<table>
<thead>
<tr>
<th>Title</th>
<th>Sets of determination for the Nevanlinna class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Gardiner, Stephen J.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2010-11-06</td>
</tr>
<tr>
<td>Publication information</td>
<td>Gardiner, Stephen J. “Sets of Determination for the Nevanlinna Class” 42, no. 6 (November 6, 2010).</td>
</tr>
<tr>
<td>Publisher</td>
<td>London Mathematical Society</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/2728</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1112/blms/bdq073</td>
</tr>
</tbody>
</table>
Sets of determination for the Nevanlinna class

Stephen J. Gardiner

Abstract

This paper characterizes the subsets E of the unit disc \mathbb{D} with the property that $\sup_{E} |f| = \sup_{\mathbb{D}} |f|$ for all functions f in the Nevanlinna class.

1 Introduction

Let \mathcal{A} be a collection of holomorphic functions on the unit disc \mathbb{D}, and let \mathbb{T} denote the unit circle. A set $E \subset \mathbb{D}$ is called a set of determination for \mathcal{A} if $\sup_{E} |f| = \sup_{\mathbb{D}} |f|$ for all $f \in \mathcal{A}$. Brown, Shields and Zeller [3] have shown that E is a set of determination for H^∞, the space of bounded holomorphic functions on \mathbb{D}, if and only if almost every point of \mathbb{T} can be approached nontangentially by a sequence of points in E. Massaneda and Thomas [6] have observed that the same characterization remains valid when \mathcal{A} is the Smirnov class \mathcal{N}^+. However, the situation is more complicated for the Nevanlinna class \mathcal{N}, which consists of all holomorphic functions f on \mathbb{D} that satisfy

$$\sup_{0 < r < 1} \int_{0}^{2\pi} \log^+ \left| f(re^{i\theta}) \right| d\theta < \infty.$$

This is the main focus of [6], where a variety of conditions are shown to be either necessary or sufficient for E to be a set of determination for \mathcal{N}, and some illustrative special cases are examined. (See also Stray [7], p.256.) The purpose of this paper is to give a complete characterization of such sets.

First we recall a related result of Hayman and Lyons [5] for the harmonic Hardy space h^1, which consists of those functions on \mathbb{D} that can be expressed as the difference of two positive harmonic functions. For $n \in \mathbb{N}$ and $0 \leq m < 2^n+4$ let

$$z_{m,n} = (1 - 2^{-n}) \exp(2\pi im/2^{n+4})$$

and

$$S_{m,n} = \left\{ re^{i\theta} : 2^{-n-1} \leq 1 - r \leq 2^{-n} \text{ and } \frac{2\pi m}{2^{n+4}} \leq \theta \leq \frac{2\pi (m+1)}{2^{n+4}} \right\},$$

02000 Mathematics Subject Classification 30D50, 30C80, 31A15.

This research was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149 and is also part of the programme of the ESF Network “Harmonic and Complex Analysis and Applications” (HCAA).
and let \(E_{m,n} = E \cap S_{m,n} \). The Poisson kernel for \(D \) is given by
\[
P(z, w) = \frac{1 - |z|^2}{|z - w|^2} \quad (z \in D, w \in T).
\]

Theorem A [5] Let \(E \subset D \). The following conditions are equivalent:
(a) \(\sup_\overline{E} h = \sup_D h \) for all \(h \in h^1 \);
(b) \(\sum_{E_{m,n} \neq \emptyset} 2^{-n} P(z_{m,n}, w) = \infty \) for every \(w \in T \).

