<table>
<thead>
<tr>
<th>Title</th>
<th>Potential for longevity of novel genetically modified herbicide-tolerant traits in the Irish landscape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Collier, Marcus, Mullins, Ewen</td>
</tr>
<tr>
<td>Publication date</td>
<td>2013-03-15</td>
</tr>
<tr>
<td>Publication information</td>
<td>Collier, Marcus, and Ewen Mullins. “Potential for Longevity of Novel Genetically Modified Herbicide-Tolerant Traits in the Irish Landscape” 45, no. 2 (March 15, 2013).</td>
</tr>
<tr>
<td>Publisher</td>
<td>Taylor & Francis (Routledge)</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/4261</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This is an electronic version of an article published in Irish Geography [latest articles]. Irish Geography is available online at: www.tandfonline.com/doi/abs/10.1080/00750778.2013.775768</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1080/00750778.2013.775768</td>
</tr>
</tbody>
</table>
Potential for longevity of novel genetically modified herbicide-tolerant traits in the Irish landscape

Marcus J. Collier* and Ewen Mullins

* Corresponding author

Dr. Marcus J. Collier
UCD School of Geography, Planning and Environmental Policy
University College Dublin
Richview, Clonskeagh, Dublin 14. IRELAND
Tel: +353 1 7162718
Fax: +353 1 7162776
Email: Marcus.Collier@UCD.ie

Dr. Ewen Mullins
Plant Biotechnology Unit,
Teagasc Crops Research Centre, Oak Park
Carlow, IRELAND
Tel: +353 59 9170259
Email: ewen.mullins@teagasc.ie
Potential for longevity of novel genetically modified herbicide-tolerant traits in the Irish landscape

Abstract
With the renewed interest in GM crop technology in Ireland, some concern has been raised in relation to the potential impact on biodiversity in the Irish agri-environment. This concern can focus on the potential for a transgenic trait to cross to wild relatives. A novel trait will be judged to have persisted in a wild population via the successful production of seeds, such that these seeds are viable and result in the establishment of a self-sustaining population. In the case of a herbicide tolerant (HT) trait, feral and volunteer populations can only remain viable if managed with applications of the herbicide that the trait is designed to resist. This surviving population of HT plants would then need to compete successfully with other wild plants in order to prevail in the landscape and persist over time. There are few agricultural crops that can manage this combination, but as oilseed rape plants are often noted along roadsides and hedgerows in Ireland, it is correct to assume that this crop has the ability to be a successful feral survivor. This paper presents the results of a thought experiment, derived exclusively using the academic literature, on the issue of longevity. This is done by taking four hypothetical case scenarios and examining the potential for a combination of events to take place for oilseed rape (Brassica napus); this is selected here because it has a high potential for ‘escaping’ via pollen- and/or seed-mediated gene flow. A lack of quantitative data on Irish farmland biodiversity hinders solid conclusions, but when management pressure is eased biodiversity stress is lessened.

Key words: GM crops, oilseed rape, biodiversity, scenarios, landscape impact

Introduction
The management of the landscape is in continual flux and future land use patterns are unknown (Angus et al., 2009; Burgess and Morris, 2009; Ewert et al., 2005; Levidow and Boschert, 2008; Rounsevell et al., 2006). This gives rise to concern over the future impact of agricultural activities on the environment, especially on landscape biodiversity. One issue relates to the potential impact on biodiversity, in agri-environmental landscapes, of cultivating genetically modified (GM) crops suited to the Irish tillage sector. Since the lifting of the EU moratorium on growing GM crops Ireland has not adopted GM cropping regimes, though there have been selected trials in the past (with sugar beet) and currently an environmental study is underway with blight-resistant potatoes as
part of the EU-funded project, AMIGA (http://www.amigaproject.eu). However, as new data and new crops become available and as global uptake of the technology expands, it is important to consider that Irish farmers could be afforded the choice of certain GM varieties tailored to Irish agri-environmental conditions sometime in the future.

