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Abstract—The paper proposes a hybrid Bayesian approach
for multi-sensor data fusion for 3D localization. The approach
addresses the problem of fusing range-based and sourceless
localization estimates under conditions of varying observability in
the range-based sub-system. The proposed localization approach
uses a mixture of Single-Hypothesis-Tracking (e.g. Kalmanfilter)
and Multi-Hypothesis-Tracking (MHT) (e.g. Particle Filte rs)
Bayesian filtering to improve tracking accuracy under conditions
of varying observability. Under conditions of sufficient (or no)
range measurements a single hypothesis approach is used. Under
the condition of insufficient range measurements (i.e, 1 or 2
ranges), MHT is used, since it more accurately models the
distribution of real error in the estimated positions by means of
Gaussian mixtures rather that a single Gaussian. The results show
up to 10% improvement in 3D position estimation as compared
to Single-Constraint-at-a-Time (SCAAT) approach and upto24%
improvement compared to an Extended Kalman Filter approach
for intermittent 3 second partial range occlusions when tracking
human arm movements.

I. I NTRODUCTION

Motion capture (Mocap) and motion tracking are of interest
in applications ranging from entertainment industry to health-
care [1]. Range-based Mocap systems employ multiple range
measurements at wearable sensors to estimate 3D position [2].
Typically, range is measured between fixed transmitters and
wearable sensors or vice versa. Range can either be measured
directly using ultrasonic [3] or UltraWideBand [4] signals
or estimated indirectly based on measurements from optical
sensors [5]. These systems provide accurate absolute position
estimates but generally suffer from Non-Line-of-Sight (NLOS)
or occlusion problems. Anther class of Mocap systems are
sourceless. Typically these self-contained systems rely on Iner-
tial Measurement Units (IMUs) to measure linear and angular
acceleration. While sourceless systems do not have NLOS
problems, they do suffer from rapid growth in error when
position is estimated by dead reckoning. This is due to IMU
bias instability and inaccurate gravity compensation. Hybrid
Mocap systems offer a more accurate and robust solution [6],
[7]. Hybrid systems solve the NLOS, drift and calibration
problems by incorporating range-based and sourceless sub-
systems and fusing the data. The conventional approach to
data fusion is through a series of prediction-correction steps.
The sourceless system parameters form the basis of the motion
prediction model and the range measurements are used in

the correction step. During the correction step, the measured
ranges can be incorporated sequentially or as a single vector.
The accuracy of the correction step depends on the number of
transmitter-receiver pairs that have Line Of Sight (LOS). The
nature of the transmitter-receiver occlusion pattern for afixed
infrastructure based system depends on the type of movements
being performed.

Herein, we are interested in occlusions occurring in appli-
cations in which rehabilitation, sports or fitness exercises are
monitored. The work presented in this paper addresses the
problem of location estimation in cases of temporary partial
occlusion of the ranging subsystem in hybrid Mocap systems.
By temporary partial occlusion, we mean that for short time
periods only 1 or 2 range estimates are available due to NLOS
conditions between the other transmitters and receivers. We
assume that 3 or more range estimates are available before
partial occlusion occurs. Herein we propose a novel method
that operates via selective transition between a Multiple-
Hypothesis-tracking (MHT) and Single-Hypothesis-Tracking
(SHT). The proposed method was found to provide higher
accuracy than previously published algorithms, in terms of3D
position estimation, for the considered occlusion scenarios. In
addition, the computational complexity of the proposed filter
is lower than a conventional particle filter because it uses a
lesser number of particles.

The remainder of the paper is organized as follows. Section
II gives a mathematical description of the problem and also
details the envisioned occlusion scenarios which the mobile
device encounters during dynamics of the motion. Section III
outlines previous work reported on 3D localization using range
and inertial measurements, particularly emphasizing methods
that use a mixture of two or more bayesian techniques.
Section IV introduces the proposed approach and discusses
the shortcomings of conventional approaches under particular
scenarios. Section V presents 3D localization results using
the proposed method and compares the results with other
candidate approaches. Finally Section VI draws conclusions
and discusses potential future work.