For any set \(A \) which is contained in a disc of radius less than 1, and any \(t \geq 0 \), we define a capacity-related quantity \(Q(A, t) \) as follows. We put
\[
Q(A, t) = 0 \quad \text{if either} \quad t = 0 \quad \text{or} \quad A = \emptyset; \quad \text{otherwise,}
\]
\[
Q(A, t) = \min\{k \in \mathbb{N} : \exists \xi_1, \ldots, \xi_k \in \mathbb{C} \text{ such that } \sum_{j=1}^{k} \log \frac{1}{|z - \xi_j|} \geq t \quad (z \in A)\}.
\]
Clearly \(Q(\cdot, t) \) is translation-invariant and \(Q(\{\zeta\}, \cdot) = \chi_{(0, \infty)} \) for any \(\zeta \in \mathbb{C} \).
Also,
\[
Q(\{\zeta_1, \zeta_2\}, t) = \begin{cases}
0 & \text{if } t = 0 \\
1 & \text{if } |\zeta_1 - \zeta_2| \leq 2e^{-t} \text{ and } t > 0 \\
2 & \text{otherwise}
\end{cases}
\]
and, if \(A \) is a disc of radius of \(r < 1 \), then \(Q(A, t) \) is the least integer \(k \) satisfying \(k \geq t/\log(1/r) \). We use \([t] \) to denote the integer part of a non-negative number \(t \), and \(tA \) to denote the set \(\{t z : z \in A\} \). Our characterization of sets of determination for the Nevanlinna class is as follows.

Theorem 1 Let \(E \subset D \). The following conditions are equivalent:
(a) \(\sup_\overline{E} |f| = \sup_D |f| \) for all \(f \in N \);
(b) \(\sum_{m,n} 2^{-n} Q(2^n E_{m,n}, [P(z_{m,n}, w)]) = \infty \) for every \(w \in T \).

Since
\[
\log \frac{2^{-n}}{|z - z_{m,n}|} \geq -\frac{1}{2} \log \left(\left(\frac{\pi}{8} \right)^2 + \left(\frac{1}{2} \right)^2 \right) > \frac{1}{3} \quad (z \in S_{m,n}),
\]
we have
\[
3P(z_{m,n}, w) \log \frac{2^{-n}}{|z - z_{m,n}|} \geq P(z_{m,n}, w) \quad (z \in S_{m,n}, w \in T).
\]
By separate consideration of the cases \(P(z_{m,n}, w) \geq 1 \) and \(P(z_{m,n}, w) < 1 \), we see that
\[
Q(2^n E_{m,n}, [P(z_{m,n}, w)]) \leq 4P(z_{m,n}, w). \quad (1)
\]
Applying this inequality to terms where \(E_{m,n} \neq \emptyset \), it is now clear that condition (b) of Theorem 1 implies the corresponding condition of Theorem A. It is not difficult to check that condition (a) of Theorem 1 is equivalent to the assertion that, if \(\log |f| \leq h \) on \(E \), where \(f \in \mathcal{N} \) and \(h \in h^1 \), then \(\log |f| \leq h \) on all of \(\mathbb{D} \) (cf. [6]).

Examples Let \(U = \{ z : |z - \frac{1}{2}| < \frac{1}{2} \} \) and \(F = U \cap \{ z_{m,n} \} \).

(i) The set \(E = \mathbb{D} \setminus U \) is not a set of determination (for \(\mathcal{N} \)) because the series in condition (b) of Theorem A then converges when \(w = 1 \) (cf. Example 6.2 in [5]).

(ii) Further, even \(E \cup F \) is not a set of determination because each of the sets \(F_{m,n} \) contains at most 5 points and so

\[
\sum_{m,n} 2^{-n} Q(2^n F_{m,n}, [P(z_{m,n}, 1)]) \leq 5 \sum_{z_{m,n} \in F} 2^{-n} < \infty
\]

(cf. Example 1 in [6]).

(iii) On the other hand, \(E \cup [\frac{1}{2}, 1) \) is a set of determination since

\[
Q(2^n [1 - 2^{-n}, 1 - 2^{-n-1}], [P(z_{0,n}, 1)]) = Q\left([0, \frac{1}{2}], 2^n\right)
\]

and \(\inf_n 2^{-n} Q\left([0, \frac{1}{2}], 2^n\right) > 0 \) because \([0, \frac{1}{2}]\) is non-polar.

