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Abstract. Recent work on two-phase free boundary problems has led to the
investigation of a new type of quadrature domain for harmonic functions. This

paper develops a method of constructing such quadrature domains based on

the technique of partial balayage, which has proved to be a useful tool in the
study of one-phase quadrature domains and Hele-Shaw flows.

1. Introduction

Let Ω be a bounded open set in Euclidean space RN (N ≥ 2), let µ be a positive
(Radon) measure with compact support in Ω, and let λ denote Lebesgue measure
on RN . We say that Ω is a (one-phase) quadrature domain for harmonic functions
with respect to µ if∫

Ω

hdλ =

∫
hdµ for every integrable harmonic function h on Ω. (1)

(Some papers allow µ to be a signed measure, but it has now been shown [8]
that this does not give any greater generality.) Let Uµ denote the Newtonian (or
logarithmic, if N = 2) potential of µ, normalized so that −∆Uµ = µ in the sense
of distributions. Then (1) is equivalent to saying that

U(λ|Ω) = Uµ and ∇U(λ|Ω) = ∇Uµ on Ωc,

where Ωc = RN\Ω. The strong connection between quadrature domains and free
boundary theory becomes clear from consideration of the function Uµ−U(λ|Ω). For
background information on quadrature domains we refer to the survey of Gustafsson
and Shapiro [11].

Recent work [14], [15] on two-phase free boundary problems has led Emamizadeh,
Prajapat and Shahgholian [5] to propose the study of two-phase quadrature do-
mains, which we define as follows.

Definition 1.1. Let Ω+,Ω− be disjoint bounded open sets in RN , and µ+, µ− be
positive measures with compact supports in Ω+,Ω− respectively. If

U(λ|Ω+ − λ|Ω−) = U(µ+ − µ−) on (Ω+ ∪ Ω−)c, (2)

then we say that the pair (Ω+,Ω−) is a two-phase quadrature domain for harmonic
functions with respect to (µ+, µ−).

As will be explained in Section 3, such a pair (Ω+,Ω−) has the property that∫
hd(µ+ − µ−) =

∫
Ω+

hdλ−
∫

Ω−
hdλ

for every h ∈ C(Ω+ ∪ Ω−) that is harmonic on Ω+ ∪ Ω−, (3)
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where C(A) denotes the collection of all real-valued continuous functions on a set
A. Further, any pair (Ω+,Ω−) of disjoint bounded open sets satisfying (3) can be
modified, by the addition of a polar set to each if necessary, to form a two-phase
quadrature domain.

Trivial examples of two-phase quadrature domains arise when Ω+ and Ω− are
disjoint one-phase quadrature domains with respect to µ+ and µ−, respectively. If
we had also required matching gradients on (Ω+ ∪Ω−)c in (2), or that the equality
in (3) holds for all integrable harmonic functions on Ω+ ∪Ω−, the discussion would
end here. However, the above definition admits more interesting examples. We
denote by δx the unit measure concentrated at a point x.

Example 1. In R2 the pair ({|x| < 1}, {1 < |x| < 2}) is a two-phase quadrature
domain with respect to (πaδ0, µa), for any a ≥ 0, where µa has total mass (2 + a)π
uniformly distributed on the circle {log |x| = (8 log 2 − 3)/(4 + 2a)}. This follows
readily from the fact that the mean value of log |y − ·| over {|x| = r} is given by
max{log |y| , log r}.

Example 2. Let µ+ = 4δp and µ− = 4δ−p, where p = (0, 1) ∈ R2. There is a

bounded domain Ω+ contained in the upper half-plane S+, and a measure ν on S+,
such that ν|S+ = λ|Ω+ and ν|∂S+ 6= 0, and the function v = Uµ+ − Uν vanishes
outside Ω+. (See Section 3 for details.) We define Ω− = {(x, y) : (x,−y) ∈ Ω+}
and

u(x, y) =

{
v(x, y) if y ≥ 0
−v(x,−y) if y < 0

.

Then

u = U(µ+ − µ−)− U(λ|Ω+ − λ|Ω−) = 0 on (Ω+ ∪ Ω−)c, (4)

and so (Ω+,Ω−) is a two-phase quadrature domain with respect to (µ+, µ−).

Example 3. Let µ+ = 4(δq + δ−q) and µ− = 4(δr + δ−r), where q = (1, 1) and
r = (−1, 1). There is a bounded domain R+ contained in T+ = {x > 0, y > 0},
and a measure ν on T+ such that ν|T+ = λ|R+ and ν|∂T+ 6= 0, and the function
w = U(4δq)−Uν vanishes outside R+. (The measure ν is symmetric about the line
y = x.) We define Ω+ = R+ ∪ (−R+) and Ω− = {(x, y) : (x,−y) ∈ Ω+}, and then

u(x, y) =

{
w(|x| , |y|) if xy ≥ 0
−w(|x| , |y|) if xy < 0

.

Then (4) again holds, and so (Ω+,Ω−) is a two-phase quadrature domain with
respect to (µ+, µ−).

The above examples, which have obvious analogues in higher dimensions, all
involve either spheres or hyperplanes. It is far from clear how to construct more
general examples. The purpose of this paper is to take up a suggestion in [5] and
make a potential theoretic analysis of two-phase quadrature domains. In partic-
ular, we will provide a method for constructing such pairs (Ω+,Ω−) for suitable
given measures (µ+, µ−). We will also give sufficient conditions on (µ+, µ−) for
the existence of such quadrature domains. Our approach is inspired by the method
of partial balayage that has proved very useful in the construction of one-phase
quadrature domains for (sub)harmonic functions. However, significantly new ar-
guments are required for the two-phase case, as will become clear below. We note
that the paper [5] allows weighted Lebesgue measure, in place of λ, in the definition
of two-phase quadrature domains. We will restrict our attention to the unweighted
case for the sake of exposition.
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2. Key tools

2.1. Partial balayage. Here we recall some basic facts about the notion of (one-
phase) partial balayage, which was originally developed by Gustafsson and Sakai
[10]. A recent exposition of it may be found in [9]. For an open set D ⊂ RN and a
positive measure µ with compact support in D we define

