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Abstract—In this paper, we present a formal analysis and area of internal and external parameters of the system where
description of the steady-state behavior of an electrostat vi-  stable harmonic vibrations exist. Based on that knowledge,
bration energy harvester operating in constant-charge mod can predict the most effective operating parameters of the e

and using different types of electromechanical transduces. The . : .
method predicts parameter values required to start oscilltions, VEH (such as the amplitude of the mobile mass displacement)

allows a study of the dynamics of the transient process, and at the design stage, and thereby optimise converted power.
provides a rigorous description of the system, necessary fo  Indeed, most existing conditioning circuits for e-VEHS,[2]

further investigation of the related nonlinear phenomena ad for  [4], [5], [8] operate correctly only in the context of regula
the optimisation of converted power. We show how the system quasi-sinusoidal motion of the resonator, since their aijrey

can be presented as a nonlinear oscillator and be analysed by de is based on the detecti fth . d mini
the multiple scales method, a type of perturbation technige. We mode IS based on the detection of the maximum and minimum

analyse two the most common cases of the transducer geometryOf the transducer capacitance. Theoretically, in a nomesg
and find the amplitude and the phase of steady-state oscilians mode there can be a large number of local maxima and

as functions of parameters. The analytical predictions arshown minima during a particular time interval (e.g., during one
to be in good agreement with the results obtained by behavioal period of the external vibration). In practice, the dynasnié
modeling. . ) L . ..
the system over these intervals are defined by non-idesalitie
Index Terms—electrostatic vibration energy harvesters, steady- of the conditioning circuit (for example, there is always a

state oscillations, multiple scale method, bifurcation aalysis delay in the detection of extrema in realistic circuits) and
are virtually impossible to predict. Such irregular beloavi
|. INTRODUCTION is not compatible with an optimal operating mode of the

Electrostatic (capacitive) vibration energy harvestegs (e-VEH system, and the designer of the e-VEH must avoid
VEHSs) convert kinetic energy of the environment into elecsuch regimes. Hence, the theory should allow the analysis of
trical energy using a capacitive transducer [1]. E-VEHs amgegular modes and clearly indicate the limits betweeniagy
particularly suitable for microscale implementation aravdn and irregular behaviour.
become in recent years the subject of a growing area ofThe work [14] has suggested a general analytical tool for
research [2]-[11]. The main issue of e-VEH design is thanalysis of a resonant electrostatic VEH operating in thdeno
optimization of converted power for given environmentah€o of strong electro-mechanical coupling. The tool proposede
ditions and given limitations of the electrical and meclsahi introduces the amplitude-dependent mechanical impedaince
components [12]. This optimisation requires a tool estingat the nonlinear system “conditioning circuit — capacitivarts-
the converted power for a given set of design parameters aheter” that allows one to use a well-known method of analysis
operation conditions [13], [14]. To date, such a tool isl stibf electrical networks. This tool is comprehensive for #hos
lacking. The architecture and operation of VEHs based avho are familiar with electronic design tools, and it prasd
electrostatic transducers is intrinsically more compleant good agreement with behavioural modeling. However, thos to
for the case of electromagnetic and piezoelectric VEHs [4§ still limited for further exploration of non-regular ba¥iour
[15]-[17]. Because of periodic charge/discharge cyclbs, tand does not take into account the eventual zero-frequency
system is time-variant and cannot be adequately analysdiift of the mobile mass position, which can be significant
with a simple analytical approach such as linearizatiomado for transducers with asymmetric geometry (typically, a-gap
an operating point. The conditioning circuit brings adsh&l closing transducer).
complexity to the system since its architecture and opggati Building on this work, our paper presents a formal approach
mode impact directly the mechanical dynamics of the rebased on the application of the multiple scales method (MSM)
onator. For these reasons, an optimal design of an e-VEd a resonant e-VEH with the most common conditioning
requires a deep understanding of the overall system dymsamizircuit proposed in [4]. In this approach, the system is pre-
including nonlinear effects. sented as a nonlinear oscillator where the electromechlanic

There are practical reasons for developing a theoretidednsducer generates a nonlinear force. With this conditgp
analysis. It allows the prediction and analysis of irregalad circuit, the transducer operates in a constant-chargegtiar
chaotic behavior for realistic configurations of the coiotiing QV energy conversion cycle that is considered as being the
circuit as highlighted in [18]. As a result, one can bound thmost efficient mode of operation [19]. Like the tool in [14],



wherem is the mass of the resonatéris the damping factor,
wo = \/k/m is the natural frequency, is the spring constant,

A..¢ is the acceleration amplitude of external vibrationg,,
is the external frequency andy is the initial phase of the
external vibrations.

