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Abstract—The paper proposes a hybrid Bayesian approach the correction step. During the correction step, the measur
for multi-sensor data fusion fOI’.3D localization. The appraach ranges can be incorporated sequentia"y or as a Sing]e rvecto
addresses the problem of fusing range-based and sourcelessrpg gccuracy of the correction step depends on the number of
localization estimates under conditions of varying obserbility in . . . . .
the range-based sub-system. The proposed localization ag@ach transmitter-receiver pa|rs that_ have Lme_Of Sight (LO_S)QT
uses a mixture of Sing]e_HypothesiS_Tracking (eg Ka|ma|ﬁ|ter) nature Of the transmitter-receiver OCC|USIOI’] pattern fﬁxm
and Multi-Hypothesis-Tracking (MHT) (e.g. Particle Filters) infrastructure based system depends on the type of movement
Bayesi:?m filtering to !mprove tracking accuracy unqle_r condtions being performed.
of varying observability. Under conditions of sufficient (@ no) Herein, we are interested in occlusions occurring in appli-
range measurements a single hypothesis approach is used. dém . . . S . .
the condition of insufficient range measurements (i.e, 1 or 2 cathns in which rehabilitation, Spprts Qr fitness exemiage
ranges), MHT is used, since it more accurately models the Monitored. The work presented in this paper addresses the
distribution of real error in the estimated positions by means of problem of location estimation in cases of temporary phartia
GaUSSi%g/”}irfUrf\feﬁtehrif Itr?%t [«;ﬂl Siggt?osZi?%i‘?i-ozhggesﬁsg?gj occlusion of the ranging subsystem in hybrid Mocap systems.
up to 0 T H 1
topSingle-Congtraint—at-a—Time (gCAAT) approach and uptog4% By _temporary partial occluspn, We mean that for short time
improvement compared to an Extended Kalman Filter approach perlo_d_s only 1 or 2 range estimates ar_e available due_to NLOS
for intermittent 3 second partial range occlusions when traking ~conditions between the other transmitters and receivees. W
human arm movements. assume that 3 or more range estimates are available before
partial occlusion occurs. Herein we propose a novel method
that operates via selective transition between a Multiple-

Motion capture (Mocap) and motion tracking are of interestypothesis-tracking (MHT) and Single-Hypothesis-Trauki
in applications ranging from entertainment industry tolthea (SHT). The proposed method was found to provide higher
care [1]. Range-based Mocap systems employ multiple rarggcuracy than previously published algorithms, in term3f
measurements at wearable sensors to estimate 3D positiondsition estimation, for the considered occlusion scesaitin
Typically, range is measured between fixed transmitters aaddition, the computational complexity of the proposeeffilt
wearable sensors or vice versa. Range can either be measigddwer than a conventional particle filter because it uses a
directly using ultrasonic [3] or UltrawideBand [4] signaldesser number of particles.
or estimated indirectly based on measurements from opticallhe remainder of the paper is organized as follows. Section
sensors [5]. These systems provide accurate absolutéogpositl gives a mathematical description of the problem and also
estimates but generally suffer from Non-Line-of-Sight Q&) details the envisioned occlusion scenarios which the raobil
or occlusion problems. Anther class of Mocap systems adevice encounters during dynamics of the motion. Sectibn Il
sourceless. Typically these self-contained systems relper- outlines previous work reported on 3D localization usingga
tial Measurement Units (IMUs) to measure linear and anguland inertial measurements, particularly emphasizing oush
acceleration. While sourceless systems do not have NL@ft use a mixture of two or more bayesian techniques.
problems, they do suffer from rapid growth in error whesection IV introduces the proposed approach and discusses
position is estimated by dead reckoning. This is due to IMthe shortcomings of conventional approaches under péaticu
bias instability and inaccurate gravity compensation. fityb scenarios. Section V presents 3D localization resultsgusin
Mocap systems offer a more accurate and robust solution [Bje proposed method and compares the results with other
[7]. Hybrid systems solve the NLOS, drift and calibratiortandidate approaches. Finally Section VI draws conclission
problems by incorporating range-based and sourceless sabd discusses potential future work.
systems and fusing the data. The conventional approach to
data fusion is through a series of prediction-correcti@pst
The sourceless system parameters form the basis of thermotioMocap systems determine the Position and Orientation
prediction model and the range measurements are usedH&O) of multiple sensors units placed on landmarks on the
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human body. Herein, we focus on 3D position estimation of a
single sensor unit. A single sensor unit in our case is coeghos
of an ultrasonic receiver and an IMU unit. The problem of
localization of the sensor unit is modeled in a dynamic non-
linear state space model. The initial state is sampled fien t
Gaussian distribution given by:

