<table>
<thead>
<tr>
<th>Title</th>
<th>Prediction of Optimal Synthesis Conditions for the Formation of Ordered Double-Transition-Metal MXenes (o-MXenes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Caffrey, Nuala M.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2020-08-02</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/12528</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry C, copyright © 2020 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c05348</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1021/acs.jpcc.0c05348</td>
</tr>
</tbody>
</table>
Prediction of Optimal Synthesis Conditions for the formation of Ordered Double-Transition-Metal MXenes (\(o\-MXenes\))

Nuala M. Caffrey*

School of Physics, University College Dublin, Dublin 4, Ireland

E-mail: nuala.caffrey@ucd.ie

Abstract

\(o\-MXenes\) are a family of layered double-transition metal carbides and nitrides with a unique out-of-plane ordering of the two metal atoms. Their chemical versatility means they have novel applications in energy storage, catalysis and sensing devices. \(o\-MXenes\) are synthesized from their precursor \(o\-MAX\) phase materials using a chemical etching process, although yields are typically low. The optimal conditions necessary for the etching of MAX phase materials can be predicted using Pourbaix diagrams. Here, Pourbaix diagrams produced from first-principles calculations are used to determine the conditions necessary to enhance the yields of \(o\-MXenes\). In agreement with experiment, we show that high yields of \((\text{Mo, Ti})_2\text{CT}_x\) are possible, as the \(o\-MXene\) is stable relative to known competing ionic and molecular species in an aqueous solution across a wide range of pH and applied potentials. We show how the stability of the \(o\-MXene\) depends on the nature of the terminating groups and the presence of metal vacancies on the \(o\-MXene\) surface.

Introduction

\(M_{n+1}\text{AX}_n\), or MAX, phases are layered, hexagonal, early transition-metal carbides and nitrides, where \(M\) is an early transition metal, \(A\) is an A-group element (mostly Groups 13 and 14), \(X\) is C and/or N, and \(n = 1, 2, 3\) or more recently 4.\(^1\) MAX phases have found uses in diverse applications as they combine both ceramic and metallic attributes, and are particularly suited to high-temperature applications such as electronic contacts and protective coatings. They are also precursors to MXenes, their two-dimensional (2D) counterparts.\(^{2-4}\) These are produced by selectively chemically etching the A elements from the parent MAX phase using, typically, an aqueous HF solution. The acid attacks the M-A bonds, forming A-F\(_x\) compounds which diffuse out. The MXene layers are immediately passivated by a mixture of oxygen, fluorine and hydroxyl terminating groups (T). Driven by their huge chemical versatility, these 2D layered materials have found applications in energy storage,\(^5\) catalysis,\(^6,7\) and sensing.\(^8\)

This versatility can be increased even further by considering solid solutions of two or more metal atoms on the M site. In some cases, the metal atoms exhibit spontaneous ordering, with both in-plane (\(i\-MAX\)) and out-of-plane (\(o\-MAX\)) ordering observed and characterized.\(^9\) The general formula of all known \(o\-MAX\) phases is \((M', M'')_{n+1}\text{AlC}_n\), where \(M'\) and \(M''\) denote early transition metals and \(n\) is either 2 or 3. The ordering is such that two \(M'\) layers ‘sandwich’ either one or two layers of \(M''\) within each \(M-X\) block. The first \(o\-MAX\) phase was discovered in 2014 by Liu and coworkers\(^{10,11}\) who synthesized \(\text{Cr}_2\text{TiAlC}_2\). Shortly thereafter, Caspi and coworkers\(^{12}\) synthesized \((\text{Cr}_{0.5}\text{V}_{0.5})_{n+1}\text{AlC}_n\) with \(n = 2\) and 3. In 2015, \(\text{Mo}_2\text{TiAlC}_2\) and \(\text{Mo}_2\text{Ti}_2\text{AlC}_3\) were synthesized, exhibiting for the first time Mo - Al bonds.\(^{13,14}\) More recently, \(\text{Mo}_2\text{ScAlC}_2\) was successfully synthesized.\(^{15}\) Experimental synthesis has been limited so far to these six phases, but several more have been predicted to be stable.\(^{16,17}\)

