gains Kp and Ki,
and shown that it is the ratio of these values which is important
in determining whether or not a limit cycle may occur in
the system. We have then verified our predictions through
simulation. We have also shown that it is not possible to
guarantee that limit cycles on two duty cycle levels will not
occur by only adjusting the gain coefficients, and we have
given a bound in terms of the system parameters which will
prevent limit cycles on two duty cycle levels from occurring.

ACKNOWLEDGMENT

M. Bradley acknowledges the support of the Irish Research
Council for Science Engineering and Technology. E. Alarcon

Fig. 6. Amplitude r versus frequency fosc for limit cycles on two duty cycle
levels. Predicted bounds are given by black lines. Values from simulation are
given in red circles. Parameters are Vin = 5 V, Ts = 1µs, qA/D = 0.101
V, qDPWM = 0.004, rc = 0.02Ω, C = 13.52µF, L = 7.62µH, R = 10Ω,
which yields σ = 5000 s−1 and ω = 98.3 krad s−1. Vref and Kp/Ki are
varied in order to find a range of amplitudes and frequencies of limit cycles.
Bound from (18) in dashed black line.

Fig. 7. r versus Kp

Ki
corresponding to Fig. 4. Predicted bounds from (17) are

given by curved black lines, while horizontal black line indicates the predicted
amplitude of oscillations when switching occurs only from the proportional
action of the controller, as in Fig. 5. Values from simulation in red circles.

acknowledges partial funding by projects TEC2007-67988-
C02-01, TEC2010-15765 and RUE CSD2009-00046, from the
Spanish Ministry of Science and Innovation.

REFERENCES

[1] A. V. Peterchev and S. R. Sanders, “Quantization resolution and limit
cycling in digitally controlled pwm converters,” IEEE Trans. Power
Electron., vol. 18, no.1, pp. 301–308, 2003.

[2] S. Buso and P. Mattavelli, “Digital control in power electronics,” Synthesis
Lectures on Power Electronics, vol. 1, no. 1, pp. 1–158, 2006.

[3] Z. Zhao and A. Prodic, “Non-zero error method for improving output
voltage regulation of low-resolution digital controllers for smps,” in Proc.
IEEE Applied Power Electronics Conference, pp. 1106 –1110, feb 2008.

[4] H. Peng, D. Maksimovic, A. Prodic, and E. Alarcon, “Modeling of
quantization effects in digitally controlled dc-dc converters,” IEEE Trans.
Power Electron., vol. 22, no. 1, pp. 208–215, 2007.

[5] W. Stefanutti, P. Mattavelli, S. Saggini, and G. Garcea, “Energy-based
approach for predicting limit cycle oscillations in voltage-mode digitally-
controlled dc-dc converters,” in Proc. IEEE Applied Power Electronics
Conference, p. 7 pp., march 2006.

[6] S. Saggini, W. Stefanutti, D. Trevisan, P. Mattavelli, and G. Garcea, “Pre-
diction of limit-cycles oscillations in digitally controlled dc-dc converters
using statistical approach,” in Industrial Electronics Society, 2005. IECON
2005. 31st Annual Conference of IEEE, nov. 2005, p. 6 pp.

[7] M. Bradley, A. Teplinsky, and O. Feely, “Limit cycles in a digitally
controlled buck converter,” in Circuit Theory and Design, 2011. ECCTD
2011. European Conference on, aug. 2011, pp. 245 – 248.