The transducer forcg; depends on the transducer voltage
Viran @nd on the mobile mass positian

2
. L L . ft(Ia ‘/tran) = %M (2)
Fig. 1. Schematic view of an electrostatic vibration enengyvester. 2 dx
whereV,,.., IS generated by the conditioning circuit from fig. 1
proposed in [4] that implements the constant-charge trikarg

the proposed method allows one to find parameters of steady/ energy conversion cycle. The conditioning circuit dis-
state oscillations (such as the amplitude and phase) as fugisarges the transducer to zero when the transducer capaita
tions of parameters of the conditioning circuit, the regona is at a local minimum and charges it to a cha@gwhen its
and the external acceleration. In addition, the MSM providgapacitance is at a local maximum. The energy conversion is
a straightforward route for bifurcation and stability arsa¢ achieved when the transducer capacitance decreases geepin
and for the analysis of transient process, and it can easily ils charge constant()). During this process, mechanical
adjusted for different types of nonlinearities such as ime@r energy is converted into electrical energy, and the traresdu
air damping, mechanical (spring) nonlinearity and difféire acts as a damper in the mechanical domain. In the case of
forms of the transducer force. In particular, the analysigansducers with monotonously increasig.., (z) charac-
presented here predicts analytically the irregular behavi teristics, the voltage generated by the transducer depemds
of the eVEH at weak amplitudes discovered previously e sign of the mobile mass velocityi, ., = 0 if & > 0
simulations in a behavioural model [18]. and Viran = QoCran(z(t)) if & < 0. Hence, the force

The validation of the analytical results is carried out bis a piecewise defined function f; = 0 if £ > 0 and
employing mixed VHDL-AMS/Eldo simulations of the e-f, = f,(x, Qo/Cian(x)) otherwise, and will be referred later
VEH described in detail in [14]. Two VHDL-AMS/EIldo as f,(z, ©).
models are considered. The first one is a simplified model thatAt a local maximunof C,,..,,, the conditioning circuit fixes
implements an ideal operating regime of a capacitive trandree electrical quantities on the transducer: the chéjge
ducer in constant-charge mode. The second model implemethts voltagel;, and the energyV,. Only one of the three can
the conditioning circuit described in [4] and takes into@att be fixed independently from the others since they are related
certain effects typical for realistic systems such as wsge by the following expressions:
diodes and finite charging times of the variable capacitors. 1 Q2
Our analysis and simulations are carried out for two types Qo = CinazVo Wy = 30 o 3)
of transducer: a gap-closing transducer whose capacitance ) _ max .
is a hyperbolic function of the displacement and an arg ré Cimqs is the local maximum value of th€'q,. It is

overlap transducer whose capacitance is a linear function'@Portant to understand that;., is a dynamic quantity
the displacement. which may change at each local maximunitf,,, and which

The paper is organised as follows. In Sec. Il we discuss t' xconstant during the time intervals between two conseeuti

architecture of the system and its governing equations: S C‘Zl maxima.Cmaz IS constant in a steady-state harmonic
tion 11l describes the behavioural VHDL-AMS/Eldo models of"09€: - .

the e-VEH. Section IV presents the MSM-based analysis ofAt & local minimumthe three quantities are set to zero. The
the system while and Sec. V gives the results of the appﬁnatiquant'ty (one from the three). that is independently f|xe_d toa
of the MSM methods to transducers with the two geometrig n-zero value at a local maximum depends on the architectur

and discusses the comparison between the simulations 2 qu cond|t|on|ng cireuit. In t_h|s paper, we consider thesi
analytical results. common case valid for the circuit in fig. 1 where the energy

W, is fixed [4] (see the description of the behavioral model
in Sec. Ill).
[I. STATEMENT OF THE PROBLEM Whatever quantity is fixed on the transducer at a local max-

In this section, we introduce the electromechanical mod&UM of Ciran, the charge), does not change until the next
used to describe our VEH devices. A simple electrostafecal minimum of ., is reached. The electromechanical
harvester consists of a resonator, a variable capacitoafist €Nergy conversion is carried out during the time intervateo
ducer)C ., and a conditioning circuit (fig. 1). The resonatofPnding to the motion of the mobile plate fra@y, ., 10 Cin
frame moves due to the external vibrations. The displacem&@Sitions. This energy conversion mode is called in litemwat
2 of the mobile mass with respect to the frame is also affectftf constant-charge operating moaé the transducer, which

by the transducer forcé,. Therefore, the equation defining underlines the fact the transducer keeps a constant ekctri
is charge during the electrical energy generation.

For an area overlap transducer [20], the capacitance is
Z+ (b/m)x + W(Q)x = Aemt COS(Wemtt + 190) + ft/m (1) Ctran = C'0 + Qiran® and ‘/tran = QO/Ctran =




: TABLE |
V2WoChaz/Crran. The expression for the transducer force PARAMETERS OF THE SYSTEMS

in this case is

Area overlap hyperbolic
Wocttran (1+Ctran Tmaz /C
B B ey o N m 50 10 7 kg 200100 kg
fealz, i) = 0 0> 0 (4) b 2.16-1073 Nsm~ L | v/2-10~3 Nsm !
k 150 NnT T 300 NnT T
. . . .. —6
Here z,,4, is the local maximum of:, defined similarly to g{ — 1200‘110074 m
— . m
Crmas. _ Ctran 100 Fm | =
In order to reduce the number of parameters and outline only o 50 10- 2 F —
essential ones, the following normalised variables are4int L 3-10 > H —
duced: timer = wt, dissipation3 = b/(2mwy), normalised XVO <10-1077J <3 1077
external vibration frequenc) = wezt/wo, ¥ = rant/Co, ezt <30 ms < 10 ms
a = ranAest/(Cowd) and kg = a2, Wo/(C3mw?).

