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Abstract:  

Since its introduction in the last decade, massive parallel sequencing, or “next-

generation sequencing”, has revolutionized our access to genomic information, 

providing accurate data with increasingly higher yields and lower costs with respect 

to first-generation technology. Massive parallel sequencing of cDNA, or RNA-seq, is 

progressively replacing array-based technology as the method of choice for 

transcriptomics. This review describes some of the most recent applications of next-

generation sequencing technology to the study of pathogenic fungi, including 

Candida, Aspergillus and Cryptococcus species. Several integrated approaches 

illustrate the power and accuracy of RNA-seq for studying the biology of human 

fungal pathogens. In addition, the lack of consistency in data analysis is discussed. 

 

Introduction 

The development of next generation sequencing technologies has probably had 

more impact on our understanding of fungal biology than any other eukaryotic species 

group. By 2012, the genomes of approximately 200 fungal species have been 

sequenced (www.fungalgenomes.org).  

More recently, RNA-seq, or high-throughput cDNA sequencing technology, has 

been increasingly adopted as a method of obtaining large amounts of transcriptomic 

data with high sensitivity, high quality and at relatively low cost [1, 2]. The major 

advantages over the previously used microarrays is that no prior knowledge of the 

transcriptome is required; the high sensitivity allows a deeper characterization of the 

transcriptional landscape, including non coding transcripts, rare and novel transcripts, 

fusion products and rare splicing isoforms [1]; and strand-specific methods can be 

used to improve annotation and to identify antisense transcription [3]. The 
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development of the technologies has been accompanied by significant advances in 

data analysis [4-7••]. 

In this review we describe the recent applications of genome sequencing and 

RNA sequencing to addressing important biological questions in major fungal 

pathogens. 

 

Genomics of pathogenic fungi 

The yeast Saccharomyces cerevisiae was the first eukaryotic genome to be fully 

sequenced, in 1996 [8]. Other notable landmarks followed, including the genomes of 

Candida albicans [9] and 6 other Candida species [10], of filamentous fungi such as 

the Aspergilli [11, 12] and of basidiomycete species including Cryptococcus [13]. As 

new genome sequences became available, the application of comparative analysis 

allowed the identification of gene families with roles in fungal virulence [10] and the 

identification of potential new lead compounds for drug discovery [14]. 

Candida species are among the most common fungi associated with hospital-

acquired infection, particularly of immunocompromised individuals [15]. Whereas 

most infections are caused by C. albicans, other species such as Candida parapsilosis, 

Candida tropicalis and the distantly related Candida glabrata are increasing causes of 

concern [16•]. Comparison of the genomes of pathogenic Candida species with 

closely related non-pathogens showed that several gene families associated with 

virulence are expanded in the pathogens [10]. These include the ALS family of 

adhesins the Hyr/Iff family of cell wall proteins, and other less well-classified 

families, many associated with the cell wall. 

Comparisons of small numbers of closely related species can also contribute to 

our understanding of virulence. For example, comparing the genome of C. albicans 
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with that of the substantially less pathogenic species Candida dubliniensis revealed 

that there has been substantial gene loss and pseudogenization (loss of gene function 

through mutation) in the latter species [17]. More recently, Riccombeni et al. [18•] 

used next generation sequencing to carry out a comparative analysis of Candida 

parapsilosis and Candida orthopsilosis.  

C. parapsilosis is the second most frequent cause of candidiasis in Latin 

America and is particularly common in Europe [19]. C. orthopsilosis is very closely 

related to C. parapsilosis, and was previously identified as a subgroup [20]. Despite 

their phenotypic similarity, C. orthopsilosis is a much less frequent cause of infection, 

and is responsible for between 1.4% [21] and 23.8% [22] of infections previously 

attributed to C. parapsilosis. Riccombeni et al. [•18] used a combination of 454, 

Illumina and Sanger technologies to sequence the C. orthopsilosis genome. The 8 

chromosomal scaffolds encode 5700 genes, of which 97.7% have a direct ortholog in 

C. parapsilosis. The divergence time between C. parapsilosis and C. orthopsilosis is 

approximately twice that between C. albicans and C. dubliniensis. Comparison of the 

four species revealed that the WOR2 and CTA26/TLO2 regulators are evolving faster 

in C. albicans/C. dubliniensis than in C. parapsilosis/C. orthopsilosis. WOR2 is a 

global regulator of the white/opaque switch in C. albicans, a morphological change 

associated with virulence [23], whereas TLO2 is a component of the mediator 

complex and is associated with the regulation of filamentation [24]. The rapid 

evolution of these two genes may be associated with the increased virulence of C. 

albicans. 