Globally, GM crop hectarage has been increasing annually since their first commercial introduction (James, 2011) and while there are numerous new traits under development (Lheureux et al., 2003; Stein and Rodriguez-Cerezo, 2009) herbicide tolerance (HT) is a trait that would be applicable to Irish tillage systems, with particular relevance to oilseed rape (Brassica napus) (O’Brien and Mullins, 2009). However, issues have been raised in regards to the potential ecological impact of GMHT crops within the agri-environment and across the wider landscape. This is particularly relevant with respect to crop volunteers (seeds that persist and thrive within the field after harvesting) and feral crops (which survive outside field conditions). In order to ascertain the potential impact of a HT crop on the biodiversity of the Irish landscape it is necessary to examine all aspects of the production of the crop. Alterations and innovations in crop management schemes that are associated with the management of GM crops have the potential for reducing the impact on the wider landscape (Mullins et al., 2009). This paper takes B. napus as a case example. First we will look at the status of oilseed rape in Ireland and continue with a presentation of four hypothetical but realistic scenarios, wherein a potential release of the HT trait could occur under normal farming practises. The paper concludes with a discussion on the wider issues of biodiversity in the Irish landscape and a summary of potential effects.

Oilseed rape (B. napus) is a recent arrival into the Irish agri-environment but has been readily adopted and will no doubt increase with the push towards the provision of biofuels throughout the EU (see table 1). Like wheat and barley, oilseed rape can survive outside agronomic zones, in some cases for up to five years (Lutman, 1993) and possibly up to nine (Lutman et al., 2005). Case studies of now obsolete varieties of oilseed rape have shown them to persist as feral populations (Wilkinson et al., 1995), which supports observational records of feral Brassicae along roadsides, hedges, gardens and railway embankments in the Irish countryside (Aalen et al., 1997; Preston et al., 2002). B. napus can successfully hybridise with a neophyte wild relative Brassica rapa (wild turnip) and studies on the fitness of the resulting hybrid are numerous, but the likelihood of this being successful in Ireland is low, though our knowledge of the status of B. rapa in Ireland is poor (Collier and Mullins, 2012). Allainguillaume, et al. (2006) show that the fitness of F₁ hybrids is low, and when added to data from multiple sampling surveys in the UK there is the likelihood of a decline in “transgene abundance” within the F₁ population (p. 1182). Still, the ability of transgenic
oilseed rape to remain viable over time is unknown (Senior and Dale, 2002), though D’Hertefeldt, et al. (2008) recorded GMHT traits in a small number of volunteers in a field that held a GMHT crop ten years previously. However, this study did not account for any nearby GMHT oilseed rape crops that were grown in the meantime and thus it is unclear if the volunteers in question relate to the original GMHT crop. Indeed, Lutman et al. (2005) concluded that feral GMHT oilseed rape plants were not more likely to become persistent than non-GM oilseed plants, though they stressed that extended timescales and after-harvest management can be limiting factors and thus need to be carefully monitored. Others have shown that feral survival is generally low but that some GMHT volunteers do persist after two (and possibly three) years (Daniels et al., 2005). In an extensive review by Warwick et al. (2009) it was shown that there are few data available with which to establish the pervasiveness of these populations.

Table 1. Current and predicted status of oilseed rape (in ‘000ha) (CSO, 2010). Projections to 2015 and the projected percentage change from 2004 to 2015 (Teagasc, 2008).