II. PROBLEM DESCRIPTION

Mocap systems determine the Position and Orientation
(P&O) of multiple sensors units placed on landmarks on the



human body. Herein, we focus on 3D position estimation of a
single sensor unit. A single sensor unit in our case is composed
of an ultrasonic receiver and an IMU unit. The problem of
localization of the sensor unit is modeled in a dynamic non-
linear state space model. The initial state is sampled from the
Gaussian distribution given by:

X0 = N{µ0, P0} (1)

whereµ0 is the initial best estimate of the state andP0 is the
error covariance matrix associated with the state (x ∈ ℜn).
The state transition function (motion model) and observation
model are

P(Xt|Xt−1) =

∫

F(P(Xt−1|z0:t−1), ut, ν)dx (2)

zt = H(E(Xt|Xt−1), ω) (3)

where,

E(Xt|Xt−1) =

∫

XtP(Xt|Xt−1)dx (4)

where the observations (zt ∈ ℜm) are a set ofm ranges.
The functionsF ,H are non linear functions.ν andω are the
process noise and measurement noise covariance respectively
andut is the input from Inertial Measurement Units. The aim
is to evaluate the posteriorP(Xt|z0:t). The Bayes formula is
used to track the posterior:

P(Xt|z0:t) =
∫

CP(Xt|Xt−1, z0:t−1)P(zt|Xt)dx (5)

Prior probability and likelihood are given by (2) and (3)
respectively.

A hybrid motion tracking system based on ultrasonic and
inertial measurements is described in [8]. Such a motion cap-
ture setup consists of at least three fixed ultrasonic transmitters
with known position co-ordinates w.r.t. the fixed frame of
reference. Figure 1 shows the motion capture setup for home
based rehabilitation setup [9], [10]. The sensor unit (Si) is
equipped an ultrasonic receiver and undergoes motion within
the volume covered by the set of transmitters (Txi). During
the movement, the sensor unit may have a direct Line Of Sight
(LOS) to all the transmitters. A transmitter-receiver can suffer
NLOS due to presence of blocking objects (e.g. limbs). It is
possible to have a complete occlusion wherein none of the
transmitter receiver pairs have direct LOS. In this case, the
position of the MD must be estimated using dead reckoning
based on the IMU data only. In other cases only a subset
of the transmitter-receiver pairs have direct LOS. We referto
presence of 3 or more ranges assufficientand the presence
of lesser number of ranges are referred to asinsufficientfor
the remainder of this paper. The authors use the term partial
observability in this text to refer to whether the 3D position
can be completely triangulated from the measured ranges.
Sufficient ranges imply complete observability of the stateand
insufficient ranges imply partial observability.

Table I summarizes a few of the occlusion patterns (not
exhaustive) that are possible when the sensor unit undergoes
motion. In the first scenario (4s - 4s), 4 ranges are available

Fig. 1: Localization setup

throughout the motion at each sample. In the second scenario
(4s -3s), 4 ranges are available fors samples and 3 ranges are
available for nexts samples, and the sequence is repeated for
the duration of the motion. Other occlusion scenarios follow
the same notation.

Scenario Occlusion Pattern Comment
1 4s - 4s Full LOS
2 4s - 3s Full Los
3 4s - 3s - 2s Intermittent Single NLOS events
4 4s - 3s - 2s - 1s Intermittent Double NLOS events
5 4s - 3s - 2s - 1s - 4s Intermittent Complete Occlusions

TABLE I: Envisioned Occlusion Scenarios

III. B ACKGROUND

Several derivatives of the Bayesian filter have been used
for tracking the posterior probability of a given state space
model. The Kalman filter is an optimal estimator for a linear
system subject to Gaussian noise [11]. Several variants of the
Kalman filter, such as the Extended Kalman Filter (EKF) and
the Unscented Kalman Filter have been proposed for non linear
systems with non gaussian noise, but these can be unstable
and often diverge when the non-linearity in the system is
high [12], [13]. A different subclass of Bayesian filters known
as Sequential Importance Sampling (SIS) or Particle Filters
track the posterior of a system by using a number of particles
to approximate the probability distribution [14]. A sequential
Monte Carlo method with marginalization using a Kalman
filter was proposed for estimation of a partially observed
gaussian state space in [15]. In [8], an EKF is used for fusion
of ultrasonic and inertial measurements. The ultrasonic ranges
were incorporated sequentially by using Single-Constraint-
at-a-Time (SCAAT) approach. The authors also proposed a
fusion approach based on observation vector representation of
ranges, but accurate modeling in the case of insufficient range
measurements was not incorporated. The hybrid acoustic-
inertial system in [16] is capable of reconstructing body