Xo = N{pno, Po} 1)

whereyy is the initial best estimate of the state aRglis the
error covariance matrix associated with the statec(®").
The state transition function (motion model) and obseovati
model are

’P(Xt|Xt,1) = /]:(,P(Xt—ﬂz():tfl)autaV)dx (2)

2t = H(E(X¢|Xi-1),w) 3) Fig. 1: Localization setup

where,

E(thXt—l) = /XtP(Xt|Xt_1)d$ (4) . .

throughout the motion at each sample. In the second scenario

where the observations;( € #™) are a set ofm ranges. (4s -3s), 4 ranges are available ®samples and 3 ranges are
The functionsF, H are non linear functions: andw are the available for next samples, and the sequence is repeated for
process noise and measurement noise covariance respectiffee duration of the motion. Other occlusion scenarios ¥ollo
andu; is the input from Inertial Measurement Units. The ainthe same notation.
is to evaluate the posterid?(X:|zo.:). The Bayes formula is

. Scenario | Occlusion Pattern Comment
used to track the posterior: 1 s - 4s FUTLOS
2 4s - 3s Full Los
P(Xi|z0:) = /C,P(Xt|Xt71; 20:4—1)P (2| Xe)dx  (5) 3 4s - 3s - 25 Intermittent Single NLOS events
4 4s-3s-2s-1s Intermittent Double NLOS events
Prior probability and likelihood are given by (2) and (3)___> 4s - 35 - 2s - 1s - 49 Intermittent Complete Occlusions
respectively. o _ _
A hybrid motion tracking system based on ultrasonic and TABLE I: Envisioned Occlusion Scenarios

inertial measurements is described in [8]. Such a motion cap
ture setup consists of at least three fixed ultrasonic tritess
with known position co-ordinates w.r.t. the fixed frame of
reference. Figure 1 shows the motion capture setup for homeSeveral derivatives of the Bayesian filter have been used
based rehabilitation setup [9], [10]. The sensor uif) (is for tracking the posterior probability of a given state spac
equipped an ultrasonic receiver and undergoes motionmwithmodel. The Kalman filter is an optimal estimator for a linear
the volume covered by the set of transmittefa:(). During system subject to Gaussian noise [11]. Several variantseof t
the movement, the sensor unit may have a direct Line Of Sigkéalman filter, such as the Extended Kalman Filter (EKF) and
(LOS) to all the transmitters. A transmitter-receiver caffey  the Unscented Kalman Filter have been proposed for norrlinea
NLOS due to presence of blocking objects (e.g. limbs). It systems with non gaussian noise, but these can be unstable
possible to have a complete occlusion wherein none of thad often diverge when the non-linearity in the system is
transmitter receiver pairs have direct LOS. In this case, thigh [12], [13]. A different subclass of Bayesian filters ko
position of the MD must be estimated using dead reckonimg Sequential Importance Sampling (SIS) or Particle Bilter
based on the IMU data only. In other cases only a subdeick the posterior of a system by using a number of particles
of the transmitter-receiver pairs have direct LOS. We réder to approximate the probability distribution [14]. A seqtiah
presence of 3 or more ranges a#ficientand the presence Monte Carlo method with marginalization using a Kalman
of lesser number of ranges are referred taresifficientfor filter was proposed for estimation of a partially observed
the remainder of this paper. The authors use the term partjalussian state space in [15]. In [8], an EKF is used for fusion
observability in this text to refer to whether the 3D positio of ultrasonic and inertial measurements. The ultrasomigea
can be completely triangulated from the measured rangesre incorporated sequentially by using Single-Constrain
Sufficient ranges imply complete observability of the statd at-a-Time (SCAAT) approach. The authors also proposed a
insufficient ranges imply partial observability. fusion approach based on observation vector represemtttio
Table | summarizes a few of the occlusion patterns (ncdnges, but accurate modeling in the case of insufficierggan
exhaustive) that are possible when the sensor unit undergoeasurements was not incorporated. The hybrid acoustic-
motion. In the first scenario (4s - 4s), 4 ranges are availalieertial system in [16] is capable of reconstructing body
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Filter Multimodal Apg%lj(?rfwlgtri]on Non-Linear | IV. APPROACH
Kalman No Yes No A. Modeling Observation Likelihood
EKF No Yes Yes . . .
SIS Yes No Ves In the presence of sufficient ranges (each with Gaussian
GPF No Yes Yes error), the uncertainty in estimated position can be matibje
RB-SIS Yes No Yes a single Gaussian [21]. However, a Gaussian mixture is a more
accurate representation of estimated position from irgafft

TABLE Il: Characteristics of Various Fusion Approaches ranges.