VDµ(x) = sup

{
v(x) : v is subharmonic on D and v ≤ Uµ+

|·|2

2N
on RN

}
− |x|

2

2N

and then put BDµ = −∆VDµ. It turns out that there is a measure ν such that

BDµ = λ|ω(D,µ) + µ|ω(D,µ)c + ν = λ|Ω(D,µ) + µ|Ω(D,µ)c + ν, (5)

where

ω(D,µ) = {VDµ < Uµ}
and

Ω(D,µ) =
⋃
{U : U ⊂ D open and BDµ = λ in U},

and these are bounded open subsets of D. (Clearly VDµ = Uµ on Dc.) Further,

BDµ ≤ λ on D and ν ≥ 0, (6)

and ν is supported by ∂D∩∂ω(D,µ). We note that ω(D,µ) ⊂ Ω(D,µ) and that this
inclusion may be strict, even when µ has compact support contained in Ω(D,µ).
Clearly these sets increase as D increases and as µ increases. It will be convenient
to define

WDµ = Uµ− VDµ,
whence WDµ is lower semicontinuous, −∆WDµ ≥ µ − λ on D and WDµ ≥ 0 on
RN . Finally, if D = RN , we will abbreviate the above notation to V µ, Bµ, ω(µ),
Ω(µ), and Wµ, respectively. In this case, ν = 0.

For the reader’s convenience, we note that the other notation used in this paper
is introduced at the following points:

• Section 1: λ,Uµ,C(A), δx;
• Section 2.2: µd, µc;

• Section 2.3: GΩµ, µ
A, Ũ ;

• Section 3: Br(x);
• Section 4: η(u, µ), τµ, τ

′
µ,Wµ.

2.2. δ-subharmonic functions. By a δ-subharmonic function on an open set Ω
we mean a function w which is representable as w = s1 − s2, where s1 and s2 are
subharmonic on Ω. Such a function is, in general, defined only quasi-everywhere
on Ω, namely outside the polar set where s1 = s2 = −∞. We will refine this
observation using the fine topology, that is, the coarsest topology which makes all
superharmonic functions continuous. (An introduction to its basic properties may
be found in Chapter 7 of [2].) Firstly, as a distribution, −∆w is (locally) a signed
measure µ, and we may choose the functions s1, s2 above so that ∆s1 = µ− and
∆s2 = µ+, where µ+ − µ− is the Jordan decomposition of µ. There is a unique
decomposition of µ as a sum of signed Radon measures, µ = µd + µc, where µd
does not charge polar sets and µc is carried by a polar set (see, for example, [7]).
Clearly µ+

c ⊥ µ−c . If µ+
c 6= 0, then by Theorem 1.XI.4 of Doob [4] we have

fine lim
x→y

w(x)

Uµ+
c (x)

= 1 and fine lim
x→y

1

Uµ+
c (x)

= 0 for µ+
c -almost every y ∈ Ω.

Hence

fine lim
x→y

w(x) = +∞ for µ+
c -almost every y ∈ Ω,
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and similarly

fine lim
x→y

w(x) = −∞ for µ−c -almost every y ∈ Ω.

Thus we may use fine limits to extend w so that it is defined µ-almost everywhere,
and

w = +∞ a.e. (µ+
c ) and w = −∞ a.e. (µ−c ). (7)

We will always assign values to a δ-subharmonic function in this way.

2.3. Further potential theoretic background. In this section Ω is a Greenian
domain (that is, Ω has a Green function) and µ is a positive (Radon) measure on
Ω such that the associated Green potential GΩµ exists. By a Borel carrier of µ we
mean a Borel set B ⊂ Ω such that µ(Ω\B) = 0.

Theorem 2.1. Suppose that µ is finite and does not charge polar sets, and let B
be a Borel carrier for µ. Then, for each ε > 0, there is a compact set K ⊂ B such
that µ(B\K) < ε and GΩ (µ|K) is finite-valued and continuous.

The above result is usually stated for the case where GΩµ is finite-valued, but
its proof (see Corollary 4.5.2 in [2]) requires only that GΩµ is finite µ-almost ev-
erywhere, which is certainly true if µ does not charge polar sets.

Theorem 2.2. Let u, v be positive superharmonic functions on Ω, and µ1, µ2 be
mutually singular positive measures on Ω. If

(i) µ1 does not charge polar sets and µ1 ≤ −∆u|{u≤v}, and
(ii) µ2 ≤ −∆u and µ2 ≤ −∆v,

then µ1 + µ2 ≤ −∆ min{u, v}.

Proof. We know that µ2 ≤ −∆ min{u, v}, because

min{u, v} = min{u−GΩµ2, v −GΩµ2}+GΩµ2

and both u−GΩµ2 and v−GΩµ2 are superharmonic when suitably redefined on a
polar set, in view of (ii).

Since µ1 ⊥ µ2 it remains to prove that µ1 ≤ −∆ min{u, v}. By (i) and Theorem
2.1 we can choose an increasing sequence (Kj) of compact subsets of {u ≤ v} such
that GΩ

(
µ1|Kj

)
is continuous for each j, and ∪Kj carries µ1. We also observe

from (i) that u−GΩ

(
µ1|Kj

)
is superharmonic on Ω, and clearly v−GΩ

(
µ1|Kj

)
is

superharmonic on Ω\Kj . Since Kj ⊂ {u ≤ v}, we have

lim inf
x→y,x∈Ω\Kj

(
v −GΩ

(
µ1|Kj

))
(x) ≥ u(y)−GΩ

(
µ1|Kj

)
(y) (y ∈ ∂Kj),

and so the function min{u, v} − GΩ

(
µ1|Kj

)
is superharmonic on Ω, by Corollary

3.2.4 in [2]. Hence µ1|Kj ≤ −∆ min{u, v}, and the desired inequality follows on
letting j →∞. �

Theorem 2.2 provides a very short route to the following result of Brezis and
Ponce [3].

Corollary 2.3 (Kato’s inequality). If w is a δ-subharmonic function on an open
set, then

−∆ min{w, 0} ≥ (−∆w)|{w≤0}. (8)

Proof. Since this is a local result we may assume that the given open set is Greenian
and that w = u−v, where u and v are positive superharmonic functions, (−∆w)+ =
−∆u and (−∆w)− = −∆v. From (7) we see that

(−∆w)c|{w≤0} ≤ 0 and (−∆w)c|{w>0} ≥ 0,
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so

(−∆u)c|{w≤0} ≤ (−∆v)c|{w≤0} and (−∆v)c|{w>0} ≤ (−∆u)c|{w>0}.

