<table>
<thead>
<tr>
<th>Title</th>
<th>A remark on a conjecture of Borwein and Choi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Osburn, Robert</td>
</tr>
<tr>
<td>Publication date</td>
<td>2005-04-25</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Mathematical Society</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/7949</td>
</tr>
<tr>
<td>Publisher’s version (DOI)</td>
<td>10.1090/S0002-9939-05-07980-3</td>
</tr>
</tbody>
</table>
A REMARK ON A CONJECTURE OF BORWEIN AND CHOI

ROBERT OSBURN

Abstract. We prove the remaining case of a conjecture of Borwein and Choi concerning an estimate on the square of the number of solutions to \(n = x^2 + Ny^2 \) for a squarefree integer \(N \).

1. Introduction

We consider the positive definite quadratic form \(Q(x, y) = x^2 + Ny^2 \) for a squarefree integer \(N \). Let \(r_{2,N}(n) \) denote the number of solutions to \(n = Q(x, y) \) (counting signs and order). In this note, we estimate

\[
\sum_{n \leq x} r_{2,N}(n)^2.
\]

A positive squarefree integer \(N \) is called solvable (or more classically “numerus idoneus”) if \(x^2 + Ny^2 \) has one form per genus. Note that this means the class number of the form class group of discriminant \(-4N\) equals the number of genera, \(2^t \), where \(t \) is the number of distinct prime factors of \(N \). Concerning \(r_{2,N}(n) \), Borwein and Choi [1] proved the following:

Theorem 1.1. Let \(N \) be a solvable squarefree integer. Let \(x > 1 \) and \(\epsilon > 0 \). We have

\[
\sum_{n \leq x} r_{2,N}(n)^2 = \frac{3}{N} \left(\prod_{p \mid 2N} \frac{2p}{p+1} \right) (x \log x + \alpha(N)x) + O(N^{\frac{4}{3} + \epsilon}x^{\frac{11}{3} + \epsilon})
\]

where the product is over all primes dividing \(2N \) and

\[
\alpha(N) = -1 + 2\gamma + \sum_{p \mid 2N} \frac{\log p}{p+1} + \frac{2L'(1, \chi_{-4N})}{L(1, \chi_{-4N})} - \frac{12}{\pi^2} \zeta'(-2)
\]

where \(\gamma \) is the Euler-Mascheroni constant and \(L(1, \chi_{-4N}) \) is the \(L \)-function corresponding to the quadratic character mod \(-4N\).

Based on this result, Borwein and Choi posed the following:

Conjecture 1.2. For any squarefree \(N \),

\[
\sum_{n \leq x} r_{2,N}(n)^2 \sim \frac{3}{N} \left(\prod_{p \mid 2N} \frac{2p}{p+1} \right) x \log x
\]

The main result in [10] was the following.

Theorem 1.3. Let \(Q(x, y) = x^2 + Ny^2 \) for a squarefree integer \(N \) with \(-N \not\equiv 1 \mod 4\). Let \(r_{2,N}(n) \) denote the number of solutions to \(n = Q(x, y) \) (counting signs and order). Then

\[
\sum_{n \leq x} r_{2,N}(n)^2 \sim \frac{3}{N} \left(\prod_{p \mid 2N} \frac{2p}{p+1} \right) x \log x.
\]

2000 Mathematics Subject Classification. Primary 11E25, 11E45.
In this note, we settle the conjecture in the remaining case, namely

Theorem 1.4. For $-N \equiv 1 \mod 4$, we have

$$\sum_{n \leq x} r_{2,N}(n)^2 \sim \frac{3}{N} \left(\prod_{p|2N} \frac{2p}{p+1} \right) x \log x.$$

2. **Preliminaries**

Let $Q(x, y) = ax^2 + bxy + cy^2$ denote a positive definite integral quadratic form with discriminant $D = b^2 - 4ac$ and $\gcd(a, b, c) = 1$. Given Q, let κ be the largest positive integer with D/κ^2 an integer congruent to 0 or 1 modulo 4. We call κ the conductor of Q and set $d = D/\kappa^2$. Let $r(Q, n)$ be the number of representations of the integer n by the form Q. We now relate $r(Q, n)$ to counting the number of integral ideals of norm n in a given class in a generalized ideal class group.