Herein, we represent the current estimate and its unceyrtain
as a M component mixture model with component weights

joint configuration. The system has non-stationary trattemi (w) Mo 4
receiver pairs which limits its capability to provide ahstel P(z/X) = w'xF(z, X" (6)
3D positions and orientations. It also makes such a system i=0

unable to combine information from multiple ranges (methaduring the data fusion process, the measured ranges are used
such as trilateration). during the observation likelihood calculation. It is desie

Hybrid estimation approaches have been successfully agat the observation likelihood model accurately modets th
plied for approximating the posterior distribution. Ra@&!- real error function. Figure 2 compares the observatiorilike
wellized Sequential Importance Sampling (RB-SIS) filters ahood representation using a single Gaussian and a Gaussian
computationally less complex than conventional SIS [17fixture when 2 ranges are available. Using only two ranges,
A Gaussian Particle Filter (GPF) applies the SIS filteringhe pest estimate for the current position is that it liesigithe
technique to state space systems with Gaussian additige n@ircumference of a circle. Clearly, the Gaussian mixturelmo
[18]. A Kalman-particle kernel filter was applied to the ®IT  ¢|s the true error more accurately. The mixture of Gaussians
navigation problem, which is based on kernel represemtatio tracks all possibilities of the current position being ated
conditional denSity [19] The dual |ayer partiCIe filterigwdtes on the ring, whereas a Sing]e Gaussian has the mean at the
position in two steps [20]. The first step is a block levedenter of the circle and needs a large variance to have the
estimation and the second is a coarse estimation of positidine solution coverage as the mixture representation.
using a Particle Filter. )

The solution to the envisioned problem requires an estimaf® Proposed Algorithm
which can track both unimodal and multimodal probability The skeleton of the proposed algorithm is same as a basic
distribution. The estimator should also be capable of hingdl Prediction-Correction estimator. Figure 3 shows a flowchar
non-linearities in the systems and can be applied to batpresenting the steps involved in the proposed algorithm.
Gaussian and non-Gaussian error models. Table Il summsarizeThe estimation procedure starts with an initial estimate
the applicability of the above filters to the problem at hanaf the state, and associated uncertainty. The measurements
The EKF is optimal choice for non linear systems witiorm the IMU are used in the motion model for prediction
unimodal probability distribution. Whereas, a SIS filter irof the next state. The prediction step uses standard state
optimal for tracking multimodal distributions with no urrde space transition model. The proposed method differs from
lying assumption of error model. Thus a hybrid estimatot thather filters in the way it carries out the correction step.
incorporates the characteristics of an EKF and a SIS filt&@he correction step has three functional subunits. A single
satisfies the requirements of our problem. hypothesis tracking unit, a multiple hypothesis trackingt,u
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Initial Estimate and The observation matrixH), is the Jacobian matrix of partial

Uncertainity i i i X X
derivatives of the observation vector (h) with respeckta.e.
Range Measurements l Oh:
MU =
¥ Measurements H(%J) - an (7)
Range Accept/Reject ?
¥ Prior Update
Pre-Processing Loethiood Where z; is the predicted x co-ordinate ang; is the
__________________________________ estimated x co-ordinate using the measured ranges. The y and
POSTERIOR z axis follow same notation.
e a T DALE The Multiple Hypothesis Tracking subunit is based on the
design of a Sequential Importance Sampling Particle Filter
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siyponeds xS nge obtained from the information exchange unit. Each particle
Tracking \L . . . . . . .
Multi-Hypothesis is assigned a prior welghﬁ/;rior(t) based on its Euclidean
L Tracking distance from the prior mean. The observation likelihood
tommm e A ¥ calculation (;) uses the set of reliable ranges to triangulate the
C““E’ifcfﬁiﬁ?ﬁye and best estimate of the current state. The observation liketih
is calculated using the Euclidean distance between themurr
Fig. 3: The Proposed Fusion Approach particle position and the triangulated position.
X 1 i 2\2 /o 2
AR 7(95 795) /20
P(z") o (8)

and an information exchange unit. The correction step dpgera
by switching between the SHT and MHT subunits. Thﬁlgorithm:
decision for switching between the two subunits is based
on the observability of the state. From the set of measureF.Prediction
ranges, the potentially unreliable ranges are removedgusin ()Xis1 = AX; + Bug + wi
a NLOS detection algorithm [22]. The set of reliable ranges (i)z = HX, + vg
forms the observation vector. The rank of the observatio (i#)P = E[(X — X)?]
matrix is used as a parameter for determining whether th it Corregtion
state is fully observable. The information exchange unit is, |

= o if (Rank(H:) <T))
used to maintain the state-space uncertainty informatioenw Single Hypothesis Tracking
switching between the two approaches. The pseudocode for N 5 _ - _
the algorithm describes the mathematical equations ieelv  ¢,ap, (Z,),Xt :_Xt_+ IT(t(yt __Htft ) .
during the prediction and correction steps. The notatiedus (i) K = P, ﬁfh(ftpt Hy + Ry)

