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Abstract

Ostrowski showed that there are intimate connections between the
gap structure of a Taylor series and the behaviour of its partial sums
outside the disk of convergence. This paper investigates the corre-
sponding problem for the homogeneous polynomial expansion of a
harmonic function. The results for harmonic functions display new
features in the case of higher dimensions.

1 Introduction

Let B(x0, r) denote the open ball with centre x0 and radius r in Eu-
clidean space RN (N ≥ 2). If h is a harmonic function on B(x0, r),
then its multiple Taylor series does not necessarily converge on the
whole of B(x0, r). However, if we group the terms of the series accord-
ing to their degree, we obtain an expansion of h which does converge
on all of B(x0, r). We call this grouped Taylor series the homogeneous
polynomial expansion of h about x0 and denote by Sm(h, x0) the mth
partial sum. Thus

Sm(h, x0)(x) =

m∑
j=0

Hj(x− x0),

where Hj is a homogeneous harmonic polynomial of degree j. (See
Chapter 2 of [1].) The radius of the largest ball centred at x0 inside
which the above series converges locally uniformly is called the radius
of convergence of the expansion.
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In the case of holomorphic functions, celebrated work of Ostrowski
(see [8], for example) shows a deep connection between the gap struc-
ture of the Taylor series expansion and the phenomenon of overcon-
vergence of a subsequence of partial sums outside the disk of con-
vergence. Ostrowski’s insights have found new applications in recent
years to the study of universal Taylor series (see [3], [5], [6], [7]). There
is a corresponding notion of universal polynomial expansions for har-
monic functions, but the theory is less well developed. As Tamptse
has noted in [11], one of the barriers to progress is the absence of an
Ostrowski-type theory for such expansions.

The purpose of this paper is to develop such a theory. It turns
out that, in the case of harmonic functions, some of the results have
a significantly different form, and this difference is essential in higher
dimensions.

In order to state our results we need the following definition:

Definition: Let
∑∞

j=0Hj(x − x0) be the homogeneous polynomial
expansion of a harmonic function on an open neighbourhood of x0

and let (pn) and (qn) be two sequences of natural numbers such that
1 ≤ p1 < q1 ≤ p2 < q2 ≤ ...
We say that the expansion possesses Hadamard-Ostrowski gaps (pn, qn)
if
(i) there exists θ > 0 such that qn ≥ (1 + θ)pn for all n ∈ N,

(ii) Hj ≡ 0 for j ∈
∞⋃
n=1

{pn + 1, ..., qn}.

If we replace (i) with the stronger condition

(i
′
)
qn
pn
→∞ as n→∞,

then we say that the expansion possesses Ostrowski gaps (pn, qn).

Throughout this paper H(Ω) denotes the set of all harmonic func-
tions on an open set Ω ⊂ RN . For simplicity we write Sm instead of
Sm(h, 0).

Our first result is an analogue of Theorem I of Ostrowski [8].

Theorem 1 Let h ∈ H(B(0, 1)) and suppose that h has a harmonic
extension to a neighbourhood of some point y ∈ ∂B(0, 1). If the homo-
geneous polynomial expansion of h about 0 has radius of convergence 1
and possesses Hadamard-Ostrowski gaps (pn, qn), then the subsequence
(Spn) of partial sums of h converges uniformly on a neighbourhood of
y.

The conclusion of Theorem 1 remains valid if to our initial function we
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add a harmonic function on B(0, 1 + ε) for some ε > 0. The following
example, which was suggested by Stephen Gardiner, shows that the
converse is not true for harmonic functions in higher dimensions. For
the purposes of this example B′(0, r) denotes the ball in RN−1 centred
at 0 with radius r.

Example Let N ≥ 3. Also, let K( · , y) be the Poisson kernel of
B′(0, 1) with pole at some fixed point y ∈ ∂B′(0, 1). We consider the
function h : B′(0, 1)× R −→ R defined by

h(x1, ..., xN−1, xN ) = K((x1, ..., xN−1), y).