<table>
<thead>
<tr>
<th>Crop</th>
<th>2004-6</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2015</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oilseed rape</td>
<td>3.7</td>
<td>5.1</td>
<td>8.2</td>
<td>6.7</td>
<td>20</td>
<td>441</td>
</tr>
</tbody>
</table>

Herbicide tolerant varieties of oilseed rape generated through mutagenic treatment as opposed to GM also exist, and it is predicted that one such crop, imidazolinone-tolerant (IMI) oilseed rape will be commercialised for use from 2013 (Coghlan, 2009) and may be grown in Ireland soon after that. Derived using non-GM technology the issues of gene transfer, pollen flow, introgression to wild relatives and persistence remain and apply to this new variety of oilseed rape as much as they do with a GM-derived HT oilseed rape variety. Yet, as IMI oilseed rape was not developed using GM technology it is exempt from the EU regulations (Council Directive 2001/18/EC) that govern the release of GM crops as well as related Directives that relate to GM labelling and transport. IMI oilseed rape is also not covered by EU-wide coexistence strategies for GM crops, implying that the management regime for this crop is likely to be similar to that of crops currently on the market in Ireland. As this oilseed rape variety has the same management advantage as the GMHT oilseed rape it is likely to be popular with Irish farmers for the same reason that GMHT varieties will be. However, the herbicide imidazolinone has a higher toxicity than either glyphosate and glufosinate (Coghlan, 2009).

Methods

This paper reports on a thought experiment that considered four realistically viable scenarios wherein there was an accidental release of GM crops into the Irish rural landscape. It is not unusual for perusing scenario testing in cases such as the co-existence of GM crops with non-GM crops (e.g. Bock et al., 2002; Gaugitsch, 2002; Reuter et al., 2011), since it is difficult to model risk when
considering the totality of activities in the rural landscape. Envisioning research is common when dealing with stakeholder concerns over land use change (e.g., Soliva et al., 2008; Tress and Tress, 2003), and in order to devise parameters for research it is necessary to hypothesise scenarios in the form of notional case studies, which in this case will serve to illustrate how the HT crops are grown and what the avenues for, and consequences of, gene flow may be. There exist many models of potential impact of GMHT B. napus (e.g., Colbach et al., 2001a; 2001b), but modelling may not always capture the nuances of practical management of a cultural landscape, such as Ireland. The following case studies use the academic literature to examine hypothetical (yet realistic) ‘worse-case scenarios’ and the potential impact of a GMHT oilseed rape crop ‘escaping’ into the Irish landscape. Because there are multiple variables that need to be considered in any agri-environmental scenario, it is necessary to establish some parameters from the outset. Therefore, the following scenarios cover a ten year timeframe. This is in line with the maximum timeframe used in the research findings that were drawn-upon for this study. These scenarios are also based on current management regimes and available technology though this could be altered with the advent of novel-trait crops. Figure 1 is an aerial photograph of a fictitious part of the Irish landscape where the following four scenarios may have an impact.
Scenario 1. Inefficient seed control post-harvest (oilseed rape)

Oilseed rape is a prolific seed producer, with varieties generating up to 130,000 seeds/m² (Fray et al., 1996). In this scenario farmer ‘A’ is transporting GMHT seed to a nearby silo after the harvesting of a GMHT oilseed rape crop. Because the trailer was not adequately sealed prior to leaving the GMHT field, seed has spilt out of the trailer within the field, and scattered along hedgerows and the open road. In addition to this, upon arriving at the silo the GMHT seed is sent by rail/road to the processing plant, with similar consequences due to inadequately covered trailers. As it can be expected that a percentage of lost seed will germinate and survive through to the following season, the issue in this scenario is that the GMHT oilseed rape seeds will populate and thrive in the semi-natural zones and even act as secondary sources of GM traits for neighbouring non-GM oilseed rape crops, i.e. acting as a ‘genetic bridge’ (Flannery et al., 2005). The concern here is that residual GMHT B. napus seeds accidentally ‘escape’ into semi-natural habitats where they survive and maybe even act as secondary sources of GM traits.

Outcome

Field. Several management techniques will minimise the impact of seed loss within the field environment. These include delaying ploughing for several weeks after harvest (Devos et al., 2004) to induce germination and decrease the potential for secondary dormancy induction (Lutman et al., 2004). Applying a herbicide 4 weeks post-harvest followed by an additional time lag of 4 weeks will ensure that lost seed has the maximum chance to germinate, upon which the second volunteer flush can be destroyed through the ploughing of the field.