Given $D = \kappa^2d$ we consider ideals in \mathcal{O}_K where $K = \mathbb{Q}(\sqrt{d})$. Let I_κ be the group of fractional ideals of \mathcal{O}_K which are quotients of ideals coprime to κ and P_κ be the subgroup of fractional ideals which are quotients of principal ideals $(\alpha) \in I_\kappa$ where $\alpha \in \mathbb{Z} + \kappa \mathcal{O}$. Then set $\text{CL}_\kappa(K) = I_\kappa/P_\kappa$. The elements of $\text{CL}_\kappa(K)$ correspond bijectively to proper equivalence classes of positive definite quadratic forms of discriminant $D = \kappa^2d$. If the proper equivalence class of Q corresponds to the ideal class \mathfrak{c}, then by [3], page 219, we have

$$r(Q, n) = \sum_{r|\kappa} w((\kappa/r)^2d) J(\mathfrak{c}_r, n/r^2)$$

where

$$w(D) = \begin{cases}
6 & \text{if } D = -3 \\
4 & \text{if } D = -4 \\
2 & \text{otherwise.}
\end{cases}$$

Also $J(\mathfrak{c}_r, n)$ is the number of integral ideals of norm n in the class \mathfrak{c}_r where \mathfrak{c}_r is the image of \mathfrak{c} under the natural homomorphism $\text{CL}_\kappa(K) \rightarrow \text{CL}_{\kappa/r}(K)$. For the form $Q(x, y) = x^2 + Ny^2$ where $-N \equiv 1 \mod 4$, the conductor $\kappa = 2$ and so we have

$$r_{2,N}(n) = w(-4N)J(\mathfrak{c}, n) + w(-N)J(\mathfrak{c}_2, n/4)$$

$$= 2J(\mathfrak{c}, n) + w(-N)J(\mathfrak{c}_2, n/4)$$

where \mathfrak{c}_2 is the image under $\text{CL}_2(K) \rightarrow \text{CL}_1(K)$, that is, \mathfrak{c}_2 is a class in the ideal class group of $K = \mathbb{Q}(\sqrt{-N})$.

We now discuss a classical result of Rankin [11] and Selberg [12] which estimates the size of Fourier coefficients of a modular form. Specifically, if $f(z) = \sum_{n=1}^{\infty} a(n)e^{2\pi inz}$ is a nonzero cusp form of weight k on $\Gamma_0(N)$, then

$$\sum_{n \leq x} |a(n)|^2 = \alpha(f, f)x^k + O(x^{k-\delta})$$

where $\alpha > 0$ is an absolute constant and $\langle f, f \rangle$ is the Petersson scalar product. In particular, if f is a cusp form of weight 1, then $\sum_{n \leq x} |a(n)|^2 = O(x)$. One can adapt their result to say the following. Given two cusp forms of weight k on a suitable congruence subgroup of $\Gamma = \text{SL}_2(\mathbb{Z})$, say $f(z) = \sum_{n=1}^{\infty} a(n)e^{2\pi inz}$ and $g(z) = \sum_{n=1}^{\infty} b(n)e^{2\pi inz}$, then
\[
\sum_{n \leq x} a(n)b(n)n^{1-k} = Ax + O(x^{\frac{1}{2}})
\]
where \(A \) is a constant. In particular, if \(f \) and \(g \) are cusp forms of weight 1, then
\[
\sum_{n \leq x} a(n)b(n) = O(x).
\]

We conclude this section with a relationship between genus characters of generalized ideal class groups and the poles of the Rankin-Selberg convolution of \(L \)-functions. Recall that a group homomorphism \(\chi : I_2 \to S^1 \) is an ideal class character if it is trivial on \(P_2 \), i.e.
\[
\chi([a]) = 1
\]
for \(a \equiv 1 \mod (2) \). Thus an ideal class character is a character on the generalized class group \(I_2/P_2 \). Recall also that a genus character (see Chapter 12, section 5 in [5]) is an ideal class character of order at most two.

