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Abstract—In this paper, we present a formal analysis and
description of the steady-state behavior of an electrostatic vi-
bration energy harvester operating in constant-charge mode
and using different types of electromechanical transducers. The
method predicts parameter values required to start oscillations,
allows a study of the dynamics of the transient process, and
provides a rigorous description of the system, necessary for
further investigation of the related nonlinear phenomena and for
the optimisation of converted power. We show how the system
can be presented as a nonlinear oscillator and be analysed by
the multiple scales method, a type of perturbation technique. We
analyse two the most common cases of the transducer geometry
and find the amplitude and the phase of steady-state oscillations
as functions of parameters. The analytical predictions areshown
to be in good agreement with the results obtained by behavioural
modeling.

Index Terms—electrostatic vibration energy harvesters, steady-
state oscillations, multiple scale method, bifurcation analysis

I. I NTRODUCTION

Electrostatic (capacitive) vibration energy harvesters (e-
VEHs) convert kinetic energy of the environment into elec-
trical energy using a capacitive transducer [1]. E-VEHs are
particularly suitable for microscale implementation and have
become in recent years the subject of a growing area of
research [2]–[11]. The main issue of e-VEH design is the
optimization of converted power for given environmental con-
ditions and given limitations of the electrical and mechanical
components [12]. This optimisation requires a tool estimating
the converted power for a given set of design parameters and
operation conditions [13], [14]. To date, such a tool is still
lacking. The architecture and operation of VEHs based on
electrostatic transducers is intrinsically more complex than
for the case of electromagnetic and piezoelectric VEHs [4],
[15]–[17]. Because of periodic charge/discharge cycles, the
system is time-variant and cannot be adequately analysed
with a simple analytical approach such as linearization around
an operating point. The conditioning circuit brings additional
complexity to the system since its architecture and operating
mode impact directly the mechanical dynamics of the res-
onator. For these reasons, an optimal design of an e-VEH
requires a deep understanding of the overall system dynamics,
including nonlinear effects.

There are practical reasons for developing a theoretical
analysis. It allows the prediction and analysis of irregular and
chaotic behavior for realistic configurations of the conditioning
circuit as highlighted in [18]. As a result, one can bound the

area of internal and external parameters of the system where
stable harmonic vibrations exist. Based on that knowledge,one
can predict the most effective operating parameters of the e-
VEH (such as the amplitude of the mobile mass displacement)
at the design stage, and thereby optimise converted power.

Indeed, most existing conditioning circuits for e-VEHs [2],
[4], [5], [8] operate correctly only in the context of regular
quasi-sinusoidal motion of the resonator, since their operating
mode is based on the detection of the maximum and minimum
of the transducer capacitance. Theoretically, in a non-regular
mode there can be a large number of local maxima and
minima during a particular time interval (e.g., during one
period of the external vibration). In practice, the dynamics of
the system over these intervals are defined by non-idealities
of the conditioning circuit (for example, there is always a
delay in the detection of extrema in realistic circuits) and
are virtually impossible to predict. Such irregular behaviour
is not compatible with an optimal operating mode of the
e-VEH system, and the designer of the e-VEH must avoid
such regimes. Hence, the theory should allow the analysis of
irregular modes and clearly indicate the limits between regular
and irregular behaviour.

The work [14] has suggested a general analytical tool for
analysis of a resonant electrostatic VEH operating in the mode
of strong electro-mechanical coupling. The tool proposed there
introduces the amplitude-dependent mechanical impedanceof
the nonlinear system “conditioning circuit – capacitive trans-
ducer” that allows one to use a well-known method of analysis
of electrical networks. This tool is comprehensive for those
who are familiar with electronic design tools, and it provides a
good agreement with behavioural modeling. However, this tool
is still limited for further exploration of non-regular behaviour
and does not take into account the eventual zero-frequency
shift of the mobile mass position, which can be significant
for transducers with asymmetric geometry (typically, a gap-
closing transducer).

Building on this work, our paper presents a formal approach
based on the application of the multiple scales method (MSM)
to a resonant e-VEH with the most common conditioning
circuit proposed in [4]. In this approach, the system is pre-
sented as a nonlinear oscillator where the electromechanical
transducer generates a nonlinear force. With this conditioning
circuit, the transducer operates in a constant-charge triangular
QV energy conversion cycle that is considered as being the
most efficient mode of operation [19]. Like the tool in [14],
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Fig. 1. Schematic view of an electrostatic vibration energyharvester.

the proposed method allows one to find parameters of steady-
state oscillations (such as the amplitude and phase) as func-
tions of parameters of the conditioning circuit, the resonator
and the external acceleration. In addition, the MSM provides
a straightforward route for bifurcation and stability analysis
and for the analysis of transient process, and it can easily be
adjusted for different types of nonlinearities such as nonlinear
air damping, mechanical (spring) nonlinearity and different
forms of the transducer force. In particular, the analysis
presented here predicts analytically the irregular behaviour
of the eVEH at weak amplitudes discovered previously by
simulations in a behavioural model [18].