Railway. While Canadian prairie studies have shown transgenic B. napus may be found along rail lines (Yoshimura et al., 2006), feral B. napus is unlikely to thrive in an Irish setting as it would be growing in a harsher medium (i.e. diverse substrates and/or gravel) than that for which it is designed (i.e. richer soils), though some Brassicae wild relatives and / or feral volunteers have been noted in these locations. However, railway track management is carried out regularly and the use herbicides that are not glyphosate- or glufosinate-based is typical. This management regime will prevent the GMHT trait from gaining any selective advantage and ensure that feral oilseed rape populations do not expand in population size.

Roadside. Oilseed ferals will populate roadsides (Norris and Sweet, 2002) but these individuals are susceptible to competition from grasses and other perennial plants. On recently completed roads, or roadsides where works were carried out, ‘escaped’ oilseed rape may grow and survive due to the short-term lack of competition, but in time successional colonisation will result in these plants being
out-competed by the more persistent species (Crawley and Brown, 1995). In the absence of management by herbicide, ‘escaped’ GMHT oilseed rape will have no enhanced ecological advantages and unless the roadside is continually disturbed feral populations will not prevail (Devos et al., 2004).

Seminar-habitats. Field margins are rarely managed with herbicides as they can be prohibitively expensive for the size of land and such a practise will damage the entire hedgerow system and the ecological services they provide. The high level of shading and vegetation competition in a hedgerow will not permit any ‘escapes’ to prevail, especially in the absence of a herbicide for which the GM trait was originally designed to resist (Crawley et al., 1993). Any volunteer populations of GMHT oilseed rape will only have an advantage if in the management of the landscape the farmer uses any of the herbicides to which the plant is resistant. So without any advantage being conferred, the volunteer GMHT oilseed rape plants will be subject to the dynamics of normal competition and thus may be no more likely to persist than ‘escaped’ non-GM cultivars which are currently found in the landscape (Norris et al., 1999).

Scenario 2. Pollen-mediated gene flow from GMHT oilseed rape to B. rapa

In this scenario it is assumed that successful pollen flow has occurred from a GMHT oilseed rape crop to some wild *B. rapa* growing within the crop field and/or in a nearby marginal habitat (such as in a hedgerow or along a roadside). The following planting season farmer ‘B’ decides to spray off field weeds as part of the preparation for the next crop in the rotation, which in this scenario is wheat. During this spraying there is some accidental drift into a nearby hedgerow. At the same time the local authority in the area also decides to spray along the roadside. Both sprays are glyphosate-based, which is the subject of the trait that has been introgressed into the wild *B. rapa* and as a result small populations of hybrid *B. rapa* exist with physiological resistance to glyphosate. Therefore, the concern is that pollen from GMHT oilseed rape will give rise to successful hybrid populations and thus confer a selective advantage on these populations in the landscape.

Outcome

Field. Growing within the wheat farmer ‘B’ notices both volunteer oilseed rape from the previous year and what appears to be some *B. rapa*. As the wheat is not herbicide tolerant farmer ‘B’ now uses a different herbicide (e.g. metsulfuron) to remove the *Brassica* weeds. Using this management approach, all GMHT crop volunteers and any hybrids within the field will be removed. Thus, the in-field population of hybrid *B. rapa* and any GMHT *B. napus* volunteers would be destroyed.