Equation (1) is now written as
q @) The transducer and resonator are described by a VHDL-

' +28y +y = fi(y,y) + acos(Qr + 6p) (5) AMS model. We consider two models that have different
] o ) _implementations of the condition circuit from fig. 1. The firs
where the prime denotes the derivative with respect to dimefsqe| employs an ideal simple circuit and the second model
sionless timer and the functionf;(y,y’) is the normalised empioys a circuit that includes certain ‘nonidealitiesititan
version of (4): be found in realistic circuits.

K0(14+Ymaz) y/ <0

N — (1+y)2 >
fea () {0 y >0 ©6) A. VHDL-AMS Model of the Transducer/Resonator

heThe VHDL-AMS language is a powerful tool that allows

The same equation (5) may be used to describe t . . .
system with other types of transducers. For the tra 1%rje to describe physical systems defined by lumped-paramete

ducer with hyperbolic capacitance function [14], [18 |ffetLent(|jaI eq_u?tlons]; ;)I'h;]s '?‘”9“6‘]99 'St part|9utlar]!ytat(;ie ith
Chran(z) = Co/(1 — 2/d), the transducer force is or the description of behaviour of systems interfaced wi

electrical networks [21]. A VHDL-AMS model of the trans-
W 4 <0 ducer/resonator block can be seen as an electrical dipole
fea(z,v) = {g(lmm‘”/d)’ - (7) behaving as a variable capacitor. The capacitance variatio
v >0 . . . . . .
is obtained through resolution of Newtonian equationstemit
Hered is the transducer gap at regt,(,, = 0 and A.,; = 0) for the resonator which also takes into account the fgfice
andz,,q. is the maximum value of displacementIntroduc- generated by the transducer. Presented in [18], the VHDL-
ing the variables and parameters= z/d, a = Acy/(dw?) AMS model of the transducer/resonator block is a system of
andvy = Wy/(d*>mw?), one obtains the force in the form  physical differential equations:

v 1 oC,
o, Y <0 = ~V2 tran —
ft,2(.1/,y') = {(()1 Ymaz) 'S0 (8) ft 2‘/;%1171 or Ciran Ctru,n(x)7
y —kx — px + fr = m& — maeye(t), 9)
In this study, we consider the geometry of the transducers i=4q,

and resonator as fixed (the mass, the natural frequency and

the transducer dimensions are constant), whereas thenakter

acceleration amplitudd.,, and the energy?, are the design Herea..(t) is the known acceleration of the external vibra-

parameters which may vary and affect the behaviour of ttiens, ¢, « andv are the charge, current and voltage through

system. By consequence, for the normalised equation, th#re terminals of the variable transducer capacitor. Theahod

are two control parameters of the dynamical systemand solves these five equations for five unknown quantitigs:

ko for area overlap transducer andand v, for gap-closing #, ¢, Ciran @ndi or v. One of the two latter quantities or

transducer. a relation between them is defined by the electrical network
Numerical examples will be presented with typical paran¢onnected to the modeled dipole.

eters of systems (4) and (7), as given in Table I. The values

are taken from [14] and [16]. B. Mixed VHDL-AMS/Eldo Model of the Conditioning Circuit

In order to formally validate the theory presented in the
paper, we used the conditioning circuit model shown in fig. 2.
The modeling of the e-VEH has been carried out employirts goal is to create an electrical context for the transdticat
a mixed SPICE and behavioural description implemented éxactly corresponds to the constant-charge energy caawmers
the VHDL-AMS/Eldo environment provided with the Ad-regime described by the equations given in Section Il [4].
vanceMS tool of Mentor Graphics. The conditioning circuiThe switchesSW1 and SW2 are driven by short pulses
is implemented as an electrical network described by an Eldorresponding to the moments of local maxima and minima of
netlist (Eldo is a commercial variant of the SPICE simulatorCy,..,,. These pulses are long enough to charge the transducer

q= Ot'ran Viran

IIl. BEHAVIOURAL MODELING OF THEE-VEH



Maximum of Cigy Minimum of Cyyy, TABLE I

H i i H PARAMETERS OFVHDL-AMS/ELDO MODELS

Parameter name Value
Cres 10 uF
Rswi, Rioad 0.0012
Wo
Vo = V2Wo/C max o R for the gap-closing transducer{ 15...25 nJ
CT :| foud for the area overlap transducer: 10...100 nJ
L 10 mH
Vies 3V
Max/min detector orC,qz
sampling frequency: 1 MHz
Max/min detector orC,qz
Fig. 2. Simplified idealised conditioning circuit. sampling frequency: 100 MHz
Transducer-resonator parametgrsAs in table |