The metal ordering in most of these \(o\-MAX\) materials is not perfect, with both experimental and computational evidence that some \(M'\) and \(M''\) atoms exchange positions. While the inner layers are typically comprised of 100% \(M'\) atoms, the outer layers are also occupied by some \(M''\) atoms. This is the case for \((\text{Cr}_{0.5}\text{V}_{0.5})_{3}\text{AlC}_2\), where Rietveld analysis of neutron diffraction data showed that the inner layer is comprised of 100% V atoms, while the outer layers consisted of approximately 75% Cr atoms and 25% V atoms.\(^{12}\) Similarly, in \(\text{Mo}_2\text{TiAlC}_2\) the outer layers were found to consist of 75% Mo and 25% Ti, while the inner layers were occupied by Ti alone.\(^{13}\) MESHKIAN et al. also observed partial intermixing between the M elements in \(\text{Mo}_2\text{ScAlC}_2\).\(^{15}\) Finally, while the authors do not report on the degree of ordering, there is some speculation that \(\text{Cr}_2\text{TiAlC}_2\) also has an incomplete ordering of the metal atoms with some fraction of the Ti atoms occupying the Cr sites.\(^9\) The preference for a particular (\(M', M''\)) chemistry to result in an ordered \(o\-MAX\) phase rather than a disordered solid solution was shown by Dahlqvist...
et al. to occur if the two metal atoms are of similar size, with a large difference in their electronegativity, and if the metal atom next to the Al-layer does not form a stable binary rock-salt structure.17

\textit{o-}MAX phases are particularly interesting as they are potential precursors for \textit{o-}MXenes with surface layers that could not be obtained otherwise. For example, Cr-based MXenes were proposed to improve energy storage and catalysis applications,18-20 but as neither the etching of Cr$_2$AlC nor the synthesis of Cr$_3$AlC$_2$ was possible, experimental verification was unobtainable until (Cr$_2$)$_3$(Ti$_{1/3}$)AlC$_2$ was etched to produce flakes with surface Cr atoms.3,21 (Cr$_{0.5}$V$_{0.5}$)$_3$AlC$_2$ and Mo$_2$ScAlC$_2$ have also both been etched to produce their associated \textit{o-}MXenes, although some residual MAX phase is still present after the etching procedure.2 For the case of Mo$_2$ScAlC$_2$, ScF$_3$ particles are also present in the solution, suggesting that Sc, potentially present in the surface due to interlayer mixing, is also partially etched.15 The etching of Mo$_2$TiAlC$_2$ is more effective, with a 100\% \textit{o-}MXene yield achieved.3,22 Depending on the chemistry, etching times between 16 and 69 hours and etching temperatures ranging between room temperature and 55°C were required.

Here, we predict the optimal synthesis conditions for the formation of several \textit{o-}MXene 2D materials and determine the solution conditions necessary to maximize their yields. Using density functional theory calculations, we investigate how effective acid etching is on the known 312 double transition metal MAX phase materials, namely (Cr, Ti)$_3$AlC$_2$, (Cr, V)$_3$AlC$_2$, (Mo, Ti)$_3$AlC$_2$ and (Mo, Sc)$_3$AlC$_2$. We construct ‘etching’ Pourbaix diagrams, which show the stability of the \textit{o-}MAX and \textit{o-}MXene phases relative to known competing ionic and molecular species that may form in aqueous solution as a function of pH and potential. In particular, we examine how the nature of the \textit{o-}MXene terminating groups, the experimentally observed interlayer mixing of the metal atoms, and the presence of metal vacancies all play a role in stabilizing the resulting \textit{o-}MXenes.

\section*{Computational Details}

\subsection*{Construction of Etching Pourbaix Diagrams}

Pourbaix diagrams were constructed following the formalism initially developed by Persson et al.23 and which was extended by Ashton et al.24 to consider specifically ‘etching’ diagrams. An implementation of MP-Interfaced25,26 is used. The procedure is summarized here: For all relevant compounds and ionic species, a free energy of formation can be determined as:

\begin{equation*}
\Delta G(\phi, \text{pH}) = \Delta G^0 + 2.303 \cdot RT \log c_i - N_O \mu_{H,O} - 2.303 \cdot RT (2N_O - N_H) \text{pH} - (2N_O - N_H + m)\phi
\end{equation*}