Then the homogeneous expansion of h has radius of convergence 1
and its partial sums (Sn) converge locally uniformly on B′(0, 1) × R.
However, h cannot be written in the form h = g+v on B(0, 1), where
(i) v ∈ H(B(0, 1 + ε)) for some ε > 0,
(ii) g ∈ H(B(0, 1)) and the homogeneous expansion of g possesses
Hadamard-Ostrowski gaps (pn, qn).

Thus, in contrast to Theorem II of Ostrowski in [8], a harmonic func-
tion on B(0, 1) which has a subsequence of partial sums converging
uniformly on a neighbourhood of some y ∈ ∂B(0, 1), need not be the
sum of a harmonic function on a larger ball and one with Hadamard-
Ostrowski gaps. However, as the following theorem shows, there is still
a significant relationship between overconvergence and occurrence of
Hadamard-Ostrowski gaps. We use the following notation:
If δ > 0, y ∈ ∂B(0, 1) and a, b ∈ R with a < b, then we write

P(y, δ, a, b) = {tu : u ∈ ∂B(0, 1) ∩B(y, δ), t ∈ [a, b]}.

Theorem 2 Let h ∈ H(B(0, 1)) with homogeneous polynomial expan-
sion about 0 which has radius of convergence 1, and assume that there
exists a subsequence (Sλn) of partial sums of h which is uniformly
bounded on some ball B(w, ρ), disjoint from B(0, 1). Then h can be
written in the form h = g + v, where g, v ∈ H(B(0, 1)) and
(i) the homogeneous polynomial expansion of g possesses Hadamard-
Ostrowski gaps,
(ii) the homogeneous polynomial expansion of v converges locally uni-
formly on B(0, 1) ∪ P( w

‖w‖ ,∆,−r, r) for some ∆ > 0 , r > 1.

Corollary 1 Let h be harmonic on the unit disk D(0, 1) in the complex
plane C and suppose that it has a homogeneous polynomial expansion
with radius of convergence 1. If there exist ρ > 0 and z0 ∈ ∂D(0, 1)
such that a subsequence (Sλn) of partial sums of h converges uniformly
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on the disk D(z0, ρ), then there exist g ∈ H(D(0, 1)) with homogeneous
polynomial expansion which possesses Hadamard-Ostrowski gaps and
v ∈ H(D(0, 1 + ε)), such that h = g + v on D(0, 1).

Finally, we prove an analogue of the third main theorem of Ostrowski
concerning overconvergence (Theorem III of [8]) for expansions which
fulfil a stronger gap condition.

Theorem 3 Let h ∈ H(B(0, 1)) and suppose that h has a harmonic
extension to a domain G, strictly containing B(0, 1). If the homoge-
neous polynomial expansion of h about 0 has radius of convergence 1
and possesses Ostrowski gaps (pn, qn), then the subsequence (Spn) of
partial sums of h converges locally uniformly on G.

Remark For such a function h, there exists a largest domain D, con-
taining B(0, 1), to which h can be extended harmonically. The maxi-
mum principle implies that (RN ∪ {∞}) \D is connected.

We will prove Theorems 1-3 and give details of the example in
Section 3 following some preliminary material below.

2 Preliminaries

For the proofs of our results we will combine methods from the holo-
morphic case with tools from potential theory and some new argu-
ments. We first prove a formula for the radius of convergence of a
homogeneous polynomial expansion. If y ∈ ∂B(0, 1) and j ∈ N, then
Jy,j denotes the y-axial homogeneous harmonic polynomial of degree
j (for details we refer to Theorem 2.3.2 of [1]). Finally, λ denotes
Lebesgue measure on RN and σ denotes surface area measure on a
sphere.

Lemma 1 Let h be harmonic on an open set containing B(0, ρ) and
let
∑∞

j=0Hj(x) be the homogeneous polynomial expansion of h about
0.
(i) For each j ∈ N and x ∈ B(0, ρ) we have

Hj(x) =
1

σ(∂B(0, ρ))

∫
∂B(0,ρ)

J y
ρ
,j

(
x

ρ

)
h(y)dσ(y).