 Interestingly, there has been an expansion of the H+ Antiporter-1 (DHA1) and 

FLU1 clades of the Major Facilitator (MFS) family of drug transporters in C. 

parapsilosis and C. orthopsilosis with respect to other Candida species. This may be 
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related to the ability of C. parapsilosis to rapidly acquire resistance to azole drugs 

[25]. In contrast, the Hyr/Iff family is substantially reduced in the less pathogenic C. 

orthopsilosis genome [18••]. 

The dermatophyte fungi are major causes of superficial infections in human and 

animal hosts, where they grow within keratinized structures. Common infections 

include athlete’s foot, ringworm and onychomycosis, and infection is particularly 

high in hot and humid countries [26•]. These species are particularly difficult to study 

because they grow very slowly under laboratory conditions. There is currently an on-

going large-scale project to sequence the genomes of seven dermatophyte species 

[26•], with the data available from the Broad Institute web site 

(www.tinyurl.com/dermacomp7). Burmester et al. [27••] recently reported the 

analyses of the genomes of two of these, Arthroderma benhamiae and Trichophyton 

verrucosum, which infect rodents and cattle respectively, and also cause disease in 

humans. 

The two genomes were assembled using data from a combination of next 

generation and first generation sequencing technologies, and are highly co-linear with 

only five major rearrangements. Although approximately 97% of the genes have clear 

orthologs in both species, there are >200 open reading frames that are specific to only 

one and may be important for host-specificity.  

The genomes of the two dermatophytes were compared to the closely related 

species Coccidioides posadasii and Coccidioides immitis, and the more distant 

relative Aspergillus fumigatus. All these five dimorphic fungi contain substantial 

numbers of protease genes, but the dermatophytes are particularly protease-rich, with 

235 putative proteases. In particular, the M35 (deuterolysin), M36 (fungalysin) and 

S8 (subtilisin) protease families are expanded in the dermatophytes, and several are 
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secreted during growth on keratin. The protease expansion is likely to reflect the 

ability of these species to use keratin as sole source of carbon and nitrogen.  

The dermatophyes also have a different distribution of secondary metabolism 

gene clusters compared to their close relatives. Both species have a higher number of 

gene clusters than Coccidioides, mostly due to an increase in the number of non-

ribosomal peptide synthetase (NRPS)-encoding genes. One NRPS and an associated 

MFS drug transporter are specific to A. benhamiae, although it is unknown whether 

this affects virulence and/or host specificity. There are also differences in the type of 

polyketide synthase (PKS) genes; most PKS are reducing in the dermatophytes, 

whereas the majority are non-reducing in other Ascomycetes, including Coccidioides 

species. The reducing PKS may be required for pigment formation, which is likely to 

be associated with virulence. 

Abadio et al. [14] illustrated how the increasing availability of genome 

sequences might be used to identify new targets for antifungal drugs. They selected 

55 genes that were shown experimentally to be essential in either C. albicans [28] or 

A. fumigatus [29] plus two non-essential genes that are important for cell viability 

within the host, KRE2 and ERG6 [30, 31]. Ten potential targets were selected among 

genes with orthologs in 8 fungal pathogens (C. albicans, Aspergillus fumigatus, 

Cryptococcus neoformans, Paracoccidioides lutzii, Paracoccidioides brasiliensis, 

Blastomyces dermatitidis, Coccidioides immitis and Histoplasma capsulatum) and 

absent from the human genome. These were reduced to four (TRR1, RIM8, ERG6 and 

KRE2) using other criteria such as enzymatic activity, no auxotrophic phenotype, and 

accessibility in the cell. TRR1 is required for maintaining redox status in S. cerevisiae 

[32] and RIM8 is involved in a pathway regulating alkaline pH response [33] and in 

the activation of the yeast-hyphal morphological switch in C. albicans [34]. ERG6 
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encodes a sterol methyltransferase required for membrane permeability in C. albicans 

[31], whereas KRE2 encodes a mannosyltransferase and is involved in N-linked 

glycosylation, cell adherence and virulence [35]. Homology modeling was used to 

predict the 3D structure of Trr1 and Kre2. The usefulness of this approach and its 

potential to reduce the huge costs of drug development [36] will become clearer in the 

future as the targets are virtually tested using chemical libraries. 