2 Proof of Theorem 1

Let \(G_U(\cdot, \cdot) \) denote the Green function of an open set \(U \), let

\[
D_\rho(z) = \left\{ \zeta : |\zeta - z| < \rho(1 - |z|) \right\} \quad (z \in \mathbb{D}, 0 < \rho < 1),
\]

and let \(A(g, z) \) denote the mean value of a function \(g \) over the disc \(D_{1/8}(z) \). For potential theoretic background we refer to the book [2].

Suppose firstly that condition (b) of Theorem 1 holds and let \(f \in \mathcal{N} \). We will assume that \(\sup_E |f| < \infty \), for otherwise it is trivially true that \(\sup_E |f| = \sup_{\mathbb{D}} |f| \). Further, multiplication by a suitable constant enables us to arrange that \(\sup_E |f| \in [0, 1] \). Now let \(a \in (-\infty, 0] \) be such that \(a \geq \log \sup_E |f| \). We can write

\[
\log |f| = h_1 - h_2 - G_{\mathbb{D}} \mu,
\]

where \(h_1 \) and \(h_2 \) are positive harmonic functions and \(\mu \) is a sum of unit point masses on \(\mathbb{D} \) satisfying

\[
\int (1 - |z|) d\mu(z) < \infty.
\]
Further, by addition to both h_1 and h_2, we may assume that $h_1 \geq 1$. By the Riesz-Herglotz theorem there is a Borel measure ν_1 on \mathbb{T} such that

$$h_1(z) = \int P(z, w) d\nu_1(w) \quad (z \in \mathbb{D}).$$

We know that

$$h_1 - a \leq h_2 + G_{\mathbb{D}} \mu \quad \text{on } E.$$ \hspace{1cm} (2)

Also,

$$G_{\mathbb{D}}(z, \xi) - A(G_{\mathbb{D}}(\cdot, \xi), z) \leq G_{D_1/8}(z, \xi) = \log \frac{(1 - |z|)/8}{|z - \xi|} \quad (\xi \in D_1/8(z)) \quad (3)$$

and $G_{\mathbb{D}}(z, \xi) - A(G_{\mathbb{D}}(\cdot, \xi), z) = 0$ otherwise. Let $\varepsilon \in (0, 1)$ and

$$I_\varepsilon = \{(m, n) : G_{\mathbb{D}} \mu \geq A(G_{\mathbb{D}} \mu, \cdot) + \varepsilon h_1 \text{ on } E_{m,n}\},$$

and let I'_ε denote the complementary set of pairs (m, n). (We note that $(m, n) \in I_\varepsilon$ whenever $E_{m,n} = \emptyset$.) If $(m, n) \in I_\varepsilon$, then we see from (3) that

$$\varepsilon h_1(z) \leq G_{\mathbb{D}} \mu(z) - A(G_{\mathbb{D}} \mu, z)$$

$$= \int_{D_1/8(z)} (G_{\mathbb{D}}(z, \xi) - A(G_{\mathbb{D}}(\cdot, \xi), z)) d\mu(\xi)$$

$$\leq \int_{A_{m,n}} \log \frac{2^{-n}}{|z - \xi|} d\mu(\xi) \quad (z \in E_{m,n}),$$

where

$$A_{m,n} = \{\xi : \text{dist}(\xi, S_{m,n}) < 2^{-n-3}\}.$$ \hspace{1cm} (4)

(Here we have used the fact that the diameter of $2^n A_{m,n}$ is less than 1.) By Harnack’s inequalities there is an absolute constant $c_1 > 1$ such that $h(\zeta_1) \leq c_1 h(\zeta_2)$ for any positive harmonic function h on \mathbb{D}, any points $\zeta_1, \zeta_2 \in S_{m,n}$, and any choice of (m, n). For any $w \in \mathbb{T}$ we thus have

$$P(z_{m,n}, w) \leq \frac{c_1}{\varepsilon h_1(z_{m,n})} P(z_{m,n}, w) \int_{A_{m,n}} \log \frac{2^{-n}}{|z - \xi|} d\mu(\xi) \quad (z \in E_{m,n}),$$

and so

$$Q(2^n E_{m,n}, [P(z_{m,n}, w)]) \leq \left(\frac{c_1}{\varepsilon h_1(z_{m,n})} P(z_{m,n}, w) + 1 \right) \mu(A_{m,n}).$$