(ii) There exists a constant C > 0, depending only on the dimension
N , such that for each j ∈ N

Lj ≤
C(j + 1)N−2

ρj
max
‖y‖=ρ

|h(y)|,

4



where Lj = max
‖y‖=1

|Hj(y)|.

(iii) The radius of convergence r of the expansion is given by

r = R :=

(
lim sup
j→∞

L
1/j
j

)−1

,

where we interpret R as +∞ when lim sup
j→∞

L
1/j
j = 0.

Proof. (i) The formula can be derived by a suitable change of variable
in formula (2.4.6) in [1].

(ii) By the j-homogeneity of Hj and the maximum principle,

Lj = max
‖x‖=ρ

{ 1

‖x‖j
|Hj(x)|} =

1

ρj
sup
‖x‖<ρ

|Hj(x)|.

By Theorem 2.4.3 of [1], there is a constant C, depending only on the
dimension N , such that∣∣∣∣J yρ ,j

(
x

ρ

)∣∣∣∣ ≤ C(j + 1)N−2 (x ∈ B(0, ρ), y ∈ ∂B(0, ρ), j ∈ N).

Combining the above with part (i), we obtain the desired inequality.
(iii) We first observe that the radius of convergence coincides with

the radius of the largest ball centred at 0 inside which h has a har-
monic extension. By the j-homogeneity of Hj we see that |Hj(x)| ≤
Lj‖x‖j for all x ∈ RN . Since the radius of convergence of the series∑∞

j=0 Lj‖x‖j is R, the series
∑∞

j=0Hj (x) converges locally uniformly
on B(0, R). Hence r ≥ R. (If R = +∞ then r = +∞ as well.) Let
% ∈ (0, r). Then h has a harmonic extension to an open set containing
B(0, %). If max

‖y‖=%
|h(y)| = 0, then h is identically 0 and Lj = 0, so

r = R = +∞. If max
‖y‖=%

|h(y)| 6= 0, then

lim
j→∞

(
C(j + 1)N−2

%j
max
‖y‖=%

|h(y)|
)1/j

=
1

%
,

and so lim sup
j→∞

L
1/j
j ≤ 1

%
by part (ii). Now, by letting %→ r− , we get

lim sup
j→∞

L
1/j
j ≤ 1

r
and so r ≤ R, which gives the desired formula.

As we will see, the gap structure of the homogeneous polynomial
expansion of a harmonic function h forces certain subsequences of
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its partial sums to converge (to h) at a faster rate inside the ball of
convergence. The following theorems, due to Korevaar and Meyers [4],
allow us to transfer this good property to certain sets lying outside
the ball of convergence.

If u ∈ L2(∂B(w, r)) we write

‖u‖w,r,2 =

√
1

σ(∂B(w, r))

∫
∂B(w,r)

u2dσ.

Also, if u is bounded on a set K we write

‖u‖K = sup{|u(x)| : x ∈ K}.

Theorem A Let Ω be a domain in RN , let Ω0 ⊂ Ω be a sub-
domain and E ⊂ Ω a compact subset. Then there is a constant
a = a (E,Ω0,Ω) ∈ (0, 1] such that, for all harmonic functions u on
Ω,

‖u‖E ≤ ‖u‖aΩ0
‖u‖1−aΩ .

Theorem B Let 0 < ρ < t < R and w ∈ RN . Then, for all bounded
harmonic functions u on B(w,R),

‖u‖w,t,2 ≤ ‖u‖βw,ρ,2‖u‖
1−β
w,R,2,

where β is the Hadamard exponent:

β =
log (t/R)

log (ρ/R)
.

Also we will make use of the following lemma which is a consequence
of the subharmonic mean value inequality.

Lemma 2 Let (un) be a sequence of non-negative subharmonic func-
tions on a ball B(z, t). If∫

B(z,t)

undλ→ 0 as n→∞,

then (un) converges to 0 locally uniformly on B(z, t).