 Fungal genomes of pathogenic and non-pathogenic species will continue to be 

sequenced at a high rate, driven in particular by the 1000 fungal genomes project 

(http://1000.fungalgenomes.org/home/). However, it is also likely that sequencing 

multiple isolates of a single species will be used more frequently to yield biological 

insights. Such approaches have been used to study genome variation, diversity and 

evolution in Saccharomyces and related species [37, 38]. 

 

RNA-seq analysis of pathogenic fungi 
 

RNA-seq is still a new technology, and is slowly being applied to analysis of 

human fungal pathogens. It is generally used as a method for improving genome 

annotation, and is increasingly applied to analysis of differential gene expression. 

RNA-seq is likely to become the method of choice for transcriptome analysis in the 

next few years. We describe here some of the recent applications in Candida, 

Aspergillus and Cryptococcus species. 

 

 Candida albicans 

 RNA-seq analysis was first used to characterize the transcriptome of C. albicans 

under a variety of growth conditions, including hyphal induction, pH stress, oxidative 

stress, nitrosative stress and induction of cell wall-damage [39•, 40•]. The analyses 



	
   8	
  

helped update the existing annotation and led to the characterization of 602 novel 

transcriptionally active regions (nTARS) that may represent non-coding or regulatory 

RNAs. 

Nobile et al. [41••] subsequently used RNA-seq together with microarray 

analysis to further expand the identification of nTARs and to characterize the 

regulatory network required for biofilm formation. Biofilms are a community of 

microorganisms that grow on solid or liquid surfaces, such as indwelling medical 

devices, or host tissues. In C. albicans, biofilm formation is associated with a switch 

from predominantly yeast-like growth to hyphal or filamentous growth, followed by 

the production of an extracellular matrix [42-44]. Nobile et al. [41••] identified six 

transcription factors (BCR1, TEC1, EFG1, NDT80, ROB1 and BRG1) that are 

required for biofilm development, both in vitro and in vivo, using established rat 

models for catheter [45] and oral infection [46]. Using a combination of 

transcriptional profiling and chromatin immunoprecipitation (ChIP) experiments they 

showed that the transcription factors and their targets belong to a single network that 

regulates the formation of biofilms. Each of the six regulators is a target of at least 

two of the others, and each also positively regulates its own transcription: the core 

network is therefore very tightly regulated. Their analysis indicated that the network 

evolved recently and is specific to C. albicans. 

In contrast, Tierney et al. [47••] used RNA-seq to profile the response of both 

host and pathogen to infection. They followed the interaction of C. albicans with 

murine bone-marrow derived cells (BMDCs) over a 2 hour time course, from initial 

fungal adhesion to early lysis of host cells. Over the entire time course, 545 genes 

from C. albicans and 240 genes from Mus musculus were differentially expressed, 

and were placed into clusters based on common transcriptional patterns. Five C. 
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albicans genes and six M. musculus genes with roles in virulence or infection were 

selected to represent the clusters. A network model inferred from the data suggested 

that there are multiple interactions between C. albicans and mouse genes, including a 

hub represented by HAP3, a C. albicans transcription factor. The model predicted that 

HAP3 was repressed by murine PTX3, and that HAP3 in turn represses the mouse 

MTA2 gene. PTX3 encodes a pattern recognition receptor that has been shown to have 

an opsonin-like role in facilitating pathogen uptake by phagocytes [48]. In contrast, 

MTA2 is associated with the NuRD chromatin remodeling machine [49] and 

knockouts display embryonic lethality with severe developmental issues in survivors, 

including autoimmune disease [50]. The predicted interaction between fungal HAP3 

and murine PTX3 was confirmed experimentally by showing that PTX3 is induced in 

bone marrow-derived macrophages (BMDMs) at both the protein and RNA level 

following infection with C. albicans, unless HAP3 is deleted. Expression of murine 

PTX3 is not induced by C. albicans cells carrying a knockout in CDA2, a putative 

chitin deacetylase with a binding motif for Hap3. Tierney et al. [47••] suggest that 

binding of Ptx3 to Candida cells alters the immune response of the host cells in a 

Hap3-dependent manner, which may involve a direct interaction between Hap3 in the 

fungus and Mta2 in the host.  