where ϕ is the electrochemical potential, ΔG^0 is the free energy of formation at standard conditions, c_i is the concentration of the species (taken as 1 M for solid materials, and 10^{-3} M for all ionic species in solution), R is the ideal gas constant, T is the temperature (taken as room temperature), N_O and N_H are the number of oxygen and hydrogen atoms, respectively, $\mu_{H,O}$ is the chemical potential of water (taken as -2.46 eV), and m is the charge of the species. The thermodynamically favoured structure is determined by minimization of $\Delta G(\phi, \text{pH})$ among the set of all possible solid phases (subject to compositional constraints for the multi-element \textit{o-}MAX phase materials considered here) and dissolved species. A Pourbaix diagram is then constructed as the convex hull connecting the formation energies of all relevant compounds and ionic species. Only the \textit{o-}MAX and \textit{o-}MXene solid phases are considered. The standard hydrogen electrode (SHE) is used as the potential reference.

\section*{Density Functional Theory}

The formation energies of the solid phases (\textit{o-}MAX phases and multi-layered \textit{o-}MXenes) are determined within the framework of density functional theory (DFT), using the projector augmented wave method as implemented in the Vienna ab initio simulation package \textsc{vasp} code.27-29 The exchange-correlation functional of Perdew-Burke-Ernzerhof (PBE) is employed.30 The DFT-D3 method with Becke-Johnson (BJ) damping is used to account for dispersion interactions.31 The plane-wave energy cutoff is converged using a 520 eV energy cutoff. A 5 \times 5 \times 3 and 23 \times 23 \times 7 Monkhorst-Pack k-point grids32 are used during structural optimization and DOS calculations, respectively, for a 2 \times 2 unit cell. The structures are fully optimized with a maximum force criterion of 10$^{-2}$ eV/Å. Spin polarized calculations for performed for Cr-based compounds. The formation energies are defined relative to the elemental phases of all involved species.

The potential of zero charge (PZC) is the electric potential of a neutral electrode surface in solution. If there is a non-zero PZC, local potentials will be present at the surface which will affect the etching process. The PZC is determined using an implicit solvent model, as implemented in \textsc{vasp}sol33,34 and is given relative to the SHE (determined as 4.6 V35). The surface is modelled as an \textit{o-}MAX slab of 11 atomic layers with a thick vacuum layer of approximately 20 Å in the direction normal to the slab surface. The solvent is modelled with an aqueous electrolyte permittivity, ϵ_r, of 78.4, and a Debye length of 2 Å. The PZC is then given by the difference between the potential in the bulk of the solvent and the Fermi level of the slab. The former is obtained by calculating the planar average of the electrostatic potential across the super-cell and taking the potential sufficiently far from the surface along the surface normal direction.

Interlayer mixing is taken into account in a 2 \times 2 unit cell by replacing one M$'$ in each outer layer with an M$''$
atom, resulting in an \((M_{0.5}M_{0.5}^{''})_3\)AlC_2 stoichiometry. There is some evidence that vacancies, either individual or ordered, can occur in \(\alpha\)-MXenes after etching.\(^{36,37}\) Here, we consider single vacancies by removing one \(M'\) atom from the surface layer in the same \(2 \times 2\) unit cell. This results in a \((M_{0.5}M_{0.5}^{''})_3\)AlC_2 stoichiometry.

Extracting formation energies for ions and molecules in solution is difficult. Instead, following the procedure of Persson et al.,\(^{23}\) the experimental formation energies of all possible neutral and charged molecules comprised of each of the \(M, A\) and \(X\) elements combined with \(-O, -H, -F\) or \(-O-H\) atoms are extracted from the NIST NBS tables\(^{38}\) and Pourbaix’s Atlas.\(^{39}\) A correction is then applied to these experimental formation energies, given by the difference between the DFT and experimental formation energies of a reference compound, such as a simple binary oxide. For example, the experimental formation energies of \(\text{Ti}^{2+}, \text{Ti}^{3+}\) and \(\text{TiO}_2^{2+}\) are corrected by an amount:

\[
\Delta \mu_{\text{correction}}^\text{Ti} = E_{f}^{\text{DFT}}(\text{TiO}_2) - E_{f}^{\text{exp}}(\text{TiO}_2)
\]

which is applied additively for each atom in the considered species.