We apply Theorem 2.2 with

µ1 = (−∆u)d|{w≤0} and µ2 = (−∆u)c|{w≤0}.

Then we apply it again with

µ1 = (−∆v)d|{w>0} and µ2 = (−∆v)c|{w>0},

but this time with the roles of u and v reversed. The results of these two applications
can be combined to yield

−∆ min{u, v} ≥ (−∆u)|{w≤0} + (−∆v)|{w>0},

whence (8) follows. �

If A ⊂ Ω, we define the swept measure µA = −∆R̂AGΩµ
, where R̂Av denotes the

regularized reduction of a positive superharmonic function v relative to A in Ω.
Thus, if U is an open set that is compactly contained in Ω and x ∈ U , then δU

c

x is

harmonic measure for U and x. If U is a finely open set, we define Ũ = {x : U c is

thin at x}, whence U ⊂ Ũ and Ũ\U is polar.

Theorem 2.4. If U is a finely open subset of Ω and µ is a measure such that

µ(Ũ c) = 0, then µU
c

is singular with respect to λ.

This result is contained in a very general theorem of Hansen and Hueber [12].

An alternative proof of the case where µ = δx and x ∈ Ũ , based on partial balayage,
may be found in Theorem 10 of [9]. (The proof given there for Euclidean open sets
U readily extends to the case of finely open sets.) The general case then follows
from the formula

µU
c

(B) =

∫
δU

c

x (B)dµ(x) (B is a Borel set)

(see Theorem 1.X.5 in [4]) and the fact that the measures δU
c

x all have the same

null sets as x varies over a fine component of Ũ (see 12.6, Corollary in [6]).
We will only use the notation µU

c

when U is a bounded set and µ has compact
support. The underlying Greenian open set Ω should then be understood to contain
both U and supp(µ), but will not be specified as it does not affect µU

c

. Finally, for
signed measures µ, we define µA = (µ+)A − (µ−)A.

3. Quadrature identities

The definition of a two-phase quadrature domain for harmonic functions requires
that the function

u = U(µ+ − λ|Ω+)− U(µ− − λ|Ω−) (9)

vanishes outside Ω+ ∪ Ω−. We begin by justifying the quadrature identity (3) and
the assertion following it. In the classical case of (one-phase) quadrature domains
the natural test class for the associated identity consists of the integrable harmonic
functions. However, as we explained in the introduction, this class is too large for
the two-phase case, and so in (3) we used harmonic functions which are continuous
up to the boundary. Use of this smaller test class means that we may need to
add a polar set to the domains in question in order to make them into quadrature
domains. The point here is that the functions Uδy (y ∈ ∂(Ω+∪Ω−)) do not belong
to our test-class, but for most choices of y we can approximate them by functions
harmonic in Ω+ ∪ Ω− and continuous up to the boundary.

We will use Br(x) to denote the open ball in RN of centre x and radius r.



TWO-PHASE QUADRATURE DOMAINS 6

Theorem 3.1. Let Ω+,Ω− be disjoint bounded open sets and µ+, µ− be measures
with compact supports in Ω+,Ω− respectively.
(a) If (Ω+,Ω−) is a two-phase quadrature domain for harmonic functions with
respect to (µ+, µ−), then (3) holds.
(b) If (3) holds, then there are polar sets Z1, Z2 such that (Ω+ ∪ Z1,Ω

− ∪ Z2) is a
two-phase quadrature domain for harmonic functions with respect to (µ+, µ−).

Proof. (a) Since the function u in (9) vanishes on (Ω+ ∪ Ω−)c, we see that

(µ+ − λ|Ω+)(Ω+)
c

= (µ− − λ|Ω−)(Ω−)
c

. (10)

Noting that, for any finite measure ν on a bounded open set Ω and any f ∈ C(Ω),
we have ∫

fdνΩc =

∫
hdν, where h(x) =

∫
fdδΩc

x , (11)

we deduce (3).

(b) Suppose that (3) holds, let Ω be a Greenian domain containing Ω+ ∪ Ω−,
and let u be given by (9). It follows easily from (3), applied to the functions

hy = Uδy −GΩ(y, ·) (y ∈ Ω)

(suitably defined at y), that

u = GΩ(µ+ − λ|Ω+)−GΩ(µ− − λ|Ω−) in Ω.

Let

E =
{
x : (Ω+ ∪ Ω−)c is non-thin at x

}
and y ∈ E ∩ Ω. We will show that GΩ(y, ·) can be approximated from below
by potentials vn which are continuous on Ω and harmonic on Ω+ ∪ Ω−, whence
u(y) = 0 by (3). From this it will follow by continuity that u = 0 on E. Since E

c

is open, contains Ω+ ∪Ω−, and differs from it by at most a polar set, we thus have
a two-phase quadrature domain of the stated form.

To prove the desired approximation property, we choose r such that Br(y) ⊂ Ω
and define A = Br(y)\(Ω+ ∪ Ω−) and

un = R̂
A\Br/n(y)

GΩ(y,·) (n ∈ N).

By Theorem 2.1 we can find a continuous potential vn on Ω such that vn ≤ un and
−∆vn ≤ −∆un on Ω, and vn ≥ un − n−1 on {dist(x, (Ω+ ∪Ω−)c) ≥ n−1}. Clearly
vn is harmonic on Ω+ ∪ Ω−. Since

un ↑ R̂AGΩ(y,·) = GΩ(y, ·),

by the non-thinness of A at y, we see that vn → GΩ(y, ·) on Ω+∪Ω−, as required. �

We now introduce two special types of two-phase quadrature domains.

Definition 3.2. Let (Ω+,Ω−) be a two-phase quadrature domain for harmonic
functions with respect to (µ+, µ−), and let u be given by (9). If

u ≥ 0 in Ω+ and u ≤ 0 in Ω−, (12)

then we call (Ω+,Ω−) a two-phase quadrature domain for subharmonic functions
with respect to (µ+, µ−).

If both inequalities in (12) are strict, then we call (Ω+,Ω−) a strong two-phase
quadrature domain for subharmonic functions with respect to (µ+, µ−).