The validation of the analytical results is carried out by
employing mixed VHDL–AMS/Eldo simulations of the e-
VEH described in detail in [14]. Two VHDL–AMS/Eldo
models are considered. The first one is a simplified model that
implements an ideal operating regime of a capacitive trans-
ducer in constant-charge mode. The second model implements
the conditioning circuit described in [4] and takes into account
certain effects typical for realistic systems such as losses in
diodes and finite charging times of the variable capacitors.
Our analysis and simulations are carried out for two types
of transducer: a gap-closing transducer whose capacitance
is a hyperbolic function of the displacement and an area
overlap transducer whose capacitance is a linear function of
the displacement.

The paper is organised as follows. In Sec. II we discuss the
architecture of the system and its governing equations. Sec-
tion III describes the behavioural VHDL-AMS/Eldo models of
the e-VEH. Section IV presents the MSM-based analysis of
the system while and Sec. V gives the results of the application
of the MSM methods to transducers with the two geometries
and discusses the comparison between the simulations and
analytical results.

II. STATEMENT OF THE PROBLEM

In this section, we introduce the electromechanical model
used to describe our VEH devices. A simple electrostatic
harvester consists of a resonator, a variable capacitor (a trans-
ducer)Ctran and a conditioning circuit (fig. 1). The resonator
frame moves due to the external vibrations. The displacement
x of the mobile mass with respect to the frame is also affected
by the transducer forceft. Therefore, the equation definingx
is

ẍ+ (b/m)ẋ+ ω2
0x = Aext cos(ωextt+ ϑ0) + ft/m (1)

wherem is the mass of the resonator,b is the damping factor,
ω0 =

√

k/m is the natural frequency,k is the spring constant,
Aext is the acceleration amplitude of external vibrations,ωext

is the external frequency andϑ0 is the initial phase of the
external vibrations.

The transducer forceft depends on the transducer voltage
Vtran and on the mobile mass positionx:

ft(x, Vtran) =
V 2
tran

2

dCtran

dx
(2)

whereVtran is generated by the conditioning circuit from fig. 1
proposed in [4] that implements the constant-charge triangular
QV energy conversion cycle. The conditioning circuit dis-
charges the transducer to zero when the transducer capacitance
is at a local minimum and charges it to a chargeQ0 when its
capacitance is at a local maximum. The energy conversion is
achieved when the transducer capacitance decreases keeping
its charge constant (Q0). During this process, mechanical
energy is converted into electrical energy, and the transducer
acts as a damper in the mechanical domain. In the case of
transducers with monotonously increasingCtran(x) charac-
teristics, the voltage generated by the transducer dependson
the sign of the mobile mass velocity:Vtran = 0 if ẋ > 0
and Vtran = Q0Ctran(x(t)) if ẋ < 0. Hence, the force
is a piecewise defined function :ft = 0 if ẋ > 0 and
ft = ft(x,Q0/Ctran(x)) otherwise, and will be referred later
asft(x, ẋ).

At a local maximumof Ctran, the conditioning circuit fixes
three electrical quantities on the transducer: the chargeQ0,
the voltageV0 and the energyW0. Only one of the three can
be fixed independently from the others since they are related
by the following expressions:

Q0 = CmaxV0 , W0 =
1

2

Q2
0

Cmax
(3)

HereCmax is the local maximum value of theCtran. It is
important to understand thatCmax is a dynamic quantity
which may change at each local maximum ofCtran and which
is constant during the time intervals between two consecutive
local maxima.Cmax is constant in a steady-state harmonic
mode.

At a local minimumthe three quantities are set to zero. The
quantity (one from the three) that is independently fixed to a
non-zero value at a local maximum depends on the architecture
of the conditioning circuit. In this paper, we consider the most
common case valid for the circuit in fig. 1 where the energy
W0 is fixed [4] (see the description of the behavioral model
in Sec. III).

Whatever quantity is fixed on the transducer at a local max-
imum ofCtran, the chargeQ0 does not change until the next
local minimum ofCtran is reached. The electromechanical
energy conversion is carried out during the time interval corre-
sponding to the motion of the mobile plate fromCmax toCmin

positions. This energy conversion mode is called in literature
the constant-charge operating modeof the transducer, which
underlines the fact the transducer keeps a constant electrical
charge during the electrical energy generation.

For an area overlap transducer [20], the capacitance is
Ctran = C0 + αtranx and Vtran = Q0/Ctran =
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√
2W0Cmax/Ctran. The expression for the transducer force

in this case is

ft,1(x, ẋ) =

{

W0αtran(1+αtranxmax/C0)
C0(1+αtranx/C0)2

, v ≤ 0

0 v > 0
(4)

Here xmax is the local maximum ofx, defined similarly to
Cmax.

In order to reduce the number of parameters and outline only
essential ones, the following normalised variables are intro-
duced: timeτ = ω0t, dissipationβ = b/(2mω0), normalised
external vibration frequencyΩ = ωext/ω0, y = αtranx/C0,
α = αtranAext/(C0ω

2
0) and κ0 = α2

tranW0/(C
2
0mω

2
0).