Results & Discussion

No interlayer mixing of \(M'\) and \(M''\) atoms

We start by assuming that there is no interlayer mixing present, i.e., by assuming 100% of the \(M'\) atoms occupy the outer layers, and 100% of the \(M''\) atoms occupy the interior positions in the \(M-X\) block. This will allow us to isolate the effect of interlayer mixing on the ability to etch an \(\alpha\)-MAX material to an \(\alpha\)-MXene.

The etching Pourbaix diagram of \(\text{Cr}_2\text{TiAlC}_2\) is shown in Fig. 1. Etching into \(-O, -F\) and \(-OH\) terminated \(\alpha\)-MXenes are considered separately. Compared to \(\text{Cr}_2\text{AlC}\) which shows only a small region of stability for \(\text{Cr}_2\text{CO}_2\) at \(p\text{H} > 9\) as shown by Ashton et al.\(^{24}\) and reproduced here (not shown), the stability region of the \(\text{Cr}\)-based \(\alpha\)-MXene increases to \(p\text{H} > 7\) (Fig. 1(a)). The potential of zero charge (PZC) is at \(-0.6\) V vs. SHE, suggesting that etching will occur and result in a stable \(\alpha\)-MXene, even without the application of an external potential. For \(p\text{H}\) values < 6.5 at PZC, the solid phases will dissolve in solution to form \(\text{Cr}^{2+}\) and \(\text{Ti}^{2+}\) ions (with \(\text{CH}_4\) produced). At 6.5 > \(p\text{H} > 7\), \(\text{CrOH}^{2+}\) is more stable than \(\text{Cr}^{2+}\).

Experimentally, HCl-LiF was used to etch this \(\alpha\)-MAX phase material.\(^3\) The availability of fluorine would suggest that \(-F\) will be a significant component of the \(\alpha\)-MXene terminating groups. Changing the surface termination type in this way will change the formation energy of the MXene phase, as well as the relative stability of the dissolved ions in solution. The stability region of \(\text{Cr}_2\text{TiC}_2\text{F}_2\) is shown in Fig. 1(b). It is significantly larger than that of \(\text{Cr}_2\text{TiC}_2\text{O}_2\), reflecting the much higher formation energy of the \(-F\) terminated \(\alpha\)-MXene (\(-8.7\) eV/f.u. compared to \(-6.9\) eV/f.u. for \(\text{Cr}_2\text{TiC}_2\text{O}_2\)). It is predicted to be stable in an aqueous solution over a wide range of \(p\text{H}\), between 2 and 14.

Finally, the Pourbaix diagram of \(\text{Cr}_2\text{TiC}_2\text{OH}_2\) is shown in Fig. 1(c). Compared to \(\text{Cr}_2\text{TiC}_2\text{O}_2\), the region of stability of the \(-O\)-terminated \(\alpha\)-MXene is slightly larger, extending into acidic \(p\text{H}\) values.

The etching diagram of \(\text{Cr}_2\text{VAlC}_2\) is shown in Fig. 2. It is quite similar to that of \(\text{Cr}_2\text{TiAlC}_2\). Here again, the stability region of the \(-O\) terminated \(\alpha\)-MXene (Fig. 2(a)) is smallest, while the \(-F\) terminated \(\alpha\)-
MXene (Fig. 2(b)) is stable across essentially all pH values at negative potentials. As the PZC is -0.4 eV, Cr$_2$V$_2$F$_2$ will be stable even without the application of an external potential. As shown in Fig. 2(c), higher pH values are required to stabilize Cr$_2$V$_2$(OH)$_2$ compared to the −F terminated o-MXene. At lower pH, the solid phases dissolve in solution to form Cr$^{3+}$ and VO$^{2+}$ or CrOH$^{2+}$ and HVO$^+_2$ ions, depending on the pH.

The relative size of the area of stability in phase space for the three considered o-MXenes can be explained using their formation energies, namely -6.4 eV, -8.1 eV and -7.4 eV/f.u. for the −O, −F and −OH terminated o-MXenes, respectively. The Cr-based dissolved phases are the same as for Cr$_2$TiAlC$_2$, while the V-based ions include VO$^{2+}$ at low pH values, HVO$^+_2$ at intermediate pH values, and VO$_{4}^{3-}$ at high values of pH. CH$_4$ is produced at negative applied external potentials. A caveat here is that interlayer mixing is not considered, yet significant intermixing is found experimentally. This will be addressed in Section 3.2.