Finally we will use the next lemma in the proof of Theorem 2. This
result is a “uniform” version of Theorem 3 of Gehlen [2].

Lemma 3 Let K be a compact set in C with positive logarithmic
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capacity c(K), let M > 0 and let (λn) be a subsequence of the positive
integers. Then, for each ε > 0, there exists ν = ν(ε) ∈ (1

2 , 1) and
n0 ∈ N such that for all power series

∑∞
j=0 ajz

j satisfying

sup
n∈N
‖sλn‖K ≤M (2.1)

(where sm(z) =
∑m

j=0 ajz
j) we have

max
νλn≤j≤λn

|aj |1/j ≤
1 + ε

c(K)
(n ≥ n0).

Proof. We adapt the argument of Gehlen. Let ε > 0. We choose δ > 0
such that eδ < 1 + ε. From the definition of the Green function gK of
C \K with pole at ∞, we can find Rδ > 1 such that if |z| ≥ Rδ, then

gK(z) ≤ log |z| − log c(K) + δ.

Let Tj denote the set of the jth coefficients aj of all power series∑∞
j=0 ajz

j satisfying (2.1). By applying Bernstein’s lemma (see [9])
to the partial sums sλn , we obtain

|sλn(z)| ≤ ‖sλn‖KeλngK(z) ≤M
(
|z|
c(K)

eδ
)λn

(|z| ≥ Rδ, n ∈ N).

Further, Cauchy’s formula implies that, for all j = 1, 2, ..., λn and
aj ∈ Tj ,

|aj |1/j =

∣∣∣∣∣∣∣
1

2πi

∫
|z|=Rδ

sλn(z)

zj+1
dz

∣∣∣∣∣∣∣
1/j

≤M1/j

(
eδ

c(K)

)λn/j
R
λn/j−1
δ .

In particular, if ν ∈ (0, 1) is sufficiently close to 1, then

lim sup
n→∞

max
νλn≤j≤λn

sup{|aj |1/j : aj ∈ Tj} ≤
eδ/ν

min{c(K), c(K)1/ν}
R

1/ν−1
δ

<
1 + ε

c(K)
.

3 Proofs

Proof of Theorem 1. Let
∑∞

j=0Hj(x) be the homogeneous polyno-
mial expansion of h about 0. Without loss of generality, we may as-
sume that y = (1, 0, ..., 0) ∈ RN . Then, for sufficiently small δ ∈ (0, 1

2),
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the function h has a harmonic continuation to a neighbourhood of

B(z, 1
2 + δ), where z = (1

2 , 0, ..., 0) ∈ RN . On B(z, 1
2 + δ) we consider

the functions hn with hn(x) = h(x) − Spn(x). We will show that hn
converges locally uniformly to 0 on B(z, 1

2 + ε) for sufficiently small
ε > 0.

Since the homogeneous polynomial expansion of h possesses Hadamard-
Ostrowski gaps (pn, qn), there is some θ > 0 such that qn ≥ (1 + θ)pn

for all n ∈ N and Hj ≡ 0 for j ∈
∞⋃
n=1

{pn + 1, ..., qn}. Let η := µδ,

where µ ∈ (0, 1
2) is chosen small enough that

1 + θ

θ
(1− µ)− 1

θ
(1 + µ) > 0.

Let Lj = max
‖x‖=1

|Hj(x)|. Lemma 1(iii) shows that lim sup
j→∞

L
1/j
j = 1.

Hence, there exists c > 1 such that Lj ≤ c(1 − η)−j for all j ∈ N.
Additionally, by the j-homogeneity of Hj , we have |Hj(x)| ≤ Lj‖x‖j ,
for all x ∈ RN .

From all the above we see that, for each x ∈ B(z, 1
2 − δ) and for

each n ∈ N

|hn(x)| ≤
∞∑

j=pn+1

|Hj(x)| =
∞∑
j=qn

|Hj(x)|

≤
∞∑
j=qn

c

(1− η)j
‖x‖j ≤ c

∞∑
j=qn

(
1− δ
1− η

)j

= c

(
1− 1− δ

1− η

)−1(1− δ
1− η

)qn
≤ K

(
1− δ

1− µδ

)(1+θ)pn

,

where K = c
1− µδ

(1− µ)δ
.