 This analysis illustrated the potential power of using RNA-seq to explore 

pathogen-host interactions; however, the approach is also limited by the size of the 

dataset, which can be overwhelming. Tierney et al. [47••]  restricted their analyses to 

a small number of genes supported by previous experimental evidence, and focused 

on transcription factor “hubs”. While a similar approach has been used to identify 

networks associated with drug resistance in Candida [51], this method is only 
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successful when previous experimental analyses are available and emphasizes the 

need for supporting laboratory-based research. 

 

Candida parapsilosis 

The genome of C. parapsilosis was first sequenced in 2009 [10] together with 

several other pathogenic Candida species. In 2011, Guida et al. [52•] used RNA-seq 

to greatly improve the genome annotation and to characterize the transcriptional 

profile of C. parapsilosis across a variety of conditions, including temperature 

variations and oxygen levels. In total, 421 gene models were added to the previous 

annotation [10], 318 were removed and 664 were edited. Changes included the 

identification of 422 introns in 387 genes. Two introns were identified in the 3’ UTR 

of the same gene, CPAR2_601470; these are the first 3’ introns described in Candida 

species, and suggest that a novel mechanism for regulating gene expression may be 

present. The RNA-seq data also provided evidence for at least 95 nTARs, suggesting 

that these are common in Candida species [39•]. 

Guida et al. also used RNA-seq and microarray analysis to determine the 

transcriptional response of C. parapsilosis to hypoxic (low oxygen) conditions, such 

as those encountered during infection or in biofilms [53, 54]. Both technologies 

identified increased expression of genes involved in ergosterol metabolism, fatty acid 

synthesis and glycolysis, and decreased expression of respiratory genes. The overall 

response is conserved in most fungi [53]. The analysis also identified the transcription 

factor UPC2 as a major regulator of ergosterol synthesis and drug resistance genes. 

This role is conserved with C. albicans and S. cerevisiae [55, 56]. 

 

Aspergillus 
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Among the several hundred Aspergillus species identified, Aspergillus flavus 

and Aspergillus fumigatus are most closely associated with human infection [57, 58]. 

A. flavus produces several mycotoxins, including aflatoxins, which are an important 

contaminant of many food crops, such as corn, cotton and peanuts [59]. Aflatoxins are 

also highly carcinogenic, and ingestion is associated with acute hepatic failure [60]. 

Genes involved in aflatoxin biosynthesis are found close together in the genome in 

secondary metabolite clusters, including PKS and NRPS genes [61]. Yu et al. [62] 

used RNA-seq to determine the transcriptional response of 55 secondary metabolite 

clusters in A. flavus to changes in temperature. Expression of 11 clusters, including 

the aflatoxin cluster, is induced at 30°C relative to 37°C. The authors showed that 

most genes in the aflatoxin cluster are expressed at very low levels at the higher 

temperature. However, the sensitivity of the technology revealed that the expression 

levels of the two transcriptional regulators of the cluster (aflR and aflS) are 5-24 times 

higher at 30°C, although previous microarray experiments had suggested that they 

were equally expressed at both temperatures [63]. It is therefore possible that down 

regulation of the cluster at 37°C may be associated with low levels of expression of 

aflS. 

Gibbons et al. [64•] applied RNA-seq to investigation of global transcription 

profiles of A. fumigatus. The authors compared the profiles of cells growing in liquid 

shake flasks (planktonic colonies, PL) to those growing in aerial static conditions, 

where they form a biofilm (BF) surrounded by an extracellular matrix [65]. The 

authors found that 96% of the 9887 annotated genes were expressed in at least one 

condition; only 251 genes were uniquely expressed in BF, and only 175 in PL 

cultures. However, the differentially expressed genes are not randomly located 

throughout the genome but are significantly enriched towards the telomeres. 
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Subsequent investigation revealed that these overlapped with secondary metabolite 

clusters, many of which were unregulated in biofilm conditions. A similar telomeric 

distribution of differentially expressed genes was previously observed during an 

analysis of early stages of infection of mammalian hosts with A. fumigatus. Genes 

involved in cell wall metabolism, ergosterol synthesis, multidrug transport and 

glycosylation are also upregulated in BF cells, whereas glycolytic genes are 

downregulated. The gene expression changes are likely to be associated with dramatic 

changes in the cell wall, which may contribute to the drug resistant phenotype of 

biofilm cultures. 