at a local maximum ot’;,..., to V and to discharge it through
a small load resistance whéh,..,, reaches a local minimum. Both processes (the inductor and capacitor charging) are
The voltageV; is defined as a function of the value of the locaYery fast and they take place during a time that is negligible
maximum of Cy,..,, through the formulaVy = V2Cyna./2, With respect to the variation period 6f;..,. This is ensured
where W, is a constant parameter of the model. This modgl the appropriate choice of the value of the inductahce
emulates the ideal electrical environment for a transducerAfter that, both switches are closed, and the electrostatic
operating in constant-charge mode and requires few ressurgansducer operates in constant-charge mode. Whigp,
for simulations. It is not realistic and is only used for théeaches a local minimum, the switéhiV'2 is opened, allowing
intermediate theory validation. the transducer to discharge through the inductor. When the
A more realistic model of the conditioning circuit is givervoltage on Ci,..,, is zero (the current in the inductor is
in fig. 3. It is directly based on the circuit presented in [4Jnaximal), the transducer is disconnected from the inductor
Initially, the large reservoir capacitaf,., is charged up to by the switchSTW2. The energy accumulated in the inductor
some voltagé/,.., that is assumed to be constant sin¢e, is transferred ta’,.., through the diodeD1.
is large. The model is provided with blocks described in Table Il presents the numerical parameters of the circuit
VHDL-AMS allowing the detection of a local maximum andoperation and the timing of the switch operation. The maxi-
minimum of Cy,..,, and of a local maximum of the inductormum/minimum detectors regularly sample the input quantity
currently,. and search for a local maximum/minimum by analysing the
When a local maximum of,., is detected, the switch last three sampled points (in practice, the maximum detec-
SW1 is closed for a fixed timer, thus loading the inductor tion is done by analog signal processing [4]). Note that the

to a current characteristic time of the electromechanical energy cive
TVes defined by the rate of the mobile mass motion is much larger
Iy = T (10)  than the time required for the energy transfer betw@gen and

Ciran- Hence, the detector detecting Anmaximum operates
at much higher frequency than tld§,.,,, max/min detector.
Wo = LI?/2 (11) The advantage of this model for our study is that its

After the time 7, SW1 is open and the inductor Currentarchltecture is very close to the realistic circuit and t@mts

flows through the diod®2 and charge€’;...,, (forward charge Ijor dreal||s_|t|c paras[[tr;c effects tSléCh 6:;5 II(Lssest in the fIyOkIJack
transfer). Note that whatever the value ©f,., is at that iodes. However, the presented model has two minor draw-

moment, the inductor gives it the energy, that is a free backs for the theory validation. Firstly, it does not copmsd

design parameter of this architecture and is umquelyedlatexacuy to the mathematical model described in Sec. Il since
it includes the diodes and considers a small finite time for
with L, V.., and .

the charging/discharging processes, and its dynamics reay b
slightly different from those described by the mathemética

The corresponding energy of the inductor is

Maximum A model. Secondly, the simulation time is long. These are the
of Ciran reasons why the idealised circuit of fig. 2 is introduced as an
\& o V_>C intermediate validation step.
R v, Rswi ﬂ
SW1 I:l
L IV. MULTIPLE SCALES METHOD

VT T Cres L% I The method of multiple scales (MSM) is an asymptotic
W2l method that is often applied for the analysis of weakly
- , nonlinear oscillators [22], both autonomous and under ex-
Minimum /ﬂ . Maximum - K . . .
of Cyran” of 1, ternal excitation. The idea behind this method is to present
oscillations in a quasi-harmonic form and to find adjustreent
Fig. 3. Model of the realistic conditioning circuit [4]. to oscillation characteristics, such as amplitude and ghas




that result from the nonlinearity. The methods is known tg;(yo, Doyo) is a periodic function off}, with period 27 (as

be an effective tool for a range of system, from classical theell asy,) and, therefore, we can use the Fourier series for
Duffing’s oscillator [22] to voltage controlled oscilla®f23] the forcef,. Recalling that the system is high-Q resonant, we
and recently was employed to study nonlinear vibrations biit the series to the first harmonic:
piezoelectric harvesters [24]. In this section, the appiomn 5 5

of the MSM to the e-VEH system is presented. More details F1(yo, Doyo) = fola)+ .
about the standard implementation of the method can be found + a1 (a) cos(To + ¢) + bi(a) cos(To + )
in [22].