Whereas Cr$_2$TiAlC$_2$, for example, was found experimentally to be incompletely etched with approximately 20% Al remaining after the etching procedure, Mo$_2$TiAlC$_2$ was etched with 100% yield of the associated o-MXene. This is consistent with the Pourbaix etching diagram, which shows a Mo$_2$TiC$_2$ stability region extending across the entire pH range and for a wide range of negative potentials. This is shown in Fig. 3 and is particularly evident in the −O terminated o-MXene, which has a stability region significantly greater than
that of Cr$_2$TiC$_2$O$_2$ or Cr$_2$VC$_2$O$_2$. Likewise, there are also increases in the areas of the stability regions of the −F and −OH terminated MXenes. The stability of Mo$_2$TiC$_2$F$_2$ extends even into negative pH values. This higher stability is reflected in the formation energies of those MXenes, which range between −8.1 and −8.4 eV/f.u. In all cases, the ZPC lies within the stability region of the o-MXenes, suggesting that etching will occur without any external potential.

This higher stability also increases in the areas of the stability regions of TiC and O$_2$(OH) terminated thin layers. The stability of all OH terminated MXenes considered here.

In the Pourbaix diagrams presented in Fig. 4 we have not considered ScF$_3$ as a possible reaction product, although there is some experimental evidence that it is present in the solution after etching. If we allow the Sc atoms to react with the F atoms present in the solution, there is no region of stability for any of the solid phases (not shown). Neglecting ScF$_3$ as a possible reaction product is appropriate if we assume the Sc atoms are located in internal M′ sites and are thus kinetically protected from the etching reaction. If however, some interlayer mixing is present, then this argument would not be viable. This will be discussed further in the next section.

The formation energies of all o-MAX and o-MXene phases considered here are summarized in Table 1. In all cases, the formation energy of the MXene phase is greater than that of the associated parent phase. This explains why there is no region in phase space where the o-MAX phase remains stable in the acidic solution. It is notable that the o-MXene phases with the smallest formation energies, for example Cr$_2$VC$_2$O$_2$ with a formation energy of −6.4 eV, followed by Cr$_2$TiC$_2$O$_2$ with a formation energy of −6.9 eV, correspond to those with the smallest stability regions.

Interlayer mixing & Vacancies

In this section, we determine how the interlayer mixing of the metal atoms, M′ and M′′, affects the Pourbaix etching diagrams of the o-MAX phases considered here.

The etching diagram of (Cr$_{1/2}$Ti$_{1/2}$)$_2$AlC$_2$ is shown in Fig. 5(a). The effect of the interlayer mixing of metal atoms is to increase the stability region of the resulting o-MXene towards lower pH values (compare Fig. 5(a) to Fig. 1(a)). The PZC is also decreased from −0.6 eV to −1.0 eV. This increase in the stability region can be explained by an increase in the formation energy of the o-MXene structure with interlayer mixing, from −6.9 eV to −8.6 eV (see Table 1).

The Pourbaix etching diagram for (Cr$_{0.5}$Ti$_{1/3}$)$_2$C$_2$O$_2$, i.e., an o-MXene with M′ vacancies, is shown in Fig. 5(b). The presence of vacancies has a similar effect on the area of the stability region to that of interlayer mixing, namely the o-MXene is not stable at
Table 1: Formation energies of α-MAX and α-MXene phases, calculated relative to elemental phases.