Let us also recall the notion of the Rankin-Selberg convolution of two \(L \)-functions. For squarefree \(N \), consider two ideal class characters \(\chi_1, \chi_2 \) for \(CL_2(K) \), the generalized ideal class group of \(K = \mathbb{Q}(\sqrt{-N}) \) and their associated Hecke \(L \)-series
\[
L_2(s, \chi_1) = \sum_{(a,2)=1} \frac{\chi_1(a)}{N(a)^s}
\]
\[
L_2(s, \chi_2) = \sum_{(a,2)=1} \frac{\chi_2(a)}{N(a)^s}
\]
which converge absolutely in some right half-plane. We form the convolution \(L \)-series by multiplying the coefficients,
\[
L_2(s, \chi_1 \otimes \chi_2) = \sum_{(a,2)=1} \frac{\chi_1(a)\chi_2(a)}{N(a)^s}
\]
The following result describes a relationship between genus characters \(\chi \) and the orders of poles of \(L_2(s, \chi \otimes \chi) \). The proof is similar to that of Proposition 2.4 in [10].

Proposition 2.1. Let \(\chi \) be an ideal class character for \(CL_2(K) \), \(-N \equiv 1 \mod 4\), and \(L_2(s, \chi) \) the associated Hecke \(L \)-series. Then \(\chi \) is a genus character if and only if \(L_2(s, \chi \otimes \chi) \) has a double pole at \(s = 1 \).

Remark 2.2. By Proposition 2.1, if \(\chi \) is a non-genus character, then \(L_2(s, \chi \otimes \chi) \) has at most a simple pole at \(s = 1 \).

3. Proof of Theorem 1.4

Proof. As the proof is similar to that of Theorem 1.3 in [10], we sketch the relevant details. If \(-N \equiv 1 \mod 4\), then the discriminant of \(K = \mathbb{Q}(\sqrt{-N}) \) is \(-N\). We also assume that \(t \) is the number of distinct prime factors of \(N \) and so the discriminant \(-N\) also has \(t \) distinct prime factors. For \(K = \mathbb{Q}(\sqrt{-N}) \), consider the zeta function
\[
\zeta_K(s, 2) = \sum_{(a,2)=1} \frac{1}{N(a)^s}
\]
where the sum is over those ideals \(a \) of \(O_K \) prime to 2. We now split up \(\zeta_K(s, 2) \), according to the classes \(\mathfrak{c}_i \) of the generalized ideal class group \(CL_2(K) \), into the partial zeta functions (see page 161 of [7])
\[\zeta_{\epsilon}(s) = \sum_{a \in \epsilon_i} \frac{1}{N(a)^s} \]

so that \(\zeta_K(s, 2) = \sum_{i=0}^{h_2-1} \zeta_{\epsilon_i}(s) \) where \(h_2 \) is the order of \(CL_2(K) \).

Let \(\epsilon \) be the ideal class in \(CL_2(K) \) which corresponds to the proper equivalence class of \(Q(x, y) = x^2 + Ny^2 \). Now let \(\chi \) be an ideal class character of \(CL_2(K) \) and consider the Hecke L-series for \(\chi \), namely

\[L_2(s, \chi) = \sum_{(a, 2) = 1}^{\chi(a)} \frac{\chi(a)}{N(a)^s}. \]

We may now rewrite the Hecke L-series as

\[L_2(s, \chi) = \sum_{i=0}^{h_2-1} \chi(\epsilon_i) \zeta_{\epsilon_i}(s). \]