(18)

where fo, @, and b; are the following coefficients of the

) Fourier series
A. Standard Implementation of the Method

27
In eq. (5), the dimensionless parametgisrg, o and a fola) = 2i fi(acosb, —asinf)df
are relatively small with respect to unity. Since we consile & 3,,
resonant harvester, we also introduce a smaiepresenting d1(a) = 1 Fi(acos, —asind) cos(8)dd (19)
the external vibration frequency mismatch with the natural T Jo
resonance frequency of the resonafoe- 1+o0. To emphasise - 1 % ) ]
the terms with small parameters, we introduce a small giyanti bi(a) = P fe(acost, —asing) sin(6)do

¢ and replace them by the following products: = 3, 0

a = &, ando = 5. We also note the functiong, are Equivalently, in the complex representation
the product of the coefficients, andr, and dimensionless ~ ~ iToti

— ~ ®
ratios containing; or 4,4, SO We can also present = cig fi(yo, Doyo) = fo(a) + [cr(a)e +ecl  (20)
and vy = €. In order to put them into the correct order o

. ) = (Nhere complex; is expressed through real andb
the small parameter in the method, we will notef; = f;. e P g | !

Thus, é1(a) = (a1(a) — ibi(a))/2 (21)

1 !/ / ~ ~
y 220y +y=chily,y) +eacos(r+eo7 4 60) (12) After the solution fory, is substituted into (16b), we collect
The multiple scales method is a perturbation method th#e terms that contairxp(i7y) since they lead to linear
introduces the time scalé§, = <*7. In this case, the systemresonance of the undamped system. Equation (16b) yields one
dynamics defined by the procegér) is now dependent on equation to findy; and one equation for complex(71) :

different time scales. The time derivatives are now given by

d d2 Dgyl +uy1 = fO ) (22a)
= Dy + €D, i D3 4 2e DD, (13) —2i A’ — 2BiAe™ 4 & (a)etTo i 4 22b
T T _ + /261 TotaTi+60) | o — (22b)
where D, = 9/9Ty, k = 0,1,.... For displacemeny, a
standard expansion for perturbation method is used: From expression (22a), it follows that = f, and, as a

(14) consequencey; represents the average (zero frequency) shift

= yo(To, T To, T} . .
y=yo(To, T1) +eya(To, Th), of the mobile mass displacement due to the transducer force.

Equation (12) now can be rewritten as follows Let us denote for convenience:
(D§ + 2eDoD1)(yo + ey1) + 26B(Do + eD1) X Yav = 41 = efo. (23)
X (Yo +eyr) +yo +eyr = efilyo +evn, (15)  Therefore, the total solution will take the form
(Do +eD1)(yo + ey1)] + eacos(To + 611 + bo)
Collecting order$) and1 of the parametet, and neglecting Y(7) = Yo + Y1 = Yo F acos(r +¢) (24)
order2 and higher, we obtain two equations: Dividing (22b) into real and imaginary parts, one obtains
D2yo+1y0 =0, (16a) unatlgns for the slow amplitudeand the phase = 673 +
~ 0o — ©.
Dgy1 +y1 = —2DoD1yo — 28Doyo+ (16b) 3 )
Jt(yo, Doyo) + ccos(Ty + 611 + 6p) = —Ba— bléa) + % sin 1,
_ 25
In (15) the terms withe in the arguments of, give second- . aia) a (25)
order terms in the expansion ¢f over the powers of, hence ay =ac + 2 * 2 cos

we neglect them in (16D). The solution of (16a) is It is relevant to note that this system of differential edpas

Yo = A(T1)e™ + c.c. = a(Ty) cos(t + (T1)) (17) provides information about transient_dynamics of the syiste
and allows one to explore the dynamics around multiple stabl
where the slow complex amplitudd = (a/2)exp(ip) is points and identify different possible stable modes.
expressed through the real slow amplitudeandc.c. stands  Let us find the steady-state solutiag and )y from the
for the complex conjugate. In expression (16b), the fumcticonditiona = 0 and+) = 0. For the phase), one obtains a



set of equations comparison between the model simulations and the theory
in the next section). However, for the gap-closing transduc

%sin Yo = Bag + @, whose force is expressed by (8) the constant shift of oscilla
- i1 (o) (26) tions can be large and even larger than[18]. This leads
%cosz/Jo = —ayg0 — % to a non-negligible error iny,, provided by the standard

_ ) implementation of the MSM that we described in SecAlvV
The equation for the amplitudey can now be found from (26) This error appears from the underestimation of the fofce

Y by (a0) 2 1 (ao) 2 that can be relatively large and that produces the averdfie sh
« ~ ¢ ajla
- = (Bao + A) + <a0c7 + %) (27) of y(7).

4 2 In order to accurately incorporate this effect into the mpde

Expressions (24), (26) and (27) define the steady-state Y& €an use the solution (24) when presentfags a Fourier
sponse of the nonlinear oscillator (5) to the external dgvi &Pansion. Since the transducer forces (8) depend on the

and the nonlinear forcg . Note that by multiplying both sides M@ximum displacement that we definegs.. = yav +a, th(.a
of (27) by €2 we can rewrite this equation with the originalfzOurner co?fﬁuents will be the functions of both,, anda:
values ofa, 3 ando in the same form. fo(Yaw, @), @1(Yaw, a) andby (ya., a). Practically, it means that