Integration of the above inequality with respect to $d\nu_1(w)$ yields

$$\int Q(2^n E_{m,n}, [P(z_{m,n}, w)]) d\nu_1(w) \leq \left(\frac{c_1}{\varepsilon} + h_1(0) \right) \mu(A_{m,n}).$$
Since no point of \mathbb{D} can lie in more than 4 of the sets $A_{m,n}$, and $1 - |z| > 2^{-n-2}$ when $z \in A_{m,n}$, we see that
\[
\int \sum_{(m,n) \in I_\varepsilon} 2^{-n} \mathcal{Q}(2^n E_{m,n}, [P(z_{m,n}, w)]) \, d\nu_1(w) \leq 2^4 \left(\frac{c_1}{\varepsilon} + h_1(0) \right) \int (1 - |z|) \, d\mu(z) < \infty,
\]
so
\[
\sum_{(m,n) \in I_\varepsilon} 2^{-n} \mathcal{Q}(2^n E_{m,n}, [P(z_{m,n}, w)]) < \infty \text{ for } \nu_1\text{-almost every } w \in \mathbb{T},
\]
and hence, by hypothesis,
\[
\sum_{(m,n) \in I'_\varepsilon} 2^{-n} \mathcal{Q}(2^n E_{m,n}, [P(z_{m,n}, w)]) = \infty \text{ for } \nu_1\text{-almost every } w \in \mathbb{T}.
\]

In view of (1) we now see that
\[
\sum_{(m,n) \in I'_\varepsilon} 2^{-2n} |w - z_{m,n}|^{-2} = \infty \text{ for } \nu_1\text{-almost every } w \in \mathbb{T}. \tag{4}
\]

For each $(m, n) \in I'_\varepsilon$ we can find $\zeta_{m,n} \in E_{m,n}$ such that
\[
G_{\mathbb{D}}\mu(\zeta_{m,n}) < A(G_{\mathbb{D}}\mu, \zeta_{m,n}) + \varepsilon h_1(\zeta_{m,n}).
\]

Let $F = \{ \zeta_{m,n} : (m, n) \in I'_\varepsilon \}$. Then
\[
(1 - \varepsilon)h_1 - a \leq h_2 + A(G_{\mathbb{D}}\mu, \cdot) \text{ on } F, \tag{5}
\]
in view of (2). Also, by (4),
\[
\int_{F_\rho} |w - z|^{-2} \, d\lambda(z) = \infty \quad (0 < \rho < 1) \tag{6}
\]
for ν_1-almost every $w \in \mathbb{T}$, where $F_\rho = \bigcup_{\zeta \in F} D_\rho(\zeta)$ and λ denotes area measure. At this point we could invoke Theorem 2 of [4], but for the sake of completeness we will extract the relevant reasoning in the next paragraph.

Let $0 < \rho < 1/8$. If $z' \in D_\rho(z)$, then by the mean value inequality
\[
G_{\mathbb{D}}\mu(z') \geq \frac{1}{\pi(\rho + 1/8)^2(1 - |z|)^2} \int_{\{\zeta : |z - z'| < (\rho + 1/8)(1 - |z|)\}} G_{\mathbb{D}}\mu(\zeta) \, d\lambda(\zeta) \geq \frac{(1/8)^2}{(\rho + 1/8)^2} A(G_{\mathbb{D}}\mu, z),
\]
and by Harnack’s inequalities
\[
\frac{1 - \rho}{1 + \rho} h_j(z) \leq h_j(z') \leq \frac{1 + \rho}{1 - \rho} h_j(z) \quad (j = 1, 2),
\]

5
so (5) yields
\[(1 - \varepsilon) \frac{1 - \rho}{1 + \rho} h_1 - a \leq \frac{1 + \rho}{1 - \rho} h_2 + (8\rho + 1)^2 G_{\mathbb{D}} \mu \quad \text{on } F_{\rho}. \tag{7}\]