RNA-seq has also been applied to transcriptional profiling of non-pathogenic 

Aspergillus species, such as Aspergillus oryzae, a species historically associated with 

the Japanese food industry, whose genome was sequenced in 2005 [66]. Similarly to 

the analysis described above for C. parapsilosis, Wang et al. [67] used RNA-seq to 

greatly improve the annotation of the A. oryzae genome. They reported widespread 

alternate splicing, in about 8.5% of all genes. Comparing the expression patterns of 

cells growing on solid agar compared to liquid cultures suggested that protein 

production is increased in cells grown on solid media. The authors also induced the 

unfolded protein response (UPR) by treatment with DTT, commonly activated by 

accumulation of unfolded proteins in the ER. Inducing UPR resulted in a significantly 

higher number of upregulated genes in cultures grown on solid media than in liquid 

cultures, suggesting that the efficiency of the response depends on the culture 

conditions. 

 

Cryptococcus neoformans 
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Cryptococcus species are members of the Basidiomycete clade. Infection occurs 

through inhalation of spores, and cryptococcosis is particularly common in 

immunocompromised patients [68]. Infection may also spread to the brain where it 

causes cryptococcal meningitis [69]. The most common causative species are 

Cryptococcus neoformans and Crypotococcus gatii. One distinctive feature of these 

organisms is the presence of a polysaccharide capsule formed of 

glucuronoxylomannans (GXM) [70], which encapsulates the cell wall and is required 

for sexual development [71] and virulence [68, 72]. The capsule undergoes dramatic 

changes in size, particularly during infection [73]. 

 Haynes et al. [74••] used RNA-seq together with ChIP-seq to characterize the 

transcriptional changes that occur during capsule growth. Several known signaling 

pathways had previously been linked to capsule formation, including the stress-

induced cAMP pathway, regulation of iron sensing and the HOG pathway, although 

no integrated model had been proposed. Haynes et al. [74••] first identified genes 

whose transcriptional level correlated with capsule size using microarray technology, 

and selected ADA2, proposed to be part of the SAGA histone acetylation complex 

[75] for subsequent investigation. They showed that Ada2 is required for capsule 

development and for virulence in a mouse model. To further characterize the role of 

ADA2, the gene expression of the wild type and ada2 mutant in capsule inducing and 

non-inducing conditions was determined using RNA-seq. Several members of the 

pheromone response pathway were downregulated in the ada2 mutant, consistently 

with the role of capsule growth in mating. Genes related to capsule growth were also 

downregulated in both growth conditions.  

RNA-seq was also used to determine the transcriptional profile of deletions of 

CIR1 and NRG1, which results in hypocapsular formation. The two transcriptional 
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regulators also control sexual development [76]. Several genes required for capsule 

biosynthesis and for capsule regulation lie downstream of all three regulators. 

To identify genes directly regulated by ADA2, the RNA-seq data was integrated 

with ChIP-seq analysis using antibodies specific for acetylated lysines (K9) on 

histone H3. Deleting ada2 results in an overall reduction in the level of H3K9 

acetylation, particularly near the transcriptional start sites of genes regulated by Ada2. 

These include HXT1, CPL1 and UGT1, with known roles in capsule formation, 

GAT201, a positive regulator of capsule formation from the GATA family of 

transcription factors, and STE2, which encodes a mating pheromone receptor. Overall, 

the effects of ADA2 are mostly indirect, as only 3% of genes have both differential 

expression and acetylation in an ada2 deletion. It is likely that much of the response 

depends on 8 transcription factors that are directly regulated by ADA2. The integrated 

approach taken by Haynes et al. [74••] illustrates the power and resolution of next 

generation sequencing technologies. 

 

Cryptococcus gattii 

Unlike C. neoformans, C. gattii has only recently emerged as a pathogen in 

immunocompetent hosts. A well characterized outbreak began on Vancouver Island, 

Canada and subsequently spread to the Pacific [77]. Differences in virulence with 

respect to C. neoformans include an increased abundance of nodules 

(cryptococcomas) in lungs and in the brain and slower response to treatment [78]. 