The open sets Ω+,Ω− in the above definition need not be connected. However,
in contrast with the case a = 0 of Example 1, each component of Ω+ must intersect
supp(µ+), and each component of Ω− must intersect supp(µ−). To see this, we
note that if ω were a component of Ω+ that does not intersect supp(µ+), then u
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would be strictly subharmonic on ω and valued 0 on ∂ω, yielding a contradiction
to (12) in view of the maximum principle.

We distinguished between the two types of quadrature domain in Definition 3.2
because the latter type is emphasized in [5], whereas the former is the natural one
for quadrature inequalities, as becomes clear in the following analogue of Theorem
3.1.

Theorem 3.3. Let Ω+,Ω− be disjoint bounded open sets and µ+, µ− be measures
with compact supports in Ω+,Ω− respectively.
(a) If (Ω+,Ω−) is a two-phase quadrature domain for subharmonic functions with
respect to (µ+, µ−), then∫

sd(µ+ − µ−) ≤
∫

Ω+

sdλ−
∫

Ω−
sdλ for every s ∈ C(Ω+ ∪ Ω−)

that is subharmonic on Ω+ and superharmonic on Ω−. (13)

(b) If (13) holds, then there are polar sets Z1, Z2 such that (Ω+ ∪Z1,Ω
− ∪Z2) is a

two-phase quadrature domain for subharmonic functions with respect to (µ+, µ−).

Proof. (a) Let s ∈ C(Ω+ ∪ Ω−), where s is subharmonic on Ω+ and superharmonic
on Ω−, and let ν = ∆s on Ω+∪Ω−. Further, let h+, h− be the (PWB) solutions to
the Dirichlet problem on Ω+,Ω− respectively with boundary data s. Using (11),
(10), and the fact that (2), (12) imply that

GΩ+(µ+ − λ|Ω+) ≥ 0 on Ω+, and GΩ−(µ− − λ|Ω−) ≥ 0 on Ω−,

we deduce that∫
sd(µ+ − µ−) =

∫
(h+ −GΩ+(ν|Ω+)) dµ+ −

∫
(h− −GΩ−(ν|Ω−)) dµ−

=

∫
sd(µ+)(Ω+)c −

∫
sd(µ−)(Ω−)c

−
∫

Ω+

GΩ+µ+dν +

∫
Ω−

GΩ−µ−dν

≤
∫
sd(λ|Ω+)(Ω+)c −

∫
sd(λ|Ω−)(Ω−)c

−
∫

Ω+

GΩ+(λ|Ω+)dν +

∫
Ω−

GΩ−(λ|Ω−)dν

=

∫
Ω+

(h+ −GΩ+(ν|Ω+)) dλ−
∫

Ω−
(h− −GΩ−(ν|Ω−)) dλ

=

∫
Ω+

sdλ−
∫

Ω−
sdλ.

(b) We know from the corresponding case of Theorem 3.1 that there are disjoint
open sets D+, D− containing Ω+,Ω− respectively, such that D+\Ω+, D−\Ω− are
polar and the function u vanishes on (D+ ∪ D−)c. Now let x ∈ Ω+ and choose
n0 ∈ N such that Uδx ≤ n0 outside Ω+. Then the function s = −min{Uδx, n} is
subharmonic on Ω+ and harmonic on Ω− whenever n ≥ n0. We can thus apply
(13) and let n → ∞ to see that u ≥ 0 on Ω+, and hence on D+. Similarly, u ≤ 0
on D−, so the result follows �

We will now provide the promised details for Example 2. Let p, µ+ and S+ be
as stated there, and let Ω+ = ω(S+, µ+). Clearly Wµ+ ≥ WS+µ+ on S+, and
WS+µ+ vanishes continuously on ∂S+. We also know that

−∆WS+µ+ = µ+ − λ|Ω+ − ν0,
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where ν0 ≥ 0 and supp(ν0) ⊂ ∂S+. Finally,

Ω+ ⊂ ω(µ+) =
{
x : |x− p| <

√
4/π

}
,

so λ(Ω+) ≤ λ(ω(µ+)∩S+) < 4. Since λ(Ω+)+ν0(∂S+) = 4, we see that ν0(∂S+) >
0, as claimed.

The details for Example 3 are similar.

4. Construction of two-phase quadrature domains

Let µ = µ+ − µ− be a signed measure with compact support. Below we provide
a means of constructing a two-phase quadrature domain for subharmonic functions
with respect to (µ+, µ−) provided such a quadrature domain exists. We also show
the uniqueness of such quadrature domains modulo sets of λ-measure zero.

Given a Borel function u : RN → [−∞,+∞], we define the signed measure

η(u, µ) =
(
(µ+ − λ)+ − (µ+ − λ)−|{u>0}

)
−
(
(µ− − λ)+ − (µ− − λ)−|{u<0}

)
.

This definition requires only that u be defined λ-almost everywhere.

Lemma 4.1. Let u, u1, u2 : RN → [−∞,+∞] be Borel measurable functions,
µ, µ1, µ2 be signed measures with compact supports, and A ⊂ RN be a Borel set.
Then
(a) η(−u,−µ) = −η(u, µ),
(b) µ− λ ≤ η(u, µ) ≤ µ+ λ, and
(c) η(u1, µ1)|A ≥ η(u2, µ2)|A provided u1|A ≤ u2|A and µ1|A ≥ µ2|A.

Proof. Part (a) is obvious, and

µ− λ = (µ+ − λ)− µ−

≤ ((µ+ − λ)+ − (µ+ − λ)−|{u>0})− ((µ− − λ)+ − (µ− − λ)−|{u<0})

≤ µ+ − (µ− − λ) = µ+ λ,

so (b) holds. Part (c) follows from the observations that

{u1 > 0} ∩A ⊂ {u2 > 0} ∩A, {u1 < 0} ∩A ⊃ {u2 < 0} ∩A,
µ+

1 |A ≥ µ
+
2 |A, µ−1 |A ≤ µ

−
2 |A,

whence

(µ+
1 − λ)+|A ≥ (µ+

2 − λ)+|A, (µ+
1 − λ)−|{u1>0}∩A ≤ (µ+

2 − λ)−|{u2>0}∩A,

(µ−1 − λ)+|A ≤ (µ−2 − λ)+|A, (µ−1 − λ)−|{u1<0}∩A ≥ (µ−2 − λ)−|{u2<0}∩A.