Equation (1) is now written as

y′′ + 2βy′ + y = ft(y, y
′) + α cos(Ωτ + θ0) (5)

where the prime denotes the derivative with respect to dimen-
sionless timeτ and the functionft(y, y′) is the normalised
version of (4):

ft,1(y, y
′) =

{

κ0(1+ymax)
(1+y)2 , y′ ≤ 0

0 y′ > 0
(6)

The same equation (5) may be used to describe the
system with other types of transducers. For the trans-
ducer with hyperbolic capacitance function [14], [18]
Ctran(x) = C0/(1− x/d), the transducer force is

ft,2(x, v) =

{

W0

d(1−xmax/d)
, v ≤ 0

0 v > 0
(7)

Hered is the transducer gap at rest (ftran = 0 andAext = 0)
andxmax is the maximum value of displacementx. Introduc-
ing the variables and parametersy = x/d, α = Aext/(dω

2
0)

andν0 =W0/(d
2mω2

0), one obtains the force in the form

ft,2(y, y
′) =

{

ν0
(1−ymax)

, y′ ≤ 0

0 y′ > 0
(8)

In this study, we consider the geometry of the transducers
and resonator as fixed (the mass, the natural frequency and
the transducer dimensions are constant), whereas the external
acceleration amplitudeAext and the energyW0 are the design
parameters which may vary and affect the behaviour of the
system. By consequence, for the normalised equation, there
are two control parameters of the dynamical system:α and
κ0 for area overlap transducer andα and ν0 for gap-closing
transducer.

Numerical examples will be presented with typical param-
eters of systems (4) and (7), as given in Table I. The values
are taken from [14] and [16].

III. B EHAVIOURAL MODELING OF THEE-VEH

The modeling of the e-VEH has been carried out employing
a mixed SPICE and behavioural description implemented in
the VHDL-AMS/Eldo environment provided with the Ad-
vanceMS tool of Mentor Graphics. The conditioning circuit
is implemented as an electrical network described by an Eldo
netlist (Eldo is a commercial variant of the SPICE simulator).

TABLE I
PARAMETERS OF THE SYSTEMS

Area overlap hyperbolic
m 50 · 10−6 kg 200 · 10−6 kg
b 2.16 · 10−3 Nsm−1

√

2 · 10−3 Nsm−1

k 150 Nm−1 300 Nm−1

d — 20 · 10−6 m
S — 10 · 10−4 m2

αtran 10−6 Fm−1 —
C0 150 · 10−12 F —
L 3 · 10−3 H —-
W0 < 10 · 10−8 J < 3 · 10−8 J
Aext < 30 ms−2 < 10 ms−2

The transducer and resonator are described by a VHDL-
AMS model. We consider two models that have different
implementations of the condition circuit from fig. 1. The first
model employs an ideal simple circuit and the second model
employs a circuit that includes certain ‘nonidealities’ that can
be found in realistic circuits.

A. VHDL-AMS Model of the Transducer/Resonator

The VHDL-AMS language is a powerful tool that allows
one to describe physical systems defined by lumped-parameter
differential equations. This language is particularly suitable
for the description of behaviour of systems interfaced with
electrical networks [21]. A VHDL-AMS model of the trans-
ducer/resonator block can be seen as an electrical dipole
behaving as a variable capacitor. The capacitance variation
is obtained through resolution of Newtonian equations written
for the resonator which also takes into account the forceft
generated by the transducer. Presented in [18], the VHDL-
AMS model of the transducer/resonator block is a system of
physical differential equations:

ft =
1

2
V 2
tran

∂Ctran

∂x
, Ctran = Ctran(x),

− kx− µẋ+ ft = mẍ−maext(t),

i = q̇,

q = CtranVtran

(9)

Hereaext(t) is the known acceleration of the external vibra-
tions, q, i and v are the charge, current and voltage through
the terminals of the variable transducer capacitor. The model
solves these five equations for five unknown quantities:ft,
x, q, Ctran and i or v. One of the two latter quantities or
a relation between them is defined by the electrical network
connected to the modeled dipole.

B. Mixed VHDL-AMS/Eldo Model of the Conditioning Circuit

In order to formally validate the theory presented in the
paper, we used the conditioning circuit model shown in fig. 2.
Its goal is to create an electrical context for the transducer that
exactly corresponds to the constant-charge energy conversion
regime described by the equations given in Section II [4].
The switchesSW1 and SW2 are driven by short pulses
corresponding to the moments of local maxima and minima of
Ctran. These pulses are long enough to charge the transducer
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Fig. 2. Simplified idealised conditioning circuit.

at a local maximum ofCtran to V0 and to discharge it through
a small load resistance whenCtran reaches a local minimum.
The voltageV0 is defined as a function of the value of the local
maximum ofCtran through the formulaW0 = V 2

0 Cmax/2,
whereW0 is a constant parameter of the model. This model
emulates the ideal electrical environment for a transducer
operating in constant-charge mode and requires few resources
for simulations. It is not realistic and is only used for the
intermediate theory validation.

A more realistic model of the conditioning circuit is given
in fig. 3. It is directly based on the circuit presented in [4].
Initially, the large reservoir capacitorCres is charged up to
some voltageVres that is assumed to be constant sinceCres

is large. The model is provided with blocks described in
VHDL-AMS allowing the detection of a local maximum and
minimum of Ctran and of a local maximum of the inductor
currentIL.