<table>
<thead>
<tr>
<th>M', M''</th>
<th>$M'_2M'' AlC_2$</th>
<th>($M'{1/2}M''{1/2})_3AlC_2$</th>
<th>$M'_2M''C_2O_2$</th>
<th>($M'{1/2}M''{1/2})_3C_2O_2$</th>
<th>$M'_2M''C_2O_2$</th>
<th>$M'_2M''C_2F_2$</th>
<th>$M'_2M''C_2(OH)_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr, Ti</td>
<td>-4.5</td>
<td>-5.1</td>
<td>-6.9</td>
<td>-8.6</td>
<td>-4.4</td>
<td>-8.7</td>
<td>-7.7</td>
</tr>
<tr>
<td>Cr, V</td>
<td>-3.9</td>
<td>-4.3</td>
<td>-6.4</td>
<td>-7.5</td>
<td>-4.1</td>
<td>-8.1</td>
<td>-7.4</td>
</tr>
<tr>
<td>Mo, Ti</td>
<td>-5.4</td>
<td>-5.9</td>
<td>-8.1</td>
<td>-9.7</td>
<td>-6.0</td>
<td>-8.4</td>
<td>-8.3</td>
</tr>
<tr>
<td>Mo, Sc</td>
<td>-4.6</td>
<td>-4.6</td>
<td>-7.4</td>
<td>-9.3</td>
<td>-5.2</td>
<td>-8.0</td>
<td>-9.9</td>
</tr>
</tbody>
</table>

Figure 5: Etching Pourbaix diagram for α-MAX and α-MXene phases, showing regions where (a) α-MAX and (b) α-MXene are stable (orange segments). The dashed black lines indicate the stability range of water. The solid white line shows the point of zero charge (PZC).

Comparing Fig. 6(a) with Fig. 2(a) shows the increase in stability of α-MAX and α-MXene phases compared to the structure with complete ordering of the metal atoms ($Cr_2V_2C_2O_2$). Furthermore, as the PZC is lowered from -0.41 eV to -0.62 eV, the α-MXene is stable when etched over a wide pH range, without the need to apply an external potential. The presence of vacancies in α-MAX and α-MXene phases increases the stability region significantly compared to the $Cr_2V_2C_2O_2$, extending to acidic values of pH > 3 (Fig. 6(b)) at an ion concentration of 0.001 M.

If one allows for the possibility that interlayer mixing occurs in Mo$_2$TiAlC$_2$, the effect is to shift the stability region of (Mo$_{1/2}$Ti$_{1/2})_3C_2O_2$ to more negative potentials and higher values of pH, thereby reducing significantly the stability region. This is shown in Fig. 7(a). The relevant values of potential are outside the range of water stability, and so attempts to reach this stability region may lead to more complex dissociation processes, not captured in the current model. However, the α-MXene is also predicted to co-exist with some of its dissolution products including Mo$^{3+}$ and Ti$^{2+}$ at acidic pH values and at potentials near to the PZC of the α-MAX phase. If vacancies are considered, the stability region shrinks even further to a small region of phase space between 4 <pH< 12.

Finally, Fig. 8(a) shows the effect of including inter-
layer metal mixing in \(\text{Mo}_2 \text{ScAlC}_2 \). Here, the stability region of the \(\sigma \)-MXene reduces considerably to pH values greater than 10 and well below the stability region of water. Including vacancies increases it somewhat as shown in Fig. 8(b). If ScF\(_3\) is an allowable reaction product, then again there is no region in the Pourbaix diagram where the \(\sigma \)-MXene is stable, dissolving into ScF\(_3\) at negative voltages where otherwise it would be considered stable (not shown). However, Pourbaix diagrams only show the thermodynamically stable outcomes, and do not take kinetic effects into account. If the Sc atoms are located only in the central layer of the M-X block it is possible that they remain trapped there, stabilizing the \(\sigma \)-MXene at least temporally. Furthermore, increasing the ion concentration also moves the stability region of the \(\sigma \)-MXene towards lower pH values, reaching pH values of 6 at an ion concentration of 0.5 M and moving within the water stability region (co-stable with MoO\(_4^{2-}\)). This is shown in Fig. 8(c) and can explain in some part the experimental observation of some \(\text{Mo}_2 \text{ScC}_2 \text{T}_x \) in solution after the etching procedure.