�

Let w ∈ L1
loc(RN ) be such that −∆w ≥ η(w, µ) and w ≥ −Wµ−, and let

u = w + Uµ− − | · |2/2N . Then

−∆u = −∆w + µ− + λ ≥ η(w, µ) + µ− + λ ≥ µ+ ≥ 0,

by Lemma 4.1(b). It follows that, by suitable redefinition on a λ-null set, u and w
can be made superharmonic and δ-subharmonic, respectively. We now define

τµ := {w : w is δ-subharmonic, −∆w ≥ η(w, µ) and w ≥ −Wµ− on RN}
and

τ ′µ := {w + Uµ− − | · |2/2N : w ∈ τµ},
where members of τ ′µ are suitably redefined on a polar set to make them superhar-
monic, and members of τµ are assigned values quasi-everywhere according to the
convention explained in Section 2.2. An inequality for a δ-subharmonic function w
is understood to hold wherever w is defined.

Lemma 4.2. If v1, v2 ∈ τ ′µ, then min{v1, v2} ∈ τ ′µ.
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Proof. Let v1, v2 ∈ τ ′µ. Then vi = wi + Uµ− − | · |2/2N , where each wi is δ-

subharmonic, wi ≥ −Wµ− and −∆wi ≥ η(wi, µ). Hence

min{v1, v2} = min{w1, w2}+ Uµ− − | · |2/2N,

and min{w1, w2} is a δ -subharmonic function which majorizes −Wµ−. Finally,

η(min{w1, w2}, µ) =

[ (
(µ+ − λ)+ − (µ+ − λ)−|{w1>0}

)
−
(
(µ− − λ)+ − (µ− − λ)−|{w1<0}

) ]∣∣∣∣
{w1−w2≤0}

+

[ (
(µ+ − λ)+ − (µ+ − λ)−|{w2>0}

)
−
(
(µ− − λ)+ − (µ− − λ)−|{w2<0}

) ]∣∣∣∣
{w1−w2>0}

= η(w1, µ)|{w1−w2≤0} + η(w2, µ)|{w1−w2>0}

≤ − (∆w1) |{w1−w2≤0} − (∆w2) |{w1−w2>0}

= − (∆ (w1 − w2)) |{w1−w2≤0} −∆w2

≤ −∆ min{w1, w2},

by Corollary 2.3. �

Theorem 4.3. (a) Let u1, u2 be δ-subharmonic functions with compact supports.
If −∆u1 ≥ η(u1, µ) and −∆u2 ≤ η(u2, µ), then u2 ≤ u1.
(b) Let u be a δ-subharmonic function with compact support.

(i) If −∆u ≤ η(u, µ), then u ≤Wµ+.
(ii) If −∆u ≥ η(u, µ), then u ≥ −Wµ− and so u ∈ τµ.

Proof. (a) Let v = u2 − u1. Then

−∆v ≤ η(u2, µ)− η(u1, µ)

= (µ+ − λ)−|{u1>0} − (µ+ − λ)−|{u2>0}

+(µ− − λ)−|{u2<0} − (µ− − λ)−|{u1<0},

so −∆v|{v≥0} ≤ 0. Hence ∆v+ ≥ 0, by Corollary 2.3. Thus v+, when suitably re-
defined on a polar set, is subharmonic. Since v has compact support, the maximum
principle shows that v+ ≡ 0, whence the result.

(b) The functionWµ+ is non-negative, δ-subharmonic, and has compact support.
Further, µ+|{Wµ+=0} ≤ λ, and

−∆Wµ+ =
(
µ+ − λ

)
|{Wµ+>0}

= (µ+ − λ)+ − (µ+ − λ)−|{Wµ+>0}

= η(Wµ+, µ+)

≥ η(Wµ+, µ), (14)

by Lemma 4.1(c). If −∆u ≤ η(u, µ), it now follows from part (a) that u ≤Wµ+.
Finally, replacing µ by −µ in (14), we obtain

−∆(−Wµ−) = ∆Wµ− ≤ −η(Wµ−,−µ) = η(−Wµ−, µ),

by Lemma 4.1(a). If −∆u ≥ η(u, µ), it thus follows from part (a) that u ≥ −Wµ−,
and so u ∈ τµ. �

Theorem 4.4. (a) The set τµ contains a least element Wµ, which has compact
support.
(b) The function Wµ+Wµ− is lower semicontinuous and

−∆Wµ = η(Wµ,µ) + γ,

where γ is a measure with compact support such that 0 ≤ γ ≤ 2λ.
(c) If U |µ| is finite-valued and continuous, then so also is Wµ.
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(d) If w is a δ-subharmonic function with compact support and −∆w = η(w, µ),
then w = Wµ.

Proof. (a) Since Wµ+ ≥ 0 ≥ −Wµ−, we see from (14) that Wµ+ ∈ τµ, so τµ is non-
empty. By Lemma 4.2, τ ′µ is a down-directed family of superharmonic functions, so
by Choquet’s lemma there is a decreasing sequence (un) in τ ′µ with limit u, where

û = înf τ ′µ. Further, û = u almost everywhere (λ). Let

vn = un − Uµ− + | · |2/2N and v = û− Uµ− + | · |2/2N.

The sequence (η(vn, µ)) is then w*-convergent to the signed measure ν given by

ν = (µ+ − λ)+ − (µ+ − λ)−|∩n{vn>0} − (µ− − λ)+ + (µ− − λ)−|∪n{vn<0}

= (µ+ − λ)+ − (µ+ − λ)−|{v>0} − (µ+ − λ)−|A
−(µ− − λ)+ + (µ− − λ)−|{v<0}

= η(v, µ)− (µ+ − λ)−|A, (15)

where A ⊂ {v = 0}. Also,

〈−∆vn, ϕ〉 → 〈−∆v, ϕ〉 for all ϕ ∈ C∞c (RN ).