Semi-natural habitats. The issue is different in the semi-natural areas. After being treated with glyphosate by the local authority, the bulk of the roadside vegetation dies with the exception of the
B. rapa x GMHT B. napus hybrids. The hybrid Brassicae are now free to grow to seed and to self-perpetuate with little competition. Similarly, the area where glyphosate that farmer ‘B’ was using has accidentally drifted into the hedgerow base and the vegetation is desiccated, with the exception of the hybrid and feral GMHT Brassicae, both of which are able to mature without competition. In such a situation, the question arises: what is the likelihood of these hybrid populations persisting? While the probability of interspecific gene flow is quite low, it is not zero (Ellstrand et al., 1999; Raybould and Gray, 1993). Using B. napus and B. rapa, Warwick et al. (2003) were the first to demonstrate the movement of modified genes from a crop to a near relative in natural, non-confined conditions, but it was not shown if these genes were fully introgressed. Later, Warwick et al. (2008) demonstrated that GMHT oilseed rape genes can persist for up to 6 years or more in B. rapa, but in the process there was a gradual retreat to the original B. rapa genes and a gradual loss of the genes of B. napus.

Glyphosate and glufosinate are systemic, decay rapidly and become inert upon contact with the soil. Thus, in all sprayed locations in this scenario there will be a definite re-growth of ‘natural’ vegetation within a few months of the initial spray treatment. This can be one of the negative agricultural consequences of using these ‘milder’ forms of herbicide, in that vegetation often returns more rapidly. Depending on the time of initial herbicide application this vegetation may either compete with the established feral HT population or its seeds the following season. There is also evidence that B. rapa would need to be in high abundance in the local landscape for introgression to occur to a significant level (Johannessen et al., 2006), and as discussed earlier the exact distribution of B. rapa is not quantified in Ireland. Therefore, farmer ‘B’ has no need to be concerned because if there is no selection pressure then any GMHT hybrids/ferals in the marginal habitats will have no competitive advantage over adjacent flora populations (Beckie et al., 2001; Norris and Sweet, 2002; Norris et al., 2004; 1999; Simpson et al., 1999). On the contrary, if selection pressure is applied via glyphosate applications then there is an increased likelihood of hybrid and/or feral plants in the landscape. Critically, the fitness of these populations will diminish outside agronomic management regimes as the new hybrid and/or feral plants will also possess genes bred into oilseed rape to ensure maximal performance under the managed environment of the field but which will actually reduce plant fitness outside the field (Warwick et al., 2008).

Scenario 3. Increased use of GMHT oilseed rape in the Irish landscape
In this scenario, a GM clustering arrangement is in place in a particular county in the south east of Ireland, of which farmer ‘C’ is a participant (for a detailed explanation of GM clustering see Mullins et al. (2009). All B. napus in this cluster is GMHT (e.g. for glyphosate) and the cluster has
been producing for ten years. The management regimes that are used in this system are now more
dependant upon the use of glyphosate than other areas. One concern is that the concentration of
GMHT oilseed rape will provide a continual supply of HT pollen, which will ensure some HT B.
rapa populations, as well as volunteer GMHT oilseed rape populations, are maintained through
continuous selection. As with scenario 2 there is also an elevated level of seed scatter resulting in
increased feral populations of GMHT oilseed rape in marginal habitats. This may result in high
levels of sub-populations of feral B. napus as well as hybrid B. napus x B. rapa. If more than one
GMHT variety is prevalent (such as glyphosate and glufosinate) this may give rise to populations
with stacked genes (i.e. with a resistance to both herbicides). In combination, these populations may
act as ‘genetic bridges’ and gradually prevail in marginal habitats outside the cluster zone. A second
concern may be that the increased presence of glyphosate and glufosinate would force other species
to evolve resistance (known as ‘weed shifts’ – emerging unrelated plant species with a tolerance to
those herbicides). The first concern is that a combination of feral crop and hybrid Brassicae may
now act as ‘genetic bridges’ and slowly spread along marginal corridor habitats outside the cluster
zone. A second concern is that the increased presence of glyphosate and glufosinate would force
other species to adapt to a herbicide tolerant phenotype.