Conclusions

Etching Pourbaix diagrams are used to predict the optimal conditions required to enhance the yields of ordered double-transition metal MXenes (\(\sigma \)-MXenes). In agreement with experiment, we show that the experimentally observed 100% high yield of \((\text{Mo}, \text{Ti})_2 \text{CT}_x \) can be explained by a wide stability region of this \(\sigma \)-MXene, extending into the negative pH values typical of experimental etching conditions. In contrast, \((\text{Cr}, \text{Ti})_2 \text{CT}_x \) is only stable at acidic values of pH when \(\text{T}_x \) is restricted to \(-\text{F}\) terminating groups. The same is
true for \((\text{Cr, V})_2\text{CT}_x\). \((\text{Mo, Sc})_2\text{CT}_x\) is not stable in an aqueous acid solution if the Sc atoms can interact with the F atoms in solution to form \(\text{ScF}_3\). If, instead, the Sc atoms are kinetically protected by being located in the inner layer, the \(-\text{MXene}\) will be stable across a wide pH range, extending even into negative values at high ion concentrations. If, due to interlayer mixing, some Sc atoms are present in the outer \(-\text{MXene}\) layers, they can be etched away to form \(\text{ScF}_3\) leaving behind metal vacancies. Such multilayers are also stable in a high pH solution, with high concentrations of metallic ions in solution required to maintain stability at acidic values of pH.

Supplementary Information

Structural & Magnetic Properties

The calculated bulk lattice parameters of the \(-\text{MAX}\) and \(-\text{MXene}\) phase materials are given in Tables 2 and 3, respectively. In both cases, the in-plane and out-of-plane lattice constants increase slightly with interlayer mixing, resulting in most cases in better agreement with available experimental data.

<table>
<thead>
<tr>
<th>Table 2: (-\text{MAX}) phase bulk lattice constants.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{(-\text{MAX}) phase} \quad a (\text{Å}) \quad c (\text{Å}))</td>
</tr>
<tr>
<td>(\text{Cr}_2\text{TiAlC}_2)</td>
</tr>
<tr>
<td>((\text{Cr}_1/2\text{Ti}_1/2)\text{AlC}_2)</td>
</tr>
<tr>
<td>Exp. [Ref. 21]</td>
</tr>
<tr>
<td>(\text{Cr}_2\text{VAIC}_2)</td>
</tr>
<tr>
<td>((\text{Cr}_1/2\text{V}_1/2)\text{AlC}_2)</td>
</tr>
<tr>
<td>Exp. [Ref. 13]</td>
</tr>
<tr>
<td>(\text{Mo}_2\text{ScAlC}_2)</td>
</tr>
<tr>
<td>((\text{Mo}_1/2\text{Sc}_1/2)\text{AlC}_2)</td>
</tr>
<tr>
<td>Exp. [Ref. 15]</td>
</tr>
<tr>
<td>(\text{Mo}_2\text{TiAlC}_2)</td>
</tr>
<tr>
<td>((\text{Mo}_1/2\text{Ti}_1/2)\text{AlC}_2)</td>
</tr>
<tr>
<td>Exp. [Ref. 13]</td>
</tr>
</tbody>
</table>

In agreement with previous calculations in the literature,16,16 we find that an in-plane antiferromagnetic ordering (AFM-XX, following the nomenclature of Wang et al.41) is the most favorable spin state of \(\text{Cr}_2\text{TiAlC}_2\), followed by ferromagnetic ordering with an energy difference of 12 meV/f.u. The non-magnetic state is 26 meV/f.u. higher in energy. Each Cr atom has a magnetic moment of \(\pm 0.81\mu_B\), while the Ti atoms have a magnetic moment of \(\pm 0.03\mu_B\). The associated \(-\text{O}\) and \(-\text{F}\) terminated \(-\text{MXenes}\) also show AFM coupling between the Cr atoms, with larger Cr moments of \(\pm 1.64\mu_B\) and \(\pm 2.27\mu_B\) for the \(-\text{O}\) and \(-\text{F}\) terminated \(-\text{MXenes}\), respectively. The \(-\text{OH}\) terminated MXene is non-magnetic.

In contrast, \((\text{Cr}_1/2\text{Ti}_1/2)\text{AlC}_2\) shows ferromagnetic behaviour, with a moment of \(0.6\mu_B\) per Cr atom. The energy difference between this state and the AFM-XX state is 31 meV/f.u. The \(-\text{MXene}\), \((\text{Cr}_1/2\text{Ti}_1/2)\text{C}_2\text{O}_2\), is also found to be ferromagnetic, with a moment of \(1.8\mu_B\) per Cr atom.