The steady-state solution therefore is the Fourier expansion is carried out fiyo + cy1) in (16b).
Equations (26) and (27) are rewritten as
Y(T) = Yaw,0 + ao cos((1 + o)1 + b0y — 1) (28)

. _ a . — Bao + b1 (Yav,0, a0)
where we have used the index ‘0’ to emphasize that 5 Singo = Sag B ' (31)
and+ are steady-state characteristics. a _ @1(Yaw,0, a0)
5 €08 Yo = —apo — 72’

B. Stability of Steady-State Solutions and

Formally,xo = (ao,v0) is a fixed point of the set (25). To 42 [ b1 (Yav.0,a0) ) 2 < | a1 (Yav.0,a0) \ 2
analyse its stability, we introduce small perturbatiangr?) N (ﬂ do+ 2 ) + (aoa + 2 ) (32)
and (T1) to ag andyy and substitutel(71) = ap + a1 and  These equations have three unknown variabesy, ao and
Y(Th) = 1bo + 91 into (25). The linearised system describing),. One more equation is required to obtain a self-consistent
the evolution ofx; = (a1,%1) has the following form system and it is obtained from equation (23) for the average
shift yq.,0, Where we assume thit) depends orzy and on

. 5 b &
(@1) _ -8 - 5 5 cos o <a1) (29) Yavo itself:
W1 L (&+%) — & sing ) \¥n i
. . . . . Yav,0 = fO(yav,Oa aO) (33)
where the matrix is in fact the Jacobian(x) obtained ) ) )
from (25) and taken at = x,. Solving the four expressions given by (31), (32) and (33), we
Thus, stability of the fixed pointo = (ao, 1) is defined by find ap andya, 0 and+y to be used in solution (28).
the eigenvalues of the matrix in (29). According to the Reuth Finally, we briefly note how we derived a criterion similar
Hurwitz criterion, the pointaq, 1) is stable if the following to (30) to obtain the necessary condition for stability. fEhe

conditions are fulfilled: are three actual vgriables in the s_ystem: the a_mpl_itudhe
I : phase) and the shift,,. The evolution ofz andv is given by
264+ 3 + 522 >0 (30) (25) with the difference that now, andb, are functions of:
5, b 5 b -, a, - & and y,,. The third equation that determines the evolution of
2 o1 4 a1 0
(ﬁ t3 ) (ﬁ + 2‘10) + (U t3 ) (0 + 2“0) - Yau 1S Obtained by differentiating expression (33). Therefore

If the above conditions are not fulfilled, the orbit that ifided the dynamics of the variable are given by the equations
by theseay and vy is unstable (a saddle orbit). The above

. .. . . . > B avy o .
stability condition is necessary, but not sufficient. Weenot &= —fa — M + % siny = F(a, Y, Yav),
here that for nonlinear oscillators, it is very typical tiihe . i ( o)
increase of the external force amplitude or other parameter ¢ =46 + 1y2$ + %a cos ) = G(a, Y, Yaw ), (34)
a a

leads to bifurcations of previously stable orbits and evalhy, p
to irregular, chaotic behaviour. Though these dynamics are 5, — % %a = H(a,v,Yav)
beyond the scope of this paper, the results obtained by the 1= 8fo/0yayn Oa
MSM can be used in a further analysis. We report the resufgw x, = (a0, Y0, Yav,0) is a fixed point of (34). Similarly
of this research in [25]. to Sec. I\B, the small perturbations; = (a1, 1, yav,1) from
xq are introduced into (34). The dynamics of the perturbations

C. Improving Accuracy for the Estimation of the Zeroth Harare defined by the equation
monic T

Th . . . x; = J(x)|

e described above algorithm works very well if the

average shifty,, 0 = ey; is relatively small compared to where the Jacobiad(x) is obtained from (34) and taken at
the amplitudea, of oscillations (see the discussion on theg = (ao, %0, Yav,0)- IN this case we obtain a cubic polynomial

x7 (35)

X=Xp



coefficients of the Fourier series are
Jola) = 201 — a)V1 — a2 a6
Ko bi(a) = 2K0 (36)
1—a)(1-a2)2” "7 71 —a)

and they are substituted into (26) and (27). The envelope

of oscillations (i.e the maximumy,,. = Yaw,0 + ao and

the minimMuMy,,in, = Yav,0 — ao values of the oscillation)

as a function of the energiy, is shown in fig. 4 at three

different values of the external acceleratidp,,. Note a slight

asymmetry of the envelope: there is a non-zero average shift

1 of oscillations that becomes more pronouncetd/gt> 50 nJ.