Moreover, since h has a harmonic continuation to a neighbourhood

of B(z, 1
2 + δ), the function h is bounded there by a positive constant

M . Hence for each x ∈ B(z, 1
2 + δ) and for each n ∈ N,
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|hn(x)| ≤ |h(x)|+
pn∑
j=0

|Hj(x)|

≤ M +

pn∑
j=0

Lj‖x‖j

≤ M +

pn∑
j=0

c

(1− η)j
(1 + δ)j

= M + c

(
1 + δ

1− η

)pn pn∑
j=0

(
1− η
1 + δ

)j
≤ L

(
1 + δ

1− µδ

)pn
,

where L = M + c
1 + δ

(1 + µ)δ
.

Let ε ∈ (0, δ). We apply Theorem B for the three spheres centred
at z with radii ρ = 1

2 − δ, t = 1
2 + ε, R = 1

2 + δ and the harmonic
functions hn. This tells us that, for each n ∈ N,

‖hn‖z,t,2 ≤ ‖hn‖βz,ρ,2‖hn‖
1−β
z,R,2, where β =

log( tR)

log( ρR)
=

log(1+2δ
1+2ε)

log(1+2δ
1−2δ )

.

By using the above estimates for the functions hn on the ballsB(z, 1
2 − δ)

and B(z, 1
2 + δ) we deduce that

‖hn‖z,t,2 ≤ Kβ

(
1− δ

1− µδ

)β(1+θ)pn

L1−β
(

1 + δ

1− µδ

)(1−β)pn

≤ c′ (Aδ(ε))pn ,

where c′ = max{K,L} and

Aδ(ε) =

((
1− δ

1− µδ

)(1+θ) log( 1+2δ
1+2ε

)( 1 + δ

1− µδ

)log( 1+2ε
1−2δ

)
)1/ log( 1+2δ

1−2δ
)

.

We claim that Aδ(ε) < 1 for sufficiently small ε and δ. Indeed,

Aδ(ε)→ A
1/ log( 1+2δ

1−2δ
)

δ as ε→ 0+,

where

Aδ =

(
1− (1− µ)δ

1− µδ

)(1+θ) log(1+2δ)(
1 +

(1 + µ)δ

1− µδ

)− log(1−2δ)

.
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However, since

logAδ
−2θδ2

→ 1 + θ

θ
(1− µ)− 1

θ
(1 + µ) > 0 as δ → 0+,

we can find a sufficiently small δ > 0 such that logAδ < 0, or equiv-
alently, Aδ < 1. Thus, for a suitable choice of ε ∈ (0, δ), the quantity
Aδ(ε) is strictly less than 1, and so c′ (Aδ(ε))

pn → 0 as n→∞. Con-
sequently ‖hn‖z,t,2 → 0 as n→∞.

Since hn is harmonic on a neighbourhood of B(z, t), the function
h2
n is subharmonic on the same neighbourhood. Therefore,

1

λ(B(z, t))

∫
B(z,t)

h2
ndλ ≤

1

σ(∂B(z, t))

∫
∂B(z,t)

h2
ndσ = ‖hn‖2z,t,2.

Hence

∫
B(z,t)

h2
ndλ→ 0, as n→∞ and the result follows by applying

Lemma 2 to the non-negative subharmonic functions (h2
n).