Condition (6) is known to ensure that the reduced function $R_{\rho}^{F_{\varphi}}$, where
\[R_{\rho}^{F_{\varphi}} = \inf \{ v : v \text{ is positive and superharmonic on } \mathbb{D} \text{ and } v \geq u \text{ on } F_{\rho} \},\]
coinsides with $P(\cdot, w)$ (see Corollary 7.4.6 in [1]). Since this condition holds ν_1-almost everywhere on \mathbb{T}, we have
\[R_{h_1}^{F_{\rho}} = \int R_{F_{\varphi}(\cdot, w)}^{F_{\rho}} d\nu_1(w) = \int P(\cdot, w) d\nu_1(w) = h_1.\]

Also, $h_1 \geq 1$, so ν_1 majorizes normalized arclength measure on \mathbb{T}, and we similarly have $R_{h_1}^{F_{\rho}} \equiv 1$. Hence, on taking reductions over F_{ρ}, we see that the inequality in (7) extends to all of \mathbb{D}. (Recall that $a \leq 0$.) We can now let $\rho \to 0+$ and $\varepsilon \to 0+$ to see that $\log |f| \leq a$ on \mathbb{D}. It is now clear that (b) implies (a).

Next suppose that condition (b) of Theorem 1 fails. Then there exists $w_0 \in \mathbb{T}$ such that
\[\sum_{m,n} 2^{-n} q_{m,n} < \infty, \quad \text{where } q_{m,n} = Q(2^n E_{m,n}, [P(z_{m,n}, w_0)]). \tag{8}\]

For each m, n we can choose points $\xi_{k,m,n}$ ($k = 1, \ldots, q_{m,n}$) such that
\[\sum_{k=1}^{q_{m,n}} \log \frac{2^n}{|z - \xi_{k,m,n}|} \geq P(z_{m,n}, w_0) - 1 \quad (z \in E_{m,n}), \tag{9}\]
and without loss of generality we can assume that $\xi_{k,m,n}$ lies in the convex hull $\text{conv}(S_{m,n})$ of $S_{m,n}$. In view of (8), the Blaschke product
\[B(z) = \prod_{k,m,n} \frac{|\xi_{k,m,n}|}{\xi_{k,m,n}} \left(\frac{\xi_{k,m,n} - z}{1 - z \bar{\xi}_{k,m,n}} \right)\]
converges on \mathbb{D}. There is an absolute constant $c_2 > 0$ such that
\[G_{\mathbb{D}}(z, \xi) \geq c_2 \log \frac{2^{-n}}{|\xi - z|} \quad (z, \xi \in \text{conv}(S_{m,n}))\]
for any pair (m, n). For a given pair (m_0, n_0) we thus have
\[-\log |B(z)| = \sum_{k,m,n} G_{\mathbb{D}}(z, \xi_{k,m,n}) \geq \sum_{k=1}^{q_{m_0,n_0}} G_{\mathbb{D}}(z, \xi_{k,m_0,n_0}) \geq c_2 \sum_{k=1}^{q_{m_0,n_0}} \log \frac{2^{-n_0}}{|\xi_{k,m_0,n_0} - z|} \quad (z \in S_{m_0,n_0})\]
\[\text{(8)}\]
so, by (9),

\[c_2 - \log |B(z)| \geq c_2 P(z_{m_0,n_0}, w_0) \geq \frac{c_2}{c_1} P(z, w_0) \quad (z \in E_{m_0,n_0}). \quad (10) \]

Let

\[f(z) = B(z) \exp \left(\frac{c_2}{c_1} \left(\frac{w_0 + z}{w_0 - z} \right) \right) \quad (z \in \mathbb{D}). \]

Then \(\log |f(z)| \leq (c_2/c_1) P(z, w_0) \), so \(f \in \mathcal{N} \), and certainly \(f \) is unbounded on \(\mathbb{D} \). However, \(|f| \leq e^{c_2} \) on \(E \), by (10). Hence condition (a) of Theorem 1 also fails.

References

School of Mathematical Sciences
University College Dublin
Dublin 4, Ireland.

e-mail: stephen.gardiner@ucd.ie