Since vn ∈ τµ, we know that −∆vn ≥ η(vn, µ) for all n, and hence from (15) that

−∆v ≥ η(v, µ)− (µ+ − λ)−|A. (16)

We know that −Wµ− ≤ v ≤ Wµ+, so the set U = {v 6= 0} is bounded, as well as
finely open. Clearly (−∆v)U

c

= 0, so

− (∆v) |Ũc =
(
(∆v) |Ũ

)Uc
,

where Ũ = {x : U c is thin at x}, and hence − (∆v) |Ũc is singular with respect to
Lebesgue measure, by Theorem 2.4. Thus (16) yields

−∆v ≥ η(v, µ)− (µ+ − λ)−|A∩Ũ = η(v, µ), (17)

since A∩ Ũ ⊂ {v = 0} ∩ Ũ , and the latter set is polar and so λ-null. Hence v ∈ τµ.

It is clearly the least element Wµ that we sought, and has compact support.
(b) From the above construction

Wµ+Wµ− = (û− Uµ− + | · |2/2N) + (Uµ− − UBµ−)

= û− UBµ− + | · |2/2N.

Thus Wµ + Wµ− is lower semicontinuous, since Bµ− ≤ λ. Also, −∆Wµ =
η(Wµ,µ) + γ where γ ≥ 0, by (17). Let w = Wµ− 2W (γ/2). Then

−∆w = η(Wµ,µ) + γ + 2B(γ/2)− γ
= (µ+ − λ)+ − (µ+ − λ)−|{Wµ>0} − (µ− − λ)+ + (µ− − λ)−|{Wµ<0}

+2λ|{W (γ/2)>0} + γ|{W (γ/2)=0}

≥ (µ+ − λ)+ − (µ+ − λ)−|{w>0} − (µ+ − λ)−|{Wµ>0,2W (γ/2)≥Wµ}

−(µ− − λ)+ + (µ− − λ)−|{w<0} − (µ− − λ)−|{Wµ≥0,Wµ<2W (γ/2)}

+2λ|{W (γ/2)>0}

≥ η(w, µ)− ((µ+ − λ)− − λ)|{Wµ>0,2W (γ/2)≥Wµ}

−((µ− − λ)− − λ)|{Wµ≥0,Wµ<2W (γ/2)}

≥ η(w, µ).

It follows from Theorem 4.3(b) that w ∈ τµ. Hence W (γ/2) = 0, and so γ ≤ 2λ, as
claimed.
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(c) By part (b) and Lemma 4.1(b),

| −∆Wµ| ≤ |η(Wµ,µ)|+ 2λ ≤ |µ|+ 3λ,

so Wµ is finite-valued and continuous if U |µ| is.
(d) It follows from Theorem 4.3(b) that w ∈ τµ, and from part (b) and Theorem

4.3(a) that w ≤Wµ, whence w = Wµ. �

Below we shed some further light on the measure γ that appears in Theorem
4.4. We note from part (b) of that result that, if µ+, µ− have disjoint compact
supports, then Wµ is everywhere defined. However, the sets Ω+,Ω− in (18) below
need not be open, as we will see later in Example 4.

Theorem 4.5. Suppose that µ+, µ− have disjoint compact supports, and let

Ω+ = {Wµ > 0} and Ω− = {Wµ < 0}. (18)

Then γ(Ω+ ∪ Ω−) = 0, and so

−∆Wµ = ((µ+ − λ)− (µ− − λ)+)|
Ω̃+ − ((µ− − λ)− (µ+ − λ)+)|

Ω̃− + ν, (19)

where

ν = −(((µ+− λ)− (µ−− λ)+)|
Ω̃+)(Ω+)c + (((µ−− λ)− (µ+− λ)+)|

Ω̃−)(Ω−)c . (20)

Further, ν = 0 if |µ| |
(Ω̃+∪Ω̃−)c

� λ.

Proof. Let Ω be a bounded open set containing Ω+ ∪ Ω−, let ε > 0 and suppose
that x ∈ Ω+ satisfies 0 < ε < Wµ(x). Since 0 ≤ γ ≤ 2λ, we can choose δ > 0 such
that uδ ≤ ε, where uδ = GΩ(γ|Bδ(x)). Let

w =

{
Wµ−

(
uδ − R̂{Wµ≤ε}

uδ

)
on Ω

Wµ on Ωc
,

where the reduction is relative to superharmonic functions on Ω. Then Wµ ≥ w > 0
on {Wµ > ε} and w = Wµ quasi-everywhere on {Wµ ≤ ε}, so η(Wµ,µ) = η(w, µ).
Also,

−∆w = −∆Wµ− γ|Bδ(x)∩{Wµ>ε} +
(
γ|Bδ(x)∩{Wµ>ε}

){Wµ≤ε}

≥ −∆Wµ− γ = η(Wµ,µ).

Hence −∆w ≥ η(w, µ) and it follows from Theorem 4.3(b) that w ∈ τµ. From

the minimality of Wµ we conclude that uδ = R̂
{Wµ≤ε}
uδ , whence γ(Bδ(x) ∩ {Wµ >

ε}) = 0. Therefore γ(Ω+) = 0, in view of the arbitrary choices of ε and x.
Similar reasoning shows that the function

w′ =

{
Wµ−

(
GΩγ − R̂(Ω−)c

GΩγ

)
on Ω

Wµ on Ωc

also belongs to τµ, so γ(Ω−) = 0.
Let

ν =
(
−∆Wµ

)
|
(Ω̃+∪Ω̃−)c

.

Then (19) holds, and (20) follows since Wµ = 0 on (Ω̃+ ∪ Ω̃−)c.
Finally, suppose that |µ| |

(Ω̃+∪Ω̃−)c
� λ. Since ν ⊥ λ, by Theorem 2.4, and

ν =
(
η(Wµ,µ) + γ

)
|
(Ω̃+∪Ω̃−)c

,

we see from Lemma 4.1(b), and the fact that γ ≤ 2λ, that ν = 0. �
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Remark 1. We already know from Theorem 4.4(c) that the sets Ω+,Ω− in (18) are
open whenever U |µ| is finite-valued and continuous. More generally, Wµ is lower
semicontinuous outside supp(µ−) and upper semicontinuous outside supp(µ+), so
Ω+\supp(µ−) and Ω−\supp(µ+) are open. Thus Ω+,Ω− are open provided

supp(µ+) ⊂ {Wµ ≥ 0} and supp(µ−) ⊂ {Wµ ≤ 0}.