Details of Example. Since K( · , y) ∈ H(B′(0, 1)), the function h is
harmonic on the cylinder B′(0, 1)×R. Let

∑∞
j=0Hj(x1, ..., xN ) be the

homogeneous polynomial expansion of h about the origin. Then the
radius of convergence of this expansion is 1 because h(x, 0)→ +∞ as
x→ y, where x ∈ B′(0, 1). Using Theorem 2.4.3 of [1] we obtain

h(x1, ..., xN−1, xN ) = K((x1, ..., xN−1), y) =

∞∑
j=0

1

σN−1
Jy,j(x1, ..., xN−1),

where Jy,j denotes the y-axial homogeneous polynomial of degree j in
RN−1 and σN−1 = σ(∂B′(0, 1)). The uniqueness of the homogeneous
polynomial expansion of h in B(0, 1) implies Hj(x1, ..., xN−1, xN ) =

1

σN−1
Jy,j(x1, ..., xN−1) for each j ∈ N and for each (x1, ..., xN−1, xN ) ∈

RN . Since the series
1

σN−1

∑∞
j=0 Jy,j converges locally uniformly on

B′(0, 1) to K( · , y), the sequence (Sn) of partial sums of h converges
locally uniformly on B′(0, 1)× R (to h). We will show that h cannot
be written in the form h = g + v on B(0, 1), where
(i) v ∈ H(B(0, 1 + ε)) for some ε > 0,
(ii) g ∈ H(B(0, 1)) and it has a homogeneous polynomial expansion
with Hadamard-Ostrowski gaps (pn, qn).

For the sake of contradiction we assume that h can be written in
the above form for some functions v and g. Let

∑∞
j=0 vj and

∑∞
j=0 gj

be the homogeneous polynomial expansions of v and g respectively.
Then, using again the uniqueness of the homogeneous polynomial ex-
pansion of h, we deduce that Hj = vj + gj in RN . Therefore, for
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each (x1, ..., xN−1, xN ) ∈ RN and for each j ∈ N,

1

σN−1
Jy,j(x1, ..., xN−1) = gj(x1, ..., xN−1, xN ) + vj(x1, ..., xN−1, xN ).

In particular, condition (ii) shows that, for each (x1, ..., xN−1, xN ) ∈

RN and each j ∈ I =

∞⋃
n=1

{pn + 1, ..., qn},

1

σN−1
Jy,j(x1, ..., xN−1) = vj(x1, ..., xN−1, xN ).

Let

Vj = max{|vj(x1, ..., xN−1, xN )| : (x1, ..., xN−1, xN ) ∈ ∂B(0, 1)}.

Then, for each j ∈ I,

Vj = max{ 1

σN−1
|Jy,j(x1, ..., xN−1)| : (x1, ..., xN−1, xN ) ∈ ∂B(0, 1)}

= max{ 1

σN−1
|Jy,j(x1, ..., xN−1)| : (x1, ..., xN−1) ∈ ∂B′(0, 1)}

Consequently, since y ∈ ∂B′(0, 1),

lim sup
j→∞,j∈I

∣∣∣∣ 1

σN−1
Jy,j(y)

∣∣∣∣1/j ≤ lim sup
j→∞,j∈I

V
1/j
j ≤ lim sup

j→∞
V

1/j
j .

Additionally, condition (i) and Lemma 1(iii) imply that lim sup
j→∞

V
1/j
j <

1, and so

lim sup
j→∞,j∈I

∣∣∣∣ 1

σN−1
Jy,j(y)

∣∣∣∣1/j < 1.

As a final step we will show that lim
j→∞

∣∣∣∣ 1

σN−1
Jy,j(y)

∣∣∣∣1/j = 1, which

contradicts the above estimate. Indeed, from Corollary 2.3.7 of [1], we
obtain Jy,j(y) = dj,N−1, where dj,N−1 is the dimension of the space of
harmonic homogeneous polynomials of degree j in N − 1 variables.
Further, Corollary 2.1.4 of [1] gives

dj,N−1 =

(
j +N − 2

j

)
−
(
j +N − 4
j − 2

)
=

1

(N − 2)!
{(j +N − 2) · ... · (j + 1)− (j +N − 4) · ... · (j − 1)}.
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Thus dj,N−1 is a polynomial in j, and so

lim
j→∞

∣∣∣∣ 1

σN−1
Jy,j(y)

∣∣∣∣1/j = lim
j→∞

d
1/j
j,N−1 = 1.