And so summing over all ideal class characters of \(CL_2(K) \), we have

\[\sum_{\chi} \overline{\chi}(\epsilon) L_2(s, \chi) = \sum_{i=0}^{h_2-1} \zeta_{\epsilon_i}(s) \left(\sum_{\chi} \overline{\chi}(\epsilon) \chi(\epsilon_i) \right). \]

The inner sum is nonzero precisely when \(\epsilon = \epsilon_i \). Thus we have

\[\zeta_{\epsilon}(s) = \frac{1}{h_2} \sum_{\chi} \overline{\chi}(\epsilon) L_2(s, \chi) \]

and so

\[\zeta_{\epsilon}(s) = \frac{1}{h_2} (L_2(s, \chi_0) + \overline{\chi}(\epsilon) L_2(s, \chi_1) + \cdots + \overline{\chi}_{h_2-1}(\epsilon) L_2(s, \chi_{h_2-1})). \]

As \(\chi_0 \) is the trivial character, \(L_2(s, \chi_0) = \zeta_K(s, 2) \). Comparing \(n^{th} \) coefficients, we have

\[J(\epsilon, n) = \frac{1}{h_2} (a_n + b_1(n) + \cdots + b_{h_2-1}(n)). \]

where \(a_n \) is the number of integral ideals of \(\mathcal{O}_K \) prime to 2 and of norm \(n \) and the \(b_i \)’s are coefficients of weight 1 cusp forms (see [2]). Recall we also have

\[r_{2, N}(n) = 2 J(\epsilon, n) + w(-N) J(\epsilon_2, n/4) \]

and so

\[r_{2, N}(n) = \frac{2}{h_2} \left(a_n + b_1(n) + \cdots + b_{h_2-1}(n) \right) + w(-N) J(\epsilon_2, n/4). \]

Thus

\[\sum_{n \leq x} r_{2, N}(n)^2 = \frac{4}{h_2^2} \left(\sum_{n \leq x} a_n^2 + \sum_{i \leq x} b_i(n)^2 + \sum_{i, j \leq x} a_n b_i(n) b_j(n) + \sum_{i \neq j, n \leq x} b_i(n) b_j(n) \right) \]

\[+ \frac{4}{h_2} \sum_{n \leq x} \left(a_n + b_1(n) + \cdots + b_{h_2-1}(n) \right) w(-N) J(\epsilon_2, n/4)^2 + \sum_{n \leq x} w(-N)^2 J(\epsilon_2, n/4)^2. \]
Assume \(-N \equiv 1 \mod 8\). Applying the main theorem in [6] to the Dirichlet series
\[\sum_{n=1}^{\infty} \frac{a_n^2}{n^s}, \]
we obtain
\[\sum_{n \leq x} a_n^2 \sim Ax \log x \]
where
\[A = \frac{1}{2\pi^2} L(1, \chi_{-N})^2 \prod_{p|N} \frac{p}{p+1}. \]
As \(-N\) has \(t\) distinct prime factors, we have \(2^t\) genus characters for \(CL(K)\) where \(K = \mathbb{Q}(\sqrt{-N})\). By [7] (see Theorem 1, page 127), we have \(2^t\) genus characters for \(CL_2(K)\). We now must estimate
\[\sum_{i \leq x} b_i(n)^2. \]
Let us now assume that the first \(2^t - 1\) terms arise from L-functions associated to genus characters. By Proposition 2.1 and an application of Perron’s formula, we obtain
\[\sum_{n \leq x} b_i(n)^2 \sim Ax \log x. \]
As this estimate holds for each \(i\) such that \(1 \leq i \leq 2^t - 1\), the term \(Ax \log x\) appears \(2^t\) times in the estimate of \(\sum_{n \leq x} r_{2,N}(n)^2\). By Remark 2.2 and the Rankin-Selberg estimate, the remaining terms are all \(O(x)\). Thus
\[\sum_{n \leq x} r_{2,N}(n)^2 \sim \frac{4}{h_2^2} \left(\frac{2^t}{2\pi^2} L(1, \chi_{-N})^2 \prod_{p|N} \frac{p}{p+1} \right) x \log x. \]
By [4], we have \(L(1, \chi_{-N}) = \frac{h}{\sqrt{N}}\) where \(h\) is the class number of \(K\) and \(h_2 = h\). Thus
\[\sum_{n \leq x} r_{2,N}(n)^2 \sim \frac{3}{N} \left(\prod_{p|2N} \frac{2p}{p+1} \right) x \log x. \]
For \(-N \equiv 5 \mod 8\), we have \(h_2 = 3h\) and again by [6],
\[\sum_{n \leq x} a_n^2 \sim \left(\frac{9}{2\pi^2} L(1, \chi_{-N})^2 \prod_{p|N} \frac{p}{p+1} \right) x \log x. \]
Thus
\[\sum_{n \leq x} r_{2,N}(n)^2 \sim \frac{3}{N} \left(\prod_{p|2N} \frac{2p}{p+1} \right) x \log x. \]