Corollary 4.6. If

supp(µ+) ⊂ Ω+ and supp(µ−) ⊂ Ω−,

where Ω+,Ω− are given by (18), then (Ω+,Ω−) is a strong two-phase quadrature
domain for subharmonic functions with respect to (µ+, µ−).

Proof. We know from Remark 1 that the disjoint sets Ω+,Ω− are open. By Theorem
4.5 we have

−∆Wµ = µ+ − λ|Ω+ − µ− + λ|Ω− .

Since Wµ is compactly supported and δ-subharmonic, it must coincide with the
function u defined by (9), and the result follows. �

We now demonstrate that the sets Ω+,Ω− in (18) need not be open in general.

Example 4. Let D be a bounded domain with an irregular boundary point y such
that Br(y)\D is non-polar for all r > 0. Further, suppose that all positive super-
harmonic functions on D are λ-integrable. (This will be the case if, for instance, D
satisfies a uniform inner ball condition: see Aikawa [1].) Now let ν be a non-zero
measure with compact support in D and suppose, for the sake of contradiction, that
there is a sequence (xn) of points in D such that nGDν(xn) ≤ GD(λ|D)(xn) for all
n. Clearly (xn) tends to ∂D, and we may assume that xn /∈ supp(ν) for all n. The
function

w =
∑
n

1

n2

GD(·, xn)

GDν(xn)

is positive and superharmonic on D, and we arrive at the contradictory conclusion
that

∫
D
wdλ =∞. Therefore we can choose m large enough so that GD(µ+−λ|D) >

0 on D, where µ+ = mν.
Now let µ− = (µ+ − λ|D)D

c

. Then µ− ≥ 0 and the function

u = Uµ+ − U (λ|D)− Uµ− = GD(µ+ − λ|D)

satisfies
−∆u = µ+ − λ|D − µ− = η(u, µ),

where µ = µ+ − µ−. It follows from Theorem 4.4(d) that u = Wµ. Since GDν has
a positive fine limit at the irregular boundary point y, we can arrange (by increasing
m, if necessary) that u(y) > 0. However, u = 0 at regular boundary points of D,
which occur arbitrarily close to y, so the set Ω+ = {Wµ > 0} is not open.

We will now use our construction to get uniqueness results for two-phase quad-
rature domains for subharmonic functions.

Theorem 4.7. (a) If (Ω+,Ω−) is a two-phase quadrature domain for subharmonic
functions with respect to (µ+, µ−), then

Ω+ = {Wµ > 0} ∪ supp(µ+) ∪ Z1 and Ω− = {Wµ < 0} ∪ supp(µ−) ∪ Z2,

where Z1 and Z2 are λ-null sets. In particular, two-phase quadrature domains for
subharmonic functions are unique up to λ-null sets.
(b) If (Ω+,Ω−) is a strong two-phase quadrature domain for subharmonic functions
with respect to (µ+, µ−), then it is unique and

Ω+ = {Wµ > 0}, Ω− = {Wµ < 0}.
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Proof. (a) Let U = {u > 0}, where u is given by (9). Clearly U ⊂ Ω+. Then

(−∆u)|Ω+\U ≤ (−∆ min{u, 0}) |Ω+ = 0

by Corollary 2.3, since u ≥ 0 on Ω+. Hence (−∆u)|Ω+\U � λ, since (−∆u)|Ω+ =

µ+ − λ|Ω+ . Similarly, (−∆u)|Ω−\V � λ, where V = {u < 0}. On the other hand,

(−∆u){u=0} = 0, so (−∆u)|Ũc∪Ṽ c ⊥ λ by Theorem 2.4. Hence (−∆u)|Ω+\U = 0 =
(−∆u)|Ω−\V . We conclude that

−∆u = µ+ − λ|Ω+ −
(
µ− − λ|Ω−

)
= (µ+ − λ)+ − (µ+ − λ)−|{u>0} −

(
(µ− − λ)+ − (µ− − λ)−|{u<0}

)
= η(u, µ),

so u = Wµ by Theorem 4.4(d). Since

0 = −∆u = −λ on the set Z1 = Ω+\
(
{Wµ > 0} ∪ supp(µ+)

)
,

we see that λ(Z1) = 0, as required. A similar argument applies to Ω−.
(b) In this case we have U = Ω+, so Ω+ = {Wµ > 0}, and similarly Ω− =

{Wµ < 0}. �

5. Existence of two-phase quadrature domains

It is desirable to be able to recognize which pairs (µ+, µ−) give rise to a two-phase
quadrature domain. A complete characterization seems an unrealistic target (even
for the one-phase case), but we give below some sufficient conditions on (µ+, µ−)
for two-phase quadrature domains to exist.

Theorem 5.1. Let µ+, µ− be positive measures with disjoint compact supports in
RN .
(a) If

Ω(µ−) ∩ supp(µ+) = ∅, Ω(µ+) ∩ supp(µ−) = ∅,
and

supp(µ+) ⊂ Ω(Ω(µ−)
c
, µ+), supp(µ−) ⊂ Ω(Ω(µ+)

c
, µ−), (21)

then there is a two-phase quadrature domain for subharmonic functions with respect
to (µ+, µ−).
(b) If

ω(µ−) ∩ supp(µ+) = ∅, ω(µ+) ∩ supp(µ−) = ∅, (22)

and

supp(µ+) ⊂ ω(ω(µ−)
c
, µ+), supp(µ−) ⊂ ω(ω(µ+)

c
, µ−),

then there is a strong two-phase quadrature domain for subharmonic functions with
respect to (µ+, µ−).

Proof. (a) We define

u = Wµ+ −W
Ω(µ+)

cµ−, v = W
Ω(µ−)

cµ+ −Wµ−.