At large accelerationd .., and small energied’, when the

0 20 40 I 60 80 100 oscillations of the resonator are large the system is ntaitis:
there are three coexisting solutions of (27) with one of them

Fig. 4. Area overlap transducer: the envelope (maximum aidmum Unstable according to the criterion (30). Such an unstable

values) of oscillations as a function of the enefgfy at Aca: = 5 m/s®>  solution can never be observed in numerical simulations of

(line 1), Acae = 15 m/s” (Iine 2) andAcge = 25 m/s” (iine 3). Marks 0 o igina| system (5) or in a realistic device. Alternatjy

‘a’ and ‘b’ denote the maximum and minimum values of the dispment . ! ) .
respectively. The zero displacement or the rest positishdsvn by the dashed We can fixWW, and varyA..., to see a bifurcation diagram of

line. Squares show the envelope obtained from VHDL-AMS &itions of  the parameted..; in detail (fig. 5). The two solutions, marked
the idealised model from fig. 2 while circles show the simafe of the by 1 and 3 in fig 5. are stable orbits that one can observe in

=
|

1
W
)

ai(a) = —

=}
=N

| |
)N
)

=

Max/Min displacement y,,, ,,=0uX i/ Cs
= E < S

realistic model from fig. 3. . . . . ) .. .
numerical simulations by setting different initial condits as
is shown, while curve 2 shows the unstable branch.
3 In the case of the gap-closing transducer, the coefficients o
the first Fourier harmonics are
0]
’ = 574 ) - 07
fO (yav a) 2(1 — Yo — a) ai (yav a)
o (37)
b1 (Yao, @) = . av
1\Yav, W(l—ymj—a)

and they are substituted into (31), (32) and (33) in order to
obtain a more accurate solution. The envelope of osciliatio
as a function of the energy/, for the gap-closing transducer
is shown in fig. 6 at different values of the external accéiena

Normalised amplitude a,

o
)
|

f=}
xmax, m[r)/ d

o
=N
|
)
)

Fig. 5. Area overlap transducer: bifurcation diagram verdu,: (at the
fixed energyW, = 375pJ) showing to branches that correspond to stable
orbits (solid lines) and a branch that correspond to an blestarbit (dashed
line). Over a range of the bifurcation parametés.:, the two stable orbits
coexist. Particular examples of oscillations that coroespto the two stable
branches atd.,: = 16 m/s> marked (a) and (b) are shown in fig. 7.

to find the eigenvalues of and we state the same necessary
condition: in order for a solution to be stable, all real pat

Max/Min displacement y,, .,

the eigevalues must be negative. 04 ————rr—1
15 16 17 18 19 20 21 22 23 24 25
W, nJ
V. STEADY-STATE OSCILLATIONS: PARTICULAR Fig. 6. Gap-closing transducer: the envelope (maximum aminmm
EXAMPLES OF THETRANSDUCER values) of oscillations as a function ¥y at Acy: = 3 m/s? (line 1),

Aegt = 5 m/s? (line 2) andAeze = 7 m/s? (line 3). Marks ‘a’ and ‘b’

mp: denote the maximum and minimum values of the displacemesptectively.
A Steady'State Oscillations The zero displacement or the rest position is shown by thieedbline. Squares
show the envelope obtained from VHDL-AMS simulations of tHealised

Let us investigate the two particular cases of the trangduG@odel from fig. 2 while circles show the simulations of theligtiz model
For the area overlap transducer wifh defined as (6), the from fig. 3.



o/C,
=
)
&

C. Necessary Conditions to Start Oscillations
H“”“H From figs. 4 and 6, it is clearly seen that there exist values of

‘ the circuit control parametei®, and the acceleratioA.,; for
{ ‘ \ which there are no positive values of steady-state amgitud
'l ”Ml ap (see, for example, how the lines marked by 1 cross the
‘ ‘H (L B horizontal axis in figs. 4 and 6). Sineg denotes the amplitude

! i i i of oscillations, it has a physical meaning if it is positiWe
0 100 200 300 400 500 can summarise this as follows. At a givé#, there exists
Amir such that the system oscillates Af.,; > A™". And

Hl |‘ Ii ” vice versa, at a givenl,.,; there existij"** such that the
| system oscillates iV, < Wj"**. The existence of a minimal

Normalised displacement y
L

=ax/C,

=)

[e<)
=
G
£

A.. was discovered in a behavioral model in [18]. If this
‘ condition onW, and A.,, is not fulfilled, the operating mode
| of the e-VEH is irregular and uncontrollable in a realistic
: context.
S N P Firstly we give a detailed example for the area overlap
Normalised time t=o,t transducer (6) since the expression f#jf;* and W;"** can
be obtained for it in a very simple form. Let us assume

that ap = 0 in (27). This condition will provide us with a

Normalised displacement y

Fig. 7. Area overlap transducer: coexisting oscillationsiiay = 375pJ
and Acyt = 16 m/s%. Two waveforms corresponds to the lower and upper

branches at the points marked as (a) and (b) in fig. 5. necessary conditioto start oscillations. For the dimensionless
parameters one obtains a simple expression
2 2 2
. . a® = aj(a b1 (a 38
Acqe. In this case the asymmetry of the envelope is stronger: i 0)‘%:0 + b 0”&020 (38)

there are such energid§; that both, maximuny,, o + ap  Substituting (36) into (38), one finds the relations betwien
and minimumy,,, o — ao, are above the rest (zero) position. normalised acceleration™" (or A™%") and given normalised
Note that in this case, there also exist multiple solutians fcircuit parameters;, (or W) :

ap and at certainl¥y and A..,, i.e. formally this system is ) 20 ran Wo

also multistable. However, the other roots of (27) are great Q™" =2k /7, A =
than unity and, as follows from the expressions (8), they
in the “unphysical” region for this system. The only physica
solution is stable according to the criterion describedMg.l