HYBRID BAYESIAN FUSION(X, 2, u¢)

The cost

is as follows. X is the state vector and z is a set of measured (@) P = gpt i,

ranges. A, H and P are state transition matrix, measurement Multiple Hypothesis Tracking

matrix and error covariance matrix respectively, ;,.(t), ()X} = N{ps, P}

Wj,.(t), Ly and C are prior weight o particle, poste- (1) W0 (1) = F1(X7).

rior weight, observation likelihood and normalization stant else { (iii) Ly = Fo( X, )

respectively. (1) Wost = me,ngf,

The single hypothesis tracking subunit is based on design (V) = ZN Woost(i) % X

of an Extended Kalman Filter. The state vectaf,) consists Ht = Zaigo M post(t) ; P

(i) Py = 3750 Whost (1) x ([X* — p][X* — p]")

of the sensor unit’s position and velocity along all three co
ordinate axes. The State transition mati® {s given by

function assigns weight to the particles. The weight isgassil
to the particles using the prior probability and the obstova

1 ¢ % likelihood in the Baye's formula in eq(5). Under partial
observability, the cost function assigns equal weights to a
A=10 1 t number of particles that lie on the the higher dimensional
space (i.e., circular or spherical). For instance when Zean
0 0 1 are available, the particles lying on the circumferencehef t

circular region are given equal weights, which is highentha
the weights of the particles outside the circumference.
The information exchange unit ensures that the probability
h=(zi — )2+ (yi — 9:)2 + (2 — £i)2 distribution parameters are passed between the two ssbunit




Trajectory(m)

Trajectory(m)
Trajectory(m)

Time (Sec) i} i  Time (seq)

(a) Linear Motion (b) Random Roto-Translation (c) Flexion-Extension of Arm

Fig. 4: Trajectory estimated by different approaches

*[EPropose:

[Eopr

IscaaT
A | [

RMS Error (mm)
|
em

I
RMS Error

Scenario Type ’ Scenario Type
(a) Performance at Ranging error = 1cm (b) Performance at Ranging Error = 5cm

Fig. 5: Effect of ranging accuracy on filter performance

Such an information exchange maintains the continuityatest Resampling (SIS) or Particle Filter [14], Single-Consiteat-
space uncertainty while the switching action is performed:Time (SCAAT) [8] and Dual Layer Particle Filter (referred
This also helps to reduce the computational complexity ef tiio as DPF in results) [20].

Multiple Hypothesis Tracking subunit, as the particles ban

sampled from and concentrated in a smaller space using ieEstimation Accuracy

mean and variance information from the SHT subunit. The candidate methods were applied to the simulated

motion. The motion was exposed to the occlusion scenarios
discussed in Section Il. Table Ill summarizes results for
The proposed method was tested for 3D localization félexion-extension of the upper arm. The table presents
simulated linear motion, random roto-translational mo#md RMS errror of the candidate approaches over the whole
for flexion and extension of the upper arm. Matlab was uséjectory. Under Scenario 1, i.e., when all 4 ranges are
to simulate 10 seconds of these movements with varying amentinuously available, the proposed approach performs
clusion scenarios during the course of the motion. The motisame as the SCAAT approach. But under occluded motions
was subjected to intermittent 3 second occlusions. Dutieg t(i.e., scenarios 3, 4 and 5) the proposed approach performs
occlusion period, different occlusion patterns were tridl)  better than the SCCAT approach. The results show up to
data was available at 50Hz, and the range estimates w&f¥6 improvement compared to SCAAT approach and 24%
available at 30Hz. A standard deviation@65m/sec? and an improvement compared to Kalman filter approach.
offset error of0.1m/sec? was added to the accelerometer data.
These values were determined experimentally from a ShimmeiFigure 4 compares the trajectory of the linear motion, ran-
research platform, containing the Freescale MMA7361 MEMIom roto-translation and flexion-extension motion as estauh
accelerometer. Two diffenet level of errors (lcm and 5cnby different approaches. The shaded regions in the graph
were added to the range estimates, to test the robustnessepfesent the occluded periods during the motion. It isexvid
the algorithm. The authors selected 4 approaches to compiareccluded periods, the proposed approach estimatesube tr
based on the literature survey and 3D position estimatios waajectory more accurately as compared to SCAAT approach.
done using each of these approaches. The selected metkod&igiure 5 depicts the effect of range estimation accuracy on
Extended Kalman Filter (EKF) [12], Sequential-Importance3D localization for all scenarios. In all scenarios the jregd

V. RESULTS AND DISCUSSION
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