Filter Multimodal Gaussian Non-Linear
Approximation

Kalman No Yes No
EKF No Yes Yes
SIS Yes No Yes
GPF No Yes Yes

RB-SIS Yes No Yes

TABLE II: Characteristics of Various Fusion Approaches

joint configuration. The system has non-stationary transmitter
receiver pairs which limits its capability to provide absolute
3D positions and orientations. It also makes such a system
unable to combine information from multiple ranges (method
such as trilateration).

Hybrid estimation approaches have been successfully ap-
plied for approximating the posterior distribution. Rao Black-
wellized Sequential Importance Sampling (RB-SIS) filters are
computationally less complex than conventional SIS [17].
A Gaussian Particle Filter (GPF) applies the SIS filtering
technique to state space systems with Gaussian additive noise
[18]. A Kalman-particle kernel filter was applied to the terrain
navigation problem, which is based on kernel representation of
conditional density [19]. The dual layer particle filter estimates
position in two steps [20]. The first step is a block level
estimation and the second is a coarse estimation of position
using a Particle Filter.

The solution to the envisioned problem requires an estimator
which can track both unimodal and multimodal probability
distribution. The estimator should also be capable of handling
non-linearities in the systems and can be applied to both
Gaussian and non-Gaussian error models. Table II summarizes
the applicability of the above filters to the problem at hand.
The EKF is optimal choice for non linear systems with
unimodal probability distribution. Whereas, a SIS filter in
optimal for tracking multimodal distributions with no under-
lying assumption of error model. Thus a hybrid estimator that
incorporates the characteristics of an EKF and a SIS filter
satisfies the requirements of our problem.

IV. A PPROACH

A. Modeling Observation Likelihood

In the presence of sufficient ranges (each with Gaussian
error), the uncertainty in estimated position can be modeled by
a single Gaussian [21]. However, a Gaussian mixture is a more
accurate representation of estimated position from insufficient
ranges.

Herein, we represent the current estimate and its uncertainty
as a M component mixture model with component weights
(wi).

P(z/X) =
M
∑

i=0

wi ∗ F(z,X i) (6)

During the data fusion process, the measured ranges are used
during the observation likelihood calculation. It is desirable
that the observation likelihood model accurately models the
real error function. Figure 2 compares the observation likeli-
hood representation using a single Gaussian and a Gaussian
mixture when 2 ranges are available. Using only two ranges,
the best estimate for the current position is that it lies along the
circumference of a circle. Clearly, the Gaussian mixture mod-
els the true error more accurately. The mixture of Gaussians
tracks all possibilities of the current position being situated
on the ring, whereas a single Gaussian has the mean at the
center of the circle and needs a large variance to have the
same solution coverage as the mixture representation.

B. Proposed Algorithm

The skeleton of the proposed algorithm is same as a basic
Prediction-Correction estimator. Figure 3 shows a flowchart
representing the steps involved in the proposed algorithm.