At least four distinct lineages of C. gattii have been identified [79]; however, 

genome sequence is available for only two strains from two of the four lineages, 

isolated in Canada and Australia. To allow for more comprehensive analyses, 

Chaturvedi and Nierman [80] propose to sequence the genome and transcriptome of 
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twelve isolates. The selected strains cover all four lineages from a wide geographical 

distribution, including Africa, India, South and North America, and have been 

selected to provide a variety of suitable models of virulence as displayed in mice, rats 

and human. 

Overall, the availability of these datasets would greatly enhance the ability to 

carry out comparative genomics analyses of Cryptococcus species, to identify targets 

for potential drugs and vaccines and to identify single nucleotide polymorphisms 

(SNPS) for molecular typing. 

 

Conclusion 
 

Next-generation sequencing technology has led to an explosion in the amount of 

genome data available; for example, in a single year the Sequence Read Archive grew 

larger than the previous 20 years of data in the older GenBank repository [81••]. 

Several hundred fungal genomes have been completed or are in progress 

(http://fungalgenome.org), and the number of RNA-seq data sets is increasing. The 

most commonly used methodologies are based on large-scale pyrosequencing (454 

Life Sciences), ligation-based sequencing with di-base labeled probes (SOLiD) and 

sequencing by synthesis (Illumina) [82], with others currently under development 

[81••]. One of the drawbacks of RNA-seq is that data analysis can still be considered 

to be in a transitional phase. Even Illumina technology, benchmarked as the leading 

technology in 2010 [83], lacks a standard method of analysis, and a standard method 

of normalization. The most common strategy is to use RPKM or FPKM (Reads (or 

Fragments) per Kilobase of exon per Million mapped sequence reads), introduced in 

2008 by Mortazavi et al. [2]. More recent developments include the introduction of 

geometric mean normalization [4] and quantile normalization [84]. 
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In the last few years several open-source bioinformatic tools have been created 

to study differential gene expression through the quantification of RNA-seq data, such 

as the Tuxedo pipeline (including Cufflinks) [7••] and several R/Bioconductor 

packages like DESeq [4], baySeq [85], DEGseq [86] and edgeR [87]. Some of these 

freely available tools have been integrated in the Galaxy project, an online 

environment designed to be used by experimental researchers with little 

computational background [5]. For the fungal genomics studies we described here, no 

two groups used the same analysis strategy (Table 1). One of the priorities for the 

near future will be the emergence of a recognized standard, therefore increasing the 

reliability and our understanding of the vast amounts of information generated by 

next-generation sequencing. 

Despite these outstanding issues, next-generation sequencing already made 

important contributions to our understanding of fungal virulence. The continued 

application of RNA-seq to fungal species in parallel with sequencing of new genomes 

and new strains will greatly increase our understanding of the physiology of the 

pathogens, as well as the interaction between pathogens and host. 
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Table 1: Comparison of tools used to analyze RNA-seq data from fungal datasets 
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method 
Organism Reads aligner 

Mapped count 

normalization 
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Bruno et al. 

2010 [39••] 

Illumina C. albicans TopHat [7••] RPKM (custom) Hierarchical 

clustering [88] 

Gibbons et al. 

2011 [64•] 

Illumina A. fumigatus Maq [89], 

SeqMap [90] 

RPKM, rSeq 

[91] 

RPKM ratio 

Guida et al. 

2011 [52] 

Illumina C. parapsilosis TopHat RPKM, quartile 

normalization 

Cufflinks 

Haynes et al. 

2011 [74••] 

Illumina C. neoformans TopHat RPKM, quartile 

normalization 

Cufflinks, 

LIMMA [92], 

ELNN [93] 

Yu et al. 2011 

[62] 

Illumina A. flavus CLC Genomics 

Workbench 

(clcbio.com) 

RPKM (custom) CLC Genomics 

Workbench 

Tierney et al. 

2012 [47••] 

Illumina C. albicans, M. 

musculus 

TopHat RPKM baySeq [85] 

Wang et al. 

2012 [67] 

Illumina A. oryzae SOAP [94] RPKM DEGseq [86] 

Nobile et al. 

2012 [41••] 

SOLiD C. albicans Life 
Technologies 

Whole 
Transcriptome 
Software Tools 

[40•] 
(lifetechnologie

s.com) 

pseudo-RPKM Likelihood ratio 

[95] 

Burmester et 

al. 2011 [27••] 

454 A. benhamiae, 

T. verrucosum 

BLAT [96], 

Exalin [97] 

raw counts DESeq [4], edgeR 

[87] 
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