Proof of Theorem 2. Let h, (λn), w and ρ be as in the statement
of the theorem and let

∑∞
j=0Hj(x) be the homogeneous polynomial

expansion of h about 0. For each u ∈ ∂B(0, 1), m ∈ N we define the
directional complexified partial sums

S(u)
m (z) =

m∑
j=0

Hj(u)zj (z ∈ C).

Clearly S
(u)
m (t) = Sm(tu) for every t ∈ R, u ∈ ∂B(0, 1). We observe

that P( w
‖w‖ ,∆, ‖w‖, ‖w‖ + ρ

2) ⊂ B(w, ρ) for sufficiently small ∆ > 0.

By considering the compact sets Km = D(0, 1− 1
m) ∪

[
‖w‖, ‖w‖+ ρ

2

]
we see that Km ↗ D(0, 1) ∪

[
‖w‖, ‖w‖+ ρ

2

]
as m→∞. Thus

c(Km)→ c(D(0, 1) ∪
[
‖w‖, ‖w‖+

ρ

2

]
)

= c(D(0, 1) ∪
[
‖w‖, ‖w‖+

ρ

2

]
)

> c(D(0, 1)) = 1,

where c(·) denotes logarithmic capacity. Thus we can find m0 ∈ N
such that c(Km0) > 1.

Claim: There exists M > 0 such that
∣∣∣S(u)
λn

(z)
∣∣∣ ≤ M for all z ∈ Km0 ,

n ∈ N and u ∈ T := ∂B(0, 1) ∩B( w
‖w‖ ,∆).

Proof of the claim: If t ∈
[
‖w‖, ‖w‖+ ρ

2

]
, then tu ∈ B(w, ρ) for every

u ∈ ∂B(0, 1)∩B( w
‖w‖ ,∆), from the choice of ∆. Hence, by hypothesis,

there exists M0 > 0 such that, for all t ∈
[
‖w‖, ‖w‖+ ρ

2

]
, n ∈ N and

u ∈ ∂B(0, 1) ∩B( w
‖w‖ ,∆),

|S(u)
λn

(t)| = |Sλn(tu)| ≤M0.

If z ∈ D(0, 1− 1
m0

), then |z|u ∈ B(0, 1− 1
m0

) for every u ∈ ∂B(0, 1).
The local Weierstrass convergence of the homogeneous polynomial ex-
pansion of h (see Theorem 2.4.4 of [1]) implies that

M1 :=

∞∑
j=0

sup{|Hj(x)| : x ∈ B(0, 1− 1

m0
)} < +∞.
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Hence, for all z ∈ D(0, 1− 1
m0

), n ∈ N and u ∈ ∂B(0, 1),

∣∣∣S(u)
λn

(z)
∣∣∣ ≤ λn∑

j=0

∣∣Hj(u)zj
∣∣ =

λn∑
j=0

|Hj(|z|u)| ≤M1.

We finish the proof of the claim by setting M = max{M0,M1}.

Since c(Km0) > 1, we can choose ε > 0 such that

1 + ε

c(Km0)
< 1.

In view of the above claim, we can apply Lemma 3 to the Taylor

polynomials (S
(u)
m )m for all u ∈ T . Hence we find ν ∈ (1

2 , 1), µ < 1
and n0 ∈ N such that

|Hj(u)|1/j ≤ µ (3.1)

for all u ∈ T and j ∈ S =

∞⋃
n=n0

{[νλn] + 1, ..., λn}.

Without loss of generality we may assume that λn+1 ≥ 2λn (for
otherwise we can choose a suitable subsequence of (λn)). Hence, if we
set pn = [νλn0+n−1] and qn = λn0+n−1, we have

1 ≤ p1 < q1 ≤ p2 < q2 ≤ ... and
qn
pn
≥ 1

ν
> 1 for all n ∈ N.

We define

Gj =

{
0 if j ∈ S
Hj if j ∈ N \ S

and

Vj =

{
Hj if j ∈ S
0 if j ∈ N \ S .