The estimation procedure starts with an initial estimate
of the state, and associated uncertainty. The measurements
form the IMU are used in the motion model for prediction
of the next state. The prediction step uses standard state
space transition model. The proposed method differs from
other filters in the way it carries out the correction step.
The correction step has three functional subunits. A single
hypothesis tracking unit, a multiple hypothesis tracking unit,
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Fig. 3: The Proposed Fusion Approach

and an information exchange unit. The correction step operates
by switching between the SHT and MHT subunits. The
decision for switching between the two subunits is based
on the observability of the state. From the set of measured
ranges, the potentially unreliable ranges are removed using
a NLOS detection algorithm [22]. The set of reliable ranges
forms the observation vector. The rank of the observation
matrix is used as a parameter for determining whether the
state is fully observable. The information exchange unit is
used to maintain the state-space uncertainty information when
switching between the two approaches. The pseudocode for
the algorithm describes the mathematical equations involved
during the prediction and correction steps. The notation used
is as follows. X is the state vector and z is a set of measured
ranges. A, H and P are state transition matrix, measurement
matrix and error covariance matrix respectively.W i

prior(t),
W i

post(t), Lt and C are prior weight onith particle, poste-
rior weight, observation likelihood and normalization constant
respectively.

The single hypothesis tracking subunit is based on design
of an Extended Kalman Filter. The state vector (Xt) consists
of the sensor unit’s position and velocity along all three co-
ordinate axes. The State transition matrix (A) is given by

A =













1 t t2

2

0 1 t

0 0 1













h =
√

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2

The observation matrix (H), is the Jacobian matrix of partial
derivatives of the observation vector (h) with respect toX, i.e.

H(i,j) =
∂hi

∂Xj

(7)

Where xi is the predicted x co-ordinate and̂xi is the
estimated x co-ordinate using the measured ranges. The y and
z axis follow same notation.
The Multiple Hypothesis Tracking subunit is based on the
design of a Sequential Importance Sampling Particle Filter.
N particles are sampled using mean and variance parameter
obtained from the information exchange unit. Each particle
is assigned a prior weightW i

prior(t) based on its Euclidean
distance from the prior mean. The observation likelihood
calculation (Lt) uses the set of reliable ranges to triangulate the
best estimate of the current state. The observation likelihood
is calculated using the Euclidean distance between the current
particle position and the triangulated position.

P (xi) =
1

σ
√
2π

e−(x
i
−x̂)

2

/2σ2

(8)

Algorithm : HYBRID BAYESIAN FUSION(Xt, zt, ut)

I.Prediction






(i)Xt+1 = AXt +But + ωt

(ii)zt = HXt + vk
(iii)P ≡ E [(X̂ −X )2 ]

II.Correction
if (Rank(Ht) ≤ τ))

then



















Single Hypothesis Tracking
(i)X̂t = X−

t +Kt(ỹt −HtX
−

t )
(ii)Kt = P−

t HT
t (HtP

−

t HT
t +Rt)

−1

(iii)Pt =
P

−

t HT
t

HtP
−

t HT
t +Rt

else







































Multiple Hypothesis Tracking
(i)X i

t = N{µt, Pt}
(ii)W i

prior(t) = F1(X
i).

(iii)Lt = F2(X
i, zt)

(iv)Wpost =
Wprior×Lt

C

(v)µt =
∑N

i=0 Wpost(i) ∗X i

(vi)Pt =
∑N

i=0 Wpost(i) ∗ ([X i − µ][X i − µ]T )

The cost

function assigns weight to the particles. The weight is assigned
to the particles using the prior probability and the observation
likelihood in the Baye’s formula in eq(5). Under partial
observability, the cost function assigns equal weights to a
number of particles that lie on the the higher dimensional
space (i.e., circular or spherical). For instance when 2 ranges
are available, the particles lying on the circumference of the
circular region are given equal weights, which is higher than
the weights of the particles outside the circumference.

The information exchange unit ensures that the probability
distribution parameters are passed between the two subunits.
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Fig. 4: Trajectory estimated by different approaches
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Fig. 5: Effect of ranging accuracy on filter performance

Such an information exchange maintains the continuity in state
space uncertainty while the switching action is performed.
This also helps to reduce the computational complexity of the
Multiple Hypothesis Tracking subunit, as the particles canbe
sampled from and concentrated in a smaller space using the
mean and variance information from the SHT subunit.