When a local maximum ofCres is detected, the switch
SW1 is closed for a fixed timeτ , thus loading the inductor
to a current

IL =
τVres
L

(10)

The corresponding energy of the inductor is

W0 = LI2L/2 (11)

After the time τ , SW1 is open and the inductor current
flows through the diodeD2 and chargesCtran (forward charge
transfer). Note that whatever the value ofCtran is at that
moment, the inductor gives it the energyW0 that is a free
design parameter of this architecture and is uniquely related
with L, Vres andτ .
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Fig. 3. Model of the realistic conditioning circuit [4].

TABLE II
PARAMETERS OFVHDL-AMS/ELDO MODELS

Parameter name Value
Cres 10 µF

RSW1, Rload 0.001Ω
W0

for the gap-closing transducer: 15...25 nJ
for the area overlap transducer: 10...100 nJ

L 10 mH
Vres 3V

Max/min detector onCmax

sampling frequency: 1 MHz
Max/min detector onCmax

sampling frequency: 100 MHz
Transducer-resonator parametersAs in table I

Both processes (the inductor and capacitor charging) are
very fast and they take place during a time that is negligible
with respect to the variation period ofCtran. This is ensured
by the appropriate choice of the value of the inductanceL.

After that, both switches are closed, and the electrostatic
transducer operates in constant-charge mode. WhenCtran

reaches a local minimum, the switchSW2 is opened, allowing
the transducer to discharge through the inductor. When the
voltage on Ctran is zero (the current in the inductor is
maximal), the transducer is disconnected from the inductor
by the switchSW2. The energy accumulated in the inductor
is transferred toCres through the diodeD1.

Table II presents the numerical parameters of the circuit
operation and the timing of the switch operation. The maxi-
mum/minimum detectors regularly sample the input quantity
and search for a local maximum/minimum by analysing the
last three sampled points (in practice, the maximum detec-
tion is done by analog signal processing [4]). Note that the
characteristic time of the electromechanical energy conversion
defined by the rate of the mobile mass motion is much larger
than the time required for the energy transfer betweenCres and
Ctran. Hence, the detector detecting anIL maximum operates
at much higher frequency than theCtran max/min detector.

The advantage of this model for our study is that its
architecture is very close to the realistic circuit and it accounts
for realistic parasitic effects such as losses in the flyback
diodes. However, the presented model has two minor draw-
backs for the theory validation. Firstly, it does not correspond
exactly to the mathematical model described in Sec. II since
it includes the diodes and considers a small finite time for
the charging/discharging processes, and its dynamics may be
slightly different from those described by the mathematical
model. Secondly, the simulation time is long. These are the
reasons why the idealised circuit of fig. 2 is introduced as an
intermediate validation step.

IV. M ULTIPLE SCALES METHOD

The method of multiple scales (MSM) is an asymptotic
method that is often applied for the analysis of weakly
nonlinear oscillators [22], both autonomous and under ex-
ternal excitation. The idea behind this method is to present
oscillations in a quasi-harmonic form and to find adjustments
to oscillation characteristics, such as amplitude and phase,
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that result from the nonlinearity. The methods is known to
be an effective tool for a range of system, from classical the
Duffing’s oscillator [22] to voltage controlled oscillators [23]
and recently was employed to study nonlinear vibrations of
piezoelectric harvesters [24]. In this section, the application
of the MSM to the e-VEH system is presented. More details
about the standard implementation of the method can be found
in [22].

A. Standard Implementation of the Method

In eq. (5), the dimensionless parametersβ, κ0, ν0 and α
are relatively small with respect to unity. Since we consider a
resonant harvester, we also introduce a smallσ representing
the external vibration frequency mismatch with the natural
resonance frequency of the resonator:Ω = 1+σ. To emphasise
the terms with small parameters, we introduce a small quantity
ε and replace them by the following products:β = εβ̃,
α = εα̃, and σ = εσ̃. We also note the functionsft are
the product of the coefficientsκ0 and ν0 and dimensionless
ratios containingy or ymax, so we can also presentκ0 = εκ̃0
and ν0 = εν̃0. In order to put them into the correct order of
the small parameterε in the method, we will noteft = εf̃t.
Thus,

y′′ + 2εβ̃y′ + y = εf̃t(y, y
′) + εα̃ cos(τ + εσ̃τ + θ0) (12)

The multiple scales method is a perturbation method that
introduces the time scalesTk = εkτ . In this case, the system
dynamics defined by the processy(τ) is now dependent on
different time scales. The time derivatives are now given by

d

dτ
= D0 + εD1,

d2

dτ2
= D2

0 + 2εD0D1 (13)

whereDk = ∂/∂Tk, k = 0, 1, . . .. For displacementy, a
standard expansion for perturbation method is used:

y = y0(T0, T1) + εy1(T0, T1), (14)

Equation (12) now can be rewritten as follows

(D2
0 + 2εD0D1)(y0 + εy1) + 2εβ̃(D0 + εD1)×

× (y0 + εy1) + y0 + εy1 = εf̃t [y0 + εy1,

(D0 + εD1)(y0 + εy1)] + εα̃ cos(T0 + σ̃T1 + θ0)

(15)

Collecting orders0 and1 of the parameterε, and neglecting
order2 and higher, we obtain two equations:

D2
0y0 + y0 = 0 , (16a)

D2
0y1 + y1 = −2D0D1y0 − 2β̃D0y0+

f̃t(y0, D0y0) + α̃ cos(T0 + σ̃T1 + θ0)
(16b)

In (15) the terms withε in the arguments of̃ft give second-
order terms in the expansion offt over the powers ofε, hence
we neglect them in (16b). The solution of (16a) is

y0 = A(T1)e
iT0 + c.c. = a(T1) cos(τ + ϕ(T1)) (17)

where the slow complex amplitudeA = (a/2) exp(iϕ) is
expressed through the real slow amplitudea, andc.c. stands
for the complex conjugate. In expression (16b), the function

f̃t(y0, D0y0) is a periodic function ofT0 with period2π (as
well as y0) and, therefore, we can use the Fourier series for
the forcef̃t. Recalling that the system is high-Q resonant, we
limit the series to the first harmonic:

f̃t(y0, D0y0) = f̃0(a)+

+ ã1(a) cos(T0 + ϕ) + b̃1(a) cos(T0 + ϕ)
(18)

where f̃0, ã1 and b̃1 are the following coefficients of the
Fourier series

f̃0(a) =
1

2π

∫ 2π

0

f̃t(a cos θ,−a sin θ)dθ

ã1(a) =
1

π

∫ 2π

0

f̃t(a cos θ,−a sin θ) cos(θ)dθ

b̃1(a) =
1

π

∫ 2π

0

f̃t(a cos θ,−a sin θ) sin(θ)dθ

(19)

Equivalently, in the complex representation

f̃t(y0, D0y0) = f̃0(a) + [c̃1(a)e
iT0+iϕ + c.c.] (20)

where complex̃c1 is expressed through realã1 and b̃1

c̃1(a) = (ã1(a)− ib̃1(a))/2 (21)

After the solution fory0 is substituted into (16b), we collect
the terms that containexp(iT0) since they lead to linear
resonance of the undamped system. Equation (16b) yields one
equation to findy1 and one equation for complexA(T1) :

D2
0y1 + y1 = f̃0 , (22a)

− 2iȦeiT0 − 2β̃iAeiT0 + c̃1(a)e
iT0+iϕ+

+ α̃/2ei(T0+σ̃T1+θ0) + c.c. = 0
(22b)

From expression (22a), it follows thaty1 = f̃0 and, as a
consequence,εy1 represents the average (zero frequency) shift
of the mobile mass displacement due to the transducer force.
Let us denote for convenience:

yav = εy1 = εf̃0. (23)

Therefore, the total solution will take the form

y(τ) = y0 + εy1 = yav + a cos(τ + ϕ) (24)

Dividing (22b) into real and imaginary parts, one obtains
equations for the slow amplitudea and the phaseψ = σ̃T1 +
θ0 − ϕ:

ȧ = −β̃a− b̃1(a)

2
+
α̃

2
sinψ,

aψ̇ = aσ̃ +
ã1(a)

2
+
α̃

2
cosψ

(25)

It is relevant to note that this system of differential equations
provides information about transient dynamics of the system,
and allows one to explore the dynamics around multiple stable
points and identify different possible stable modes.

Let us find the steady-state solutiona0 and ψ0 from the
condition ȧ = 0 and ψ̇ = 0. For the phaseψ0 one obtains a
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set of equations

α̃

2
sinψ0 = β̃a0 +

b̃1(a0)

2
,

α̃

2
cosψ0 = −a0σ̃ − ã1(a0)

2

(26)

The equation for the amplitudea0 can now be found from (26)

α̃2

4
=

(

β̃a0 +
b̃1(a0)

2

)2

+

(

a0σ̃ +
ã1(a0)

2

)2

(27)

Expressions (24), (26) and (27) define the steady-state re-
sponse of the nonlinear oscillator (5) to the external driving
and the nonlinear forceft. Note that by multiplying both sides
of (27) by ε2 we can rewrite this equation with the original
values ofα, β andσ in the same form.

The steady-state solution therefore is

y(τ) = yav,0 + a0 cos((1 + σ)τ + θ0 − ψ) (28)

where we have used the index ‘0’ to emphasize thatyav, a
andψ are steady-state characteristics.

B. Stability of Steady-State Solutions

Formally,x0 = (a0, ψ0) is a fixed point of the set (25). To
analyse its stability, we introduce small perturbationsa1(T1)
andψ1(T1) to a0 andψ0 and substitutea(T1) = a0 + a1 and
ψ(T1) = ψ0 + ψ1 into (25). The linearised system describing
the evolution ofx1 = (a1, ψ1) has the following form

(

ȧ1
ψ̇1

)

=

(

−β̃ − b̃′
1

2
α̃
2 cosψ0

1
a0

(

σ̃ +
ã′

1

2

)

− α̃
2a0

sinψ0

)

(

a1
ψ1

)

(29)

where the matrix is in fact the JacobianJ(x) obtained
from (25) and taken atx = x0.

Thus, stability of the fixed pointx0 = (a0, ψ0) is defined by
the eigenvalues of the matrix in (29). According to the Routh-
Hurwitz criterion, the point(a0, ψ0) is stable if the following
conditions are fulfilled:

2β̃ +
b̃′
1

2 + b̃1
2a0

> 0
(

β̃ +
b̃′
1

2

)(

β̃ + b̃1
2a0

)

+
(

σ̃ +
ã′

1

2

)(

σ̃ + ã1

2a0

)

> 0
(30)

If the above conditions are not fulfilled, the orbit that is defined
by thesea0 and ψ0 is unstable (a saddle orbit). The above
stability condition is necessary, but not sufficient. We note
here that for nonlinear oscillators, it is very typical thatthe
increase of the external force amplitude or other parameters
leads to bifurcations of previously stable orbits and eventually,
to irregular, chaotic behaviour. Though these dynamics are
beyond the scope of this paper, the results obtained by the
MSM can be used in a further analysis. We report the results
of this research in [25].

C. Improving Accuracy for the Estimation of the Zeroth Har-
monic

The described above algorithm works very well if the
average shiftyav,0 = εy1 is relatively small compared to
the amplitudea0 of oscillations (see the discussion on the

comparison between the model simulations and the theory
in the next section). However, for the gap-closing transducer
whose force is expressed by (8) the constant shift of oscilla-
tions can be large and even larger thana0 [18]. This leads
to a non-negligible error inyav provided by the standard
implementation of the MSM that we described in Sec. IVA.
This error appears from the underestimation of the forcef̃t
that can be relatively large and that produces the average shift
of y(τ).

In order to accurately incorporate this effect into the model,
we can use the solution (24) when presentingf̃t as a Fourier
expansion. Since the transducer forces (8) depend on the
maximum displacement that we define asymax = yav+a, the
Fourier coefficients will be the functions of both,yav anda:
f̃0(yav, a), ã1(yav, a) andb̃1(yav, a). Practically, it means that
the Fourier expansion is carried out forf̃t(y0 + εy1) in (16b).
Equations (26) and (27) are rewritten as

α̃

2
sinψ0 = β̃a0 +

b̃1(yav,0, a0)

2
,

α̃

2
cosψ0 = −a0σ̃ − ã1(yav,0, a0)

2

(31)

and

α̃2

4 =
(

β̃a0 +
b̃1(yav,0,a0)

2

)2

+
(

a0σ̃ +
ã1(yav,0,a0)

2

)2

(32)

These equations have three unknown variables:yav,0, a0 and
ψ0. One more equation is required to obtain a self-consistent
system and it is obtained from equation (23) for the average
shift yav,0, where we assume that̃f0 depends ona0 and on
yav,0 itself:

yav,0 = f̃0(yav,0, a0) (33)

Solving the four expressions given by (31), (32) and (33), we
find a0 andyav,0 andψ0 to be used in solution (28).

Finally, we briefly note how we derived a criterion similar
to (30) to obtain the necessary condition for stability. There
are three actual variables in the system: the amplitudea, the
phaseψ and the shiftyav. The evolution ofa andψ is given by
(25) with the difference that now̃a1 and b̃1 are functions ofa
and yav. The third equation that determines the evolution of
yav is obtained by differentiating expression (33). Therefore,
the dynamics of the variable are given by the equations

ȧ = −β̃a− b̃1(yav, a)

2
+
α̃

2
sinψ = F (a, ψ, yav),

ψ̇ = σ̃ +
ã1(yav, a)

2a
+

α̃

2a
cosψ = G(a, ψ, yav),

ẏav =
1

1− ∂f̃0/∂yav

∂f̃0
∂a

ȧ = H(a, ψ, yav)

(34)

Now x0 = (a0, ψ0, yav,0) is a fixed point of (34). Similarly
to Sec. IVB, the small perturbationsx1 = (a1, ψ1, yav,1) from
x0 are introduced into (34). The dynamics of the perturbations
are defined by the equation

ẋ
T
1 = J(x)|

x=x0
x
T
1 (35)

where the JacobianJ(x) is obtained from (34) and taken at
x0 = (a0, ψ0, yav,0). In this case we obtain a cubic polynomial
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Fig. 4. Area overlap transducer: the envelope (maximum and minimum
values) of oscillations as a function of the energyW0 at Aext = 5 m/s2

(line 1), Aext = 15 m/s2 (line 2) andAext = 25 m/s2 (line 3). Marks
‘a’ and ‘b’ denote the maximum and minimum values of the displacement
respectively. The zero displacement or the rest position isshown by the dashed
line. Squares show the envelope obtained from VHDL-AMS simulations of
the idealised model from fig. 2 while circles show the simulations of the
realistic model from fig. 3.
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Fig. 5. Area overlap transducer: bifurcation diagram versus Aext (at the
fixed energyW0 = 375pJ) showing to branches that correspond to stable
orbits (solid lines) and a branch that correspond to an unstable orbit (dashed
line). Over a range of the bifurcation parameterAext, the two stable orbits
coexist. Particular examples of oscillations that correspond to the two stable
branches atAext = 16 m/s2 marked (a) and (b) are shown in fig. 7.

to find the eigenvalues ofJ and we state the same necessary
condition: in order for a solution to be stable, all real parts of
the eigevalues must be negative.

V. STEADY-STATE OSCILLATIONS: PARTICULAR

EXAMPLES OF THETRANSDUCER

A. Steady-State Oscillations

Let us investigate the two particular cases of the transducer.
For the area overlap transducer withft defined as (6), the

coefficients of the Fourier series are

f0(a) =
κ0

2(1− a)
√
1− a2

a1(a) = − κ0a

(1− a)(1 − a2)1/2
, b1(a) =

2κ0
π(1 − a)

(36)

and they are substituted into (26) and (27). The envelope
of oscillations (i.e the maximumymax = yav,0 + a0 and
the minimumymin = yav,0 − a0 values of the oscillation)
as a function of the energyW0 is shown in fig. 4 at three
different values of the external accelerationAext. Note a slight
asymmetry of the envelope: there is a non-zero average shift
of oscillations that becomes more pronounced atW0 > 50 nJ .

At large accelerationsAext and small energiesW0 when the
oscillations of the resonator are large the system is multistable:
there are three coexisting solutions of (27) with one of them
unstable according to the criterion (30). Such an unstable
solution can never be observed in numerical simulations of
the original system (5) or in a realistic device. Alternatively,
we can fixW0 and varyAext, to see a bifurcation diagram of
the parameterAext in detail (fig. 5). The two solutions, marked
by 1 and 3 in fig. 5, are stable orbits that one can observe in
numerical simulations by setting different initial conditions as
is shown, while curve 2 shows the unstable branch.

In the case of the gap-closing transducer, the coefficients of
the first Fourier harmonics are

f0(yav, a) =
ν0

2(1− yav − a)
, a1(yav, a) = 0,

b1(yav, a) =
2ν0

π(1− yav − a)

(37)

and they are substituted into (31), (32) and (33) in order to
obtain a more accurate solution. The envelope of oscillations
as a function of the energyW0 for the gap-closing transducer
is shown in fig. 6 at different values of the external acceleration
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Fig. 6. Gap-closing transducer: the envelope (maximum and minimum
values) of oscillations as a function ofW0 at Aext = 3 m/s2 (line 1),
Aext = 5 m/s2 (line 2) andAext = 7 m/s2 (line 3). Marks ‘a’ and ‘b’
denote the maximum and minimum values of the displacement respectively.
The zero displacement or the rest position is shown by the dashed line. Squares
show the envelope obtained from VHDL-AMS simulations of theidealised
model from fig. 2 while circles show the simulations of the realistic model
from fig. 3.
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Fig. 7. Area overlap transducer: coexisting oscillations at W0 = 375pJ
andAext = 16 m/s2. Two waveforms corresponds to the lower and upper
branches at the points marked as (a) and (b) in fig. 5.

Aext. In this case the asymmetry of the envelope is stronger:
there are such energiesW0 that both, maximumyav,0 + a0
and minimumyav,0 − a0, are above the rest (zero) position.

Note that in this case, there also exist multiple solutions for
a0 andψ0 at certainW0 andAext, i.e. formally this system is
also multistable. However, the other roots of (27) are greater
than unity and, as follows from the expressions (8), they lie
in the “unphysical” region for this system. The only physical
solution is stable according to the criterion described in IVC.

B. Comparison with VHDL–AMS/Eldo modelling

Numerical simulation was carried out with the VHDL–
AMS/Eldo models described in Sec. III. Firstly, we compare
the simulations with the analytically calculated envelopeof
oscillations in fig. 4 and fig. 6 for the two transducers. The
results of the VHDL–AMS/Eldo simulations shown by squares
for the idealised model (from fig. 2) and by circles for the
realistic model (from fig. 3). While the idealised model agrees
very well with the theory for the both transducers, there is a
slight discrepancy with the realistic model. We recall thatthe
realistic model includes certain parasitic effects such aslosses
on the diodes. Therefore, the realistic circuit does not extract
mechanical energy from the resonator as effectively as the
idealised circuit. This causes the amplitude of vibrationsin
the resonator to be slightly larger than it could be in the ideal
system.

Fig. 7 presents the simulation results for the normalised dis-
placementy(τ) obtained with different initial conditionsy(0)
andy′(0). Numerical simulations agree with the predictions of
the MSM: the amplitude of the waveform 7(a) corresponds to
the point (a) on the lower branch of the bifurcation diagram 5
while the amplitude in fig. 7(b) corresponds to the upper
branch of that diagram and is marked as (b). We note that
in this case the observed dynamics are somewhat similar to
those of the Duffing oscillator under a harmonic excitation.

C. Necessary Conditions to Start Oscillations

From figs. 4 and 6, it is clearly seen that there exist values of
the circuit control parametersW0 and the accelerationAext for
which there are no positive values of steady-state amplitude
a0 (see, for example, how the lines marked by 1 cross the
horizontal axis in figs. 4 and 6). Sincea0 denotes the amplitude
of oscillations, it has a physical meaning if it is positive.We
can summarise this as follows. At a givenW0 there exists
Amin

ext such that the system oscillates ifAext > Amin
ext . And

vice versa, at a givenAext there existWmax
0 such that the

system oscillates ifW0 < Wmax
0 . The existence of a minimal

Aext was discovered in a behavioral model in [18]. If this
condition onW0 andAext is not fulfilled, the operating mode
of the e-VEH is irregular and uncontrollable in a realistic
context.

Firstly we give a detailed example for the area overlap
transducer (6) since the expression forAmin

ext andWmax
0 can

be obtained for it in a very simple form. Let us assume
that a0 = 0 in (27). This condition will provide us with a
necessary conditionto start oscillations. For the dimensionless
parameters one obtains a simple expression

α2 = a21(a0)
∣

∣

a0=0
+ b21(a0)

∣

∣

a0=0
(38)

Substituting (36) into (38), one finds the relations betweenthe
normalised accelerationαmin (orAmin

ext ) and given normalised
circuit parametersκ0 (or W0) :

αmin = 2κ0/π, Amin
ext =

2αtranW0

πmC0
(39)

The inverse expressions that relate the boundary values of
the circuit control parameterWmax

0 with some given external
accelerationAext are easily obtained from the above. Let
us give a numerical example: what maximal value ofW0

should be fixed on the transducer to obtain oscillations at
Aext = 5 m/s2? From (39) it follows thatWmax

0 = 59 nJ .
This corresponds exactly to the point in fig. 4 where the
envelope disappears (thisAext corresponds to the lines 1a and
1b). Therefore, no oscillations are possible ifW0 > Wmax

0 .
For the gap-closing transducer one solves the set of equa-

tions (32) and (33):

α2 = a21(yav,0, a0)
∣

∣

a0=0
+ b21(yav,0, a0)

∣

∣

a0=0

yav,0 = f0(yav,0, a0)|a0=0

(40)

and finds the required starting parameter together with the
resulting average shift. For example, atAext = 3 m/s2,
Wmax

0 = 17.4 nJ , which corresponds to the point in fig. 6
where the envelope disappears (thisAext corresponds to the
lines 1a and 1b).

Now let us illustrate the presence of the boundary parame-
ters required for oscillations in simulations of the behavioral
VHDL-AMS model. Figure 8a shows a slowly growing ramp
of acceleration (inms−2) as a function of the normalised time
τ . At thisAext, the displacementy is obtained as a function of
time, fig. 8b. Below the boundary value ofAmin

ext , the dynamics
of the system are irregular with many local maxima detected
in one period of oscillations (fig. 8c). As soon as the threshold
of Aext is passed, the oscillations are harmonic with one
maximum detected during one period of oscillations (fig. 8d).
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VI. D ISCUSSION ANDCONCLUSIONS

In this section we give a discussion of our theoretical
approach, highlight the difference with the analytical tool
from [14] and point out the immediate practical value of the
results for design of e-VEHs.

The MSM is known as a powerful and flexible method for
analysis of nonlinear systems. The two main practical benefits
that we obtained from the theory are

- It allowed us to obtain equations that fully describe the
oscillations in the system. Now, for any set of parameters,
one can calculate the resulting oscillation and therefore
converted power. It also gives the initial analysis of
stability. The results obtained with this method have
been used for further stability analysis in [25], [26].
Therefore, for the gap-closing transducer, based on the
results presented in this paper, we define all possible
dynamics of the system and find values of the system
parameters where the system displays regular harmonic
oscillations. Practically, this is very important since the
conditioning circuit can operate correctly and effectively
only if this is the case.

- Another conclusion that immediately follows from the
method is the existence of ‘boundary’ values for the
acceleration amplitudeAext and the energyW0 required
to start oscillations in the resonator. The method yields
a simple way to calculate these boundary values. This
is also an important result from a practical standpoint:
knowing parameters of the environment, one can optimize
the design parameterW0. For the area overlap transducer,
the expressions that give the boundary values forAext

andW0 are very simple.
In addition, the method allows one to expand it to the case

of different nonlinearities. This will allow the exploration of
nonlinear effects that seem to be very promising for widening
the frequency response of the system [27]–[29].

The limitations of the method follow from limitations that
are inherit in perturbation techniques. Firstly, there is avery
general condition for all perturbation methods that nonlin-
earities should be relatively small (this ‘smallness’ can be
easily established in the normalised dimensionless equation
by comparing the parameters of the nonlinear terms with
unity). In our case, this is equivalent to stating that that the
method will work while oscillations can be described as quasi-
harmonic. As is shown by the simulations based on the VHDL-
AMS model, this is typically the case for the system over a
wide range of parameters. Secondly, despite the flexibilityof
the MSM, it demands that nonlinear terms should be arranged
accurately with respect to the order of the small parameterε.
We note that for the gap-closing transducer we have overcome
this difficulty by introducing a modification of the standard
MSM implementation where we compensate an error that
appeared due to the large constant shiftyav,0.

We also point out that all analytical results are verified by
simulations of a realistic behavioral model carried out with
VHDL-AMS/Eldo simulators.
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