Then u ≥ −W
Ω(µ+)

cµ− ≥ −Wµ−, and

−∆u = (µ+ − λ)|{u>0} − (µ− − λ)|{u<0} + ν ≥ η(u, µ),

by (5), (6) and the fact that µ+ ≤ λ outside {u > 0}. Hence u ∈ τµ, by Theorem

4.3(b), and so u ≥Wµ. Similarly, −∆v ≤ η(v, µ) and, since v has compact support,
we see from Theorem 4.3(a) that v ≤ Wµ. Thus Ω+ ⊂ Ω(µ+) and Ω− ⊂ Ω(µ−),
where Ω+ = {Wµ > 0} and Ω− = {Wµ < 0}. Also, clearly

Ω(Ω(µ−)
c
, µ+) ⊂ Ω(µ+) and Ω(Ω(µ+)

c
, µ−) ⊂ Ω(µ−).
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It follows that the sets

D+ = Ω(Ω(µ−)
c
, µ+) ∪ Ω+ and D− = Ω(Ω(µ+)

c
, µ−) ∪ Ω−

are disjoint. Since

Ω(Ω(µ−)
c
, µ+) ⊂ {Wµ ≥ 0} and Ω(Ω(µ+)

c
, µ−) ⊂ {Wµ ≤ 0}, (23)

we see from (21) and Remark 1 that Ω+,Ω− are open. Thus D+, D− are open sets
containing the compact supports of µ+, µ− respectively. We also note that

ω(Ω(µ−)
c
, µ+) = {v > 0} ⊂ Ω+ and ω(Ω(µ+)

c
, µ−) = {u < 0} ⊂ Ω−,

so

D+\Ω+ ⊂ Ω(Ω(µ−)
c
, µ+) \ ω(Ω(µ−)

c
, µ+)

and

D−\Ω− ⊂ Ω(Ω(µ+)
c
, µ−) \ ω(Ω(µ+)

c
, µ−).

In particular, µ+ = λ on D+\Ω+ and µ− = λ on D−\Ω−. By Theorem 4.5 this
implies that

−∆Wµ = ((µ+ − λ)− (µ− − λ)+)|
Ω̃+ − ((µ− − λ)− (µ+ − λ)+)|

Ω̃−

= (µ+ − λ)|
Ω̃+ − (µ− − λ)|

Ω̃−

= µ+ − λ|D+ − µ− + λ|D− .

It follows that (D+, D−) is a quadrature domain for subharmonic functions with
respect to (µ+, µ−).

(b) The proof is similar, and indeed somewhat simpler, so the details are left to
the reader. �

The following corollary is similar to Theorem 5.1 in [5].

Corollary 5.2. Let µ+, µ− be positive measure with disjoint compact supports such
that (22) holds and

lim sup
r→0+

µ+(Br(x))

λ(Br(x))
> 2N , lim sup

r→0+

µ−(Br(y))

λ(Br(y))
> 2N

for all x ∈ supp(µ+) and y ∈ supp(µ−). Then there is a strong two-phase quadra-
ture domain for subharmonic functions with respect to (µ+, µ−).

Proof. Let x ∈ supp(µ+). By assumption there is a sequence (rn), decreasing to 0,
such that µ+(Brn(x)) > 2Nλ(Brn(x)) for each n. If µ+({x}) = 0, then there exists

n such that ω(µ+|Brn (x)) ⊂ ω(µ−)
c
. It follows from Theorem 2 of Sakai [13] and

the lower bound for µ+(Brn(x)) that

x ∈ ω(µ+|Brn (x)) = ω(ω(µ−)
c
, µ+|Brn (x)) ⊂ ω(ω(µ−)

c
, µ+).

On the other hand, if µ+({x}) > 0, it is clear that again x ∈ ω(ω(µ−)
c
, µ+). Hence

supp(µ+) ⊂ ω(ω(µ−)
c
, µ+), and similarly supp(µ−) ⊂ ω(ω(µ+)

c
, µ−). The result

now follows from Theorem 5.1(b). �

We remark that the condition (22) in the above two results is certainly not neces-
sary for the existence of two-phase quadrature domains for subharmonic functions.
This can be seen from Example 2, where we could have taken an arbitrarily large
constant in place of the number 4 in the definition of µ+, µ− and still obtained
existence.
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Theorem 5.3. Let µ+, µ− have disjoint compact supports, let

u = Wµ+ − 2W (µ−/2), v = 2W (µ+/2)−Wµ−,

and suppose that

supp(µ+) ⊂ {v > 0}, supp(µ−) ⊂ {u < 0}. (24)

Then v ≤ Wµ ≤ u, and ({Wµ > 0}, {Wµ < 0}) is a strong two-phase quadrature
domain for subharmonic functions with respect to (µ+, µ−).

Proof. Since
{u > 0} ⊂ ω(µ+), ω(µ+)\{u > 0} ⊂ ω(µ−/2),

and

supp(µ−) ⊂ {u < 0} ⊂ ω(µ−/2), supp(µ+) ⊂ {v > 0} ⊂ ω(µ+/2) ⊂ ω(µ+)

by (24), we see that

−∆u = (µ+ − λ)|ω(µ+) − (µ− − 2λ)|ω(µ−/2)

≥ (µ+ − λ)+ − (µ+ − λ)−|{u>0} − λ|ω(µ+)\{u>0}

−(µ− − λ)|{u<0} + λ|ω(µ−/2)\{u<0} + λ|ω(µ−/2)

≥ (µ+ − λ)+ − (µ+ − λ)−|{u>0} − (µ− − λ)|{u<0}

= η(u, µ).

Similarly, −∆v ≤ η(v, µ), and it now follows from Theorem 4.3 that v ≤ Wµ ≤ u.
The result now follows from Corollary 4.6. �

Finally, we consider the case where µ+, µ− have disjoint polar compact supports.

Corollary 5.4. Suppose that µ+ and µ− have disjoint compact supports, and that
Uµ+ = ∞ on supp(µ+) and Uµ− = ∞ on supp(µ−). Then there is a strong
two-phase quadrature domain for subharmonic functions with respect to (µ+, µ−)

Proof. With the notation from Theorem 5.3 it is clear that v = ∞ on supp(µ+)
and u = −∞ on supp(µ−), so (24) holds. �
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[9] Gardiner, S. J., Sjödin, T.: Partial balayage and the exterior inverse problem of potential

theory. Bakry, D. (ed.) et al., Potential theory and stochastics in Albac, 111-123, Bucharest,

Theta, 2009.
[10] Gustafsson, B., Sakai, M.: Properties of some balayage operators, with applications to quad-

rature domains and moving boundary problems. Nonlinear Anal. 22 (1994), 1221-1245.

[11] Gustafsson, B., Shapiro, H. S.: What is a quadrature domain? Quadrature domains and
their applications, 1–25, Oper. Theory Adv. Appl., 156, Birkhäuser, Basel, 2005.
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