The local Weierstrass convergence of the homogeneous polynomial ex-
pansion implies that the series

g(x) =
∞∑
j=0

Gj(x) , v(x) =
∞∑
j=0

Vj(x)

have radius of convergence at least 1, and so they define harmonic
functions on B(0, 1). Clearly g possesses Hadamard-Ostrowski gaps
(pn, qn) and h = g + v on B(0, 1). We choose r ∈ (1, 1

µ). From (3.1)
we deduce that, for all j ∈ N, t ∈ [−r, r] and u ∈ T = ∂B(0, 1) ∩
B( w
‖w‖ ,∆),

|Vj(tu)| = |Vj(u)tj | ≤ µjrj .

13



Consequently, the choice of r gives

∞∑
j=0

sup{|Vj(x)| : x ∈ P(
w

‖w‖
,∆,−r, r)} ≤

∞∑
j=0

(µr)j < +∞.

Hence, by using the Weierstrass M -test, we conclude that the expan-
sion of v converges uniformly on P( w

‖w‖ ,∆,−r, r), which completes the
proof of the theorem.

Proof of Corollary 1. From Theorem 2 we can write h in the form
h = g + v, where g, v ∈ H(D(0, 1)) and
(i) the homogeneous polynomial expansion of g possesses Hadamard-
Ostrowski gaps,
(ii) the homogeneous polynomial expansion of v converges locally uni-
formly on D(0, 1) ∪ P(z0,∆,−r, r) for some ∆ > 0 , r > 1.

Applying Proposition 1.4 (i) of Siciak and Kolodziej [10] to v, we
see that its expansion converges locally uniformly onD(0, r) and there-
fore h has the desired form.

Proof of Theorem 3. Let
∑∞

j=0Hj(x) be the homogeneous poly-
nomial expansion of h about 0. Also let E be a compact subset of
G. We consider the functions hn with hn(x) = h(x) − Spn(x) and
will show that hn → 0 uniformly on E. Lemma 1(iii) and the j-
homogeneity of Hj imply that there is a constant K > 1 such that

|Hj(x)| ≤ K
(

4
3

)j ‖x‖j for all x ∈ RN and j ∈ N. Since the homo-
geneous polynomial expansion of h possesses Ostrowski gaps (pn, qn),
for each x ∈ B(0, 1

2) and n ∈ N, we have

|hn(x)| ≤
∞∑

j=pn+1

|Hj(x)| =
∞∑

j=qn+1

|Hj(x)| ≤ 3K

(
2

3

)qn
Now we choose a bounded domain Ω such that E ∪B(0, 1

2) ⊂ Ω ⊂
Ω ⊂ G. Since h is continuous on the compact set Ω, we know that
‖h‖Ω < +∞. Also Ω ⊂ B(0, R) for some R > 1. Hence, for each
x ∈ Ω and n ∈ N,

|hn(x)| ≤ |h(x)|+
pn∑
j=0

|Hj(x)| ≤ ‖h‖Ω +K

pn∑
j=0

(
4

3
R

)j
≤ L

(
4

3
R

)pn
,

where L = K
(∑∞

j=0

(
3

4R

)j
+ ‖h‖Ω

)
< +∞.

By applying Theorem A to the harmonic functions hn and the sets
E, Ω and Ω0 = B(0, 1

2), we find a constant a = a(E,Ω0,Ω) ∈ (0, 1]
such that, for every n ∈ N,

‖hn‖E ≤ ‖hn‖aΩ0
‖hn‖1−aΩ .

14



If we set c = max{3K,L} and Mn =
qn
pn

, the above estimates give

‖hn‖E ≤ (3K)a
(

2

3

)Mnpna

L1−a
(

4

3
R

)pn(1−a)

≤ c

((
2

3

)aMn
(

4

3
R

)1−a
)pn

for all n ∈ N. From the definition of Ostrowski gaps, Mn → ∞ as
n → ∞, and since

(
2
3

)a
< 1 we deduce that ‖hn‖E → 0 as n →

∞. Equivalently, (Spn) converges to h uniformly on E and the result
follows from the arbitrary nature of E.
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