Outcome
Guidelines have been established for the management of GM crops in the Irish landscape (McGill et al., 2005). One recommendation includes the establishment of clusters of GM-licensed farmers within a region or agricultural zone, to simplify the key EU requirement of monitoring GM cropping sites post-cultivation (EC, 2001). This monitoring is composed of a general surveillance phase and a more focussed case specific analysis. The general survey is the responsibility of the network of GM farmers within the cluster along with the GM crop company representatives. The case specific survey offers the opportunity to monitor the persistence of feral populations and test for phenomenon such as ‘gene stacking’. As with the earlier scenarios, the response may entail an application of different herbicides or to manage these habitats by non-chemical means. Furthermore, as with earlier scenarios, ecological processes will apply in these semi-natural habitats and vegetation competition (which all crops do not tolerate) will mitigate population expansion. Yet, in a clustering situation, monitoring will only take place in semi-natural habitats and fields in the vicinity, and as there is the possibility for ‘genetic bridging’; semi-natural areas that are beyond the GM cluster zone are unlikely to be monitored on a regular basis. Conversely, such areas outside the GM cluster are also unlikely to be managed using these herbicides, and thus the absence of selection pressure will also impede feral/hybrid persistence over time. Separately, the case-specific monitoring must survey for the propensity for non-Brassicae weeds to spontaneously mutate and
develop herbicide tolerance. These ‘weed shifts’ are suspected to have occurred already, though weed species diversity is not known to have declined as a consequence (Beckie et al., 2006). Beckie et al. (2006) also suspect that increased reliance on herbicides will lead to an increased potential for selection pressure to occur, but this is based on a ten year assessment on Canadian farms where the entire landscape was subjected to repeated herbicide applications as normal practice. This is unlikely under current Irish management regimes, which typically avoid applying herbicides in those areas where Brassicae hybrids and volunteers may be located. While some studies note some potential concerns (Campbell et al., 2006) there is no evidence directly linking oilseed rape production and possible weed evolution (Ellstrand et al., 1999).

Scenario 4. Increased use of IMI oilseed rape in the Irish landscape

It is ten years since the uptake of IMI oilseed rape and many farmers nationwide, including farmer ‘D’, now grow this variety in the absence of any regulation as it was not developed through GM technology. There is no restriction on its use and no assessments of introgression into wild relatives in any of the marginal semi-natural habitats as was the case in the above scenarios. The key concern is that un-monitored and un-clustered farming of IMI oilseed rape may give rise to large populations of imidazolinone-resistant volunteers and hybrid Brassicae in semi-natural habitats. In this scenario a hypothetical survey of ruderal habitats within oilseed rape farmland landscapes is carried out as part of a landscape impact research project. This survey reveals multiple populations of feral B. napus and hybrid B. napus x B. rapa, all with imidazolinone tolerance. The concerns here are the same as previous scenarios, but with a non-GM variety of oilseed rape, which is un-regulated, similar to current conventional and organic crops. An additional concern is that IMI tolerance will increase the levels of toxic exposure in the landscape.

Outcome

As IMI is not used to manage semi-natural habitats there will therefore not be any selection pressure applied and thus the situation in marginal habitats will be the same as the previous scenarios. If there are any accidental applications of imidazolinone the same outcomes as scenario 2 would arise. If all oilseed farmers are using the IMI variety and there are the same number of oilseed farmers as currently, hybrid and volunteer Brassicae ought to be the same as current levels in the absence of any advantage being conferred to these populations. However, the hypothetical landscape impact research study in this scenario has hypothesised that populations of hybrids or volunteer in semi-natural habitats may be increasing. Having discovered this, the farmer can manage the ‘problem’ using alternative herbicides or using non-chemical management. Finally, as farmers become reliant on regularly using this herbicide (imidazolinone), levels will build up in the
landscape and as with scenario 3 there may also be weed shifts. None of these issues point towards IMI oilseed rape being different from GMHT oilseed rape in that regard.

One key difference here is that because there are no regulatory mechanisms for the (mandatory) monitoring of IMI crops it is highly unlikely