\(\text{Cr}_2\text{VAIC}_2\) is found to be ferromagnetic, with magnetic moments of \(\pm 0.77\mu_B/\text{Cr atom}\). However, the energy difference between this state and the nonmagnetic solution is less than \(10\text{meV/f.u.}\). The associated \(-\text{MXene}\) phases are also ferromagnetic. Non-magnetic solutions are much higher in energy, by 0.37 eV, 0.93 eV and 0.85 eV per f.u. for the \(-\text{O}, -\text{F}\) and \(-\text{OH}\) terminated structures, respectively. The layered \(-\text{MXenes}\) have much higher Cr magnetic moments that the associated \(-\text{MAX}\) phases, of \(\pm 1.88\mu_B\), \(\pm 2.4\mu_B\) and \(\pm 4\mu_B\), respectively.

\((\text{Cr}_1/2\text{V}_1/2)\text{AlC}_2\) is ferromagnetic, with a moment of approximately \(0.5\mu_B\) per Cr atom and an energy difference between this state and the AFM state of 11 meV/f.u. The associated \(-\text{MXene}\) is also ferromagnetic, with a larger moment of \(1.8\mu_B\) per Cr atom.

It is important to note however that, as the exchange contribution to the total energy is relatively small, any errors in determining the correct magnetic state will not result in any changes in the predicting the region of phase space where the solid materials are stable.

Finally, the density of states of the \(-\text{MAX}\) phases, both with and without interlayer mixing, are presented in Fig. 9, showing metallic behaviour in all cases although interlayer mixing reduces the density of states.

<table>
<thead>
<tr>
<th>Table 3: (-\text{MXene}) phase multilayer lattice constants.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{(-\text{MXene}) phase} \quad a (\text{Å}) \quad c (\text{Å}))</td>
</tr>
<tr>
<td>(\text{Cr}_2\text{TiC}_2\text{O}_2)</td>
</tr>
<tr>
<td>((\text{Cr}_1/2\text{Ti}_1/2)\text{C}_3\text{O}_2)</td>
</tr>
<tr>
<td>((\text{Cr}_1/2\text{Ti}_1/3)\text{C}_3\text{O}_2)</td>
</tr>
<tr>
<td>(\text{Cr}_2\text{VC}_2\text{O}_2)</td>
</tr>
<tr>
<td>((\text{Cr}_1/2\text{V}_1/2)\text{C}_3\text{O}_2)</td>
</tr>
<tr>
<td>((\text{Cr}_1/2\text{V}_1/3)\text{C}_3\text{O}_2)</td>
</tr>
<tr>
<td>(\text{Mo}_2\text{TiC}_2\text{O}_2)</td>
</tr>
<tr>
<td>((\text{Mo}_1/2\text{Ti}_1/2)\text{C}_3\text{O}_2)</td>
</tr>
<tr>
<td>((\text{Mo}_1/2\text{Ti}_1/3)\text{C}_3\text{O}_2)</td>
</tr>
<tr>
<td>(\text{Mo}_2\text{ScC}_2\text{O}_2)</td>
</tr>
<tr>
<td>((\text{Mo}_1/2\text{Sc}_1/2)\text{C}_3\text{O}_2)</td>
</tr>
<tr>
<td>((\text{Mo}_1/2\text{Sc}_1/3)\text{C}_3\text{O}_2)</td>
</tr>
</tbody>
</table>
at the Fermi level.

Figure 9: MAX phase Density of States.

Acknowledgement This work was supported by a Science Foundation Ireland Starting Investigator Research Grant (15/SIRG/3314). Computational resources were provided by the supercomputer facilities at the Trinity Center for High Performance Computing (TCHPC) and at the Irish Center for High-End Computing (TCHPC) and at the Irish Center for High-End

References

(4) Anasori, B.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes); Springer, 2019.

(6) Li, Z.; Wu, Y. 2D early transition metal carbides (MXenes) for catalysis. *Small* 2019, 15, 1804736.

(12) Caspi, E. N.; Chartier, P.; Porcher, F.; Damay, F.; Cabioch, T. Ordering of (Cr, V) layers in nanolamellar (Cr$_{0.8}$V$_{0.2}$)$_n$AlC$_n$ compounds. *Materials Research Letters* 2015, 3, 100–106.