Remark 3.1. We would like to mention another approach which confirms Theorems 1.3 and 1.4. Let \(Q \in \mathbb{Z}^{2 \times 2}\) be a non-singular symmetric matrix with even diagonal entries and \(q(x) = \frac{1}{2}Q|x|^2 = \frac{1}{2}x^TQx\), \(x \in \mathbb{Z}^2\), the associated quadratic form in two variables. Let \(r(Q, n)\) denote the number of representations of \(n\) by the quadratic form \(Q\). Now consider the theta function
\[\theta_Q(z) = \sum_{x \in \mathbb{Z}^2} e^{\pi izQ|x|}. \]
The Dirichlet series associated with the automorphic form \(\theta_Q\) is
\[(4\pi)^{-1/2} \zeta_Q \left(\frac{1}{2} + s \right) \]

where

\[\zeta_Q(s) = \sum_{n=1}^{\infty} \frac{r(Q, n)}{n^s} = \sum_{x \in \mathbb{Z}^2 \setminus \{0\}} q(x)^{-s} \]

for \(\Re(s) > 1 \). A careful and involved application of the Rankin-Selberg method to the above Dirichlet series (see Theorems 2.1 and 5.1 in [8] and Theorem 5.2 in [9]) combined with a Tauberian argument yields the following (see Theorem 6.1 in [8])

\[\sum_{n \leq x} r(Q, n)^2 \sim A_Q x \log x \]

where

\[A_Q = 12 \frac{A(q)}{q} \prod_{p \mid q} \left(1 + \frac{1}{p} \right)^{-1}. \]

Here \(q = \det Q \) and \(A(q) \) denotes the multiplicative function defined by

\[A(p^e) = 2 + (1 - \frac{1}{2})(e - 1) \]

where \(p \) is an odd prime, \(e \geq 1 \), and

\[A(2^e) = \begin{cases} 1 & \text{if } e \leq 1, \\ 2 & \text{if } e = 2, \\ e - 1 & \text{if } e \geq 3. \end{cases} \]

Let us now turn to our situation. Consider \(q(x) = x^2 + Ny^2 = \frac{1}{2} x^T Q x \) where \(Q = \begin{pmatrix} 2 & 0 \\ 0 & 2N \end{pmatrix} \), \(N \) squarefree. Thus \(q = 4N \). Suppose \(N \) has \(t \) distinct prime factors. Then \(A(4N) = 2^{t+1} \) and so

\[A_Q = \frac{3}{N} 2^{t+1} \prod_{p \mid 2N} \left(1 + \frac{1}{p} \right)^{-1} = \frac{3}{N} \prod_{p \mid 2N} \frac{2p}{p+1}. \]

ACKNOWLEDGMENTS

The author would like to thank Ram Murty for many productive discussions and for his comments on a preliminary version of this paper.

REFERENCES

Department of Mathematics & Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6

E-mail address: osburnr@mast.queensu.ca