7T’ITLCQ (39)

Il'Iehe inverse expressions that relate the boundary values of
the circuit control parametdi/j*** with some given external
accelerationA.,; are easily obtained from the above. Let
us give a numerical example: what maximal value 18§
B. Comparison with VHDL-AMS/Eldo modelling should be fixed on the transducer to obtain oscillations at
Numerical simulation was carried out with the VHDL—Aczr = 5 m/s*? From (39) it follows that¥j*** = 59 n.J.
AMS/Eldo models described in Sec. IlI. Firstly, we compar&his corresponds exactly to the point in f|g. 4 where the
the simulations with the analytically calculated envelage envelope disappears (thik..; corresponds to the lines 1a and
oscillations in fig. 4 and fig. 6 for the two transducers. Théb). Therefore, no oscillations are possibléfif, > Wi .
results of the VHDL-AMS/Eldo simulations shown by squares For the gap-closing transducer one solves the set of equa-
for the idealised model (from fig. 2) and by circles for théions (32) and (33):
realistic mo_del (from fig. 3). While the idealised model agre o? = a2 (Yaw.0, a0)|a Lt b3 (Yaw,0 @0) |
very well with the theory for the both transducers, there is a !
slight discrepancy with the realistic model. We recall ttred Yav,0 = fo(Yav,0, a0)|¢10:0
realistic model includes certain parasitic effects suctosses and finds the required starting parameter together with the
on the diodes. Therefore, the realistic circuit does notaext resulting average shift. For example, dt,; = 3 m/s?,
mechanical energy from the resonator as effectively as thH&"** = 17.4 n.J, which corresponds to the point in fig. 6
idealised circuit. This causes the amplitude of vibratioms where the envelope disappears (this,; corresponds to the
the resonator to be slightly larger than it could be in theldelines 1a and 1b).
system. Now let us illustrate the presence of the boundary parame-
Fig. 7 presents the simulation results for the normalised diers required for oscillations in simulations of the beloai
placementy(7) obtained with different initial conditiong(0) VHDL-AMS model. Figure 8a shows a slowly growing ramp
andy’(0). Numerical simulations agree with the predictions aff acceleration (inns~2) as a function of the normalised time
the MSM: the amplitude of the waveform 7(a) corresponds to At this A.,., the displacement is obtained as a function of
the point (a) on the lower branch of the bifurcation diagram time, fig. 8b. Below the boundary value af"*, the dynamics
while the amplitude in fig. 7(b) corresponds to the uppef the system are irregular with many local maxima detected
branch of that diagram and is marked as (b). We note thiatone period of oscillations (fig. 8c). As soon as the thré&tho
in this case the observed dynamics are somewhat similarafo A.,; is passed, the oscillations are harmonic with one
those of the Duffing oscillator under a harmonic excitation. maximum detected during one period of oscillations (fig.. 8d)

a0=0 (40)
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Fig. 8. Area overlap transducer: (a) slowly growing ramp Af.: (the

envelope of the external oscillations) and (b) correspupdlisplacement of
the harvester as functions of normalised time. Two magnifiageforms show
the case when no regular oscillations are observed (c) areh valarmonic
oscillations have started (d).

VI. DIscUsSION ANDCONCLUSIONS

In this section we give a discussion of our theoretical,
approach, highlight the difference with the analytical Itoo
from [14] and point out the immediate practical value of the

results for design of e-VEHSs.

The MSM is known as a powerful and flexible method for
analysis of nonlinear systems. The two main practical benefi

that we obtained from the theory are

- It allowed us to obtain equations that fully describe the

of different nonlinearities. This will allow the explorati of
nonlinear effects that seem to be very promising for widgnin
the frequency response of the system [27]-[29].

The limitations of the method follow from limitations that
are inherit in perturbation techniques. Firstly, there igeay
general condition for all perturbation methods that nonlin
earities should be relatively small (this ‘smallness’ cam b
easily established in the normalised dimensionless emuati
by comparing the parameters of the nonlinear terms with
unity). In our case, this is equivalent to stating that theg t
method will work while oscillations can be described as guas
harmonic. As is shown by the simulations based on the VHDL-
AMS model, this is typically the case for the system over a
wide range of parameters. Secondly, despite the flexilulity
the MSM, it demands that nonlinear terms should be arranged
accurately with respect to the order of the small parameter
We note that for the gap-closing transducer we have overcome
this difficulty by introducing a modification of the standard
MSM implementation where we compensate an error that
appeared due to the large constant shiff.o.

We also point out that all analytical results are verified by
simulations of a realistic behavioral model carried outhwit
VHDL-AMS/Eldo simulators.
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