V. RESULTS AND DISCUSSION

The proposed method was tested for 3D localization for
simulated linear motion, random roto-translational motion and
for flexion and extension of the upper arm. Matlab was used
to simulate 10 seconds of these movements with varying oc-
clusion scenarios during the course of the motion. The motion
was subjected to intermittent 3 second occlusions. During the
occlusion period, different occlusion patterns were tried. IMU
data was available at 50Hz, and the range estimates were
available at 30Hz. A standard deviation of0.05m/sec2 and an
offset error of0.1m/sec2 was added to the accelerometer data.
These values were determined experimentally from a Shimmer
research platform, containing the Freescale MMA7361 MEMs
accelerometer. Two diffenet level of errors (1cm and 5cm)
were added to the range estimates, to test the robustness of
the algorithm. The authors selected 4 approaches to compare
based on the literature survey and 3D position estimation was
done using each of these approaches. The selected methods are
Extended Kalman Filter (EKF) [12], Sequential-Importance-

Resampling (SIS) or Particle Filter [14], Single-Constraint-at-
a-Time (SCAAT) [8] and Dual Layer Particle Filter (referred
to as DPF in results) [20].

A. Estimation Accuracy

The candidate methods were applied to the simulated
motion. The motion was exposed to the occlusion scenarios
discussed in Section II. Table III summarizes results for
flexion-extension of the upper arm. The table presents
RMS errror of the candidate approaches over the whole
trajectory. Under Scenario 1, i.e., when all 4 ranges are
continuously available, the proposed approach performs
same as the SCAAT approach. But under occluded motions
(i.e., scenarios 3, 4 and 5) the proposed approach performs
better than the SCCAT approach. The results show up to
10% improvement compared to SCAAT approach and 24%
improvement compared to Kalman filter approach.

Figure 4 compares the trajectory of the linear motion, ran-
dom roto-translation and flexion-extension motion as estimated
by different approaches. The shaded regions in the graph
represent the occluded periods during the motion. It is evident
in occluded periods, the proposed approach estimates the true
trajectory more accurately as compared to SCAAT approach.
Figure 5 depicts the effect of range estimation accuracy on
3D localization for all scenarios. In all scenarios the proposed



Scenario Proposed SCAAT EKF DPF % Improvement
(Proposed Vs SCAAT)

1 3.02 3.02 3.06 5.07 0
2 3.05 3.05 3.12 5.05 0
3 3.2 3.33 3.41 5.3 4
4 3.24 3.4 4.18 5.4 4.8
5 3.7 4.1 4.83 5.9 10

TABLE III: RMS error of different approaches for Flexion-
Extension movement (in cm)

approach is most accurate estimator. Table IV shows the
difference in maximum errors (Peak to Peak difference) for the
trajectory estimation for SCAAT and the proposed approach.
The Proposed approach shows up to 21% improvement in
maximum error.

Scenario Difference (mm) % improvement
3 1.5 12
4 2.2 15
5 5 21

TABLE IV: Peak to Peak absolute error difference (in cm) and per-
centage improvement of Proposed Approach over SCAAT approach

B. Computational Complexity

The computational complexity of the proposed algorithm
was compared to a conventional SIS filter. Table V shows the
effect of varying the number of particles on the accuracy of the
position estimate. It can be seen that the number of particles
required to achieve the same accuracy by the hybrid approach
is significantly less than that required by the conventional
SIS approach. The proposed filter requires a lesser number
of particles to approximate the probability distribution due to
the vital information (mean and variance) that is exchanged
from the SHT estimator.

No. Particles SIS (mm) Proposed (mm)
50 4.79 3.30
100 4.4 3.06
500 4.4 2.86
1000 3.74 2.57

TABLE V: Effect of no. of particles on estimation accuracy (RMS
error)

VI. CONCLUSION AND FUTURE WORK

A hybrid Bayesian approach for fusion of range-based and
sourceless localization subsystems is proposed. The proposed
system selectively uses Multihypothesis tracking or Single
hypothesis tracking based on the observation likelihood error
model. The proposed approach is applicable to a broad range
of partial range occlusion patterns. The results show up to
10% improvement as compared to SCAAT approach and upto
24% improvement compared to an Extended Kalman Filter
approach. The proposed system is also computationally more
efficient compared to a conventional particle filter. Work in
near future will be on applying the proposed method to
estimation of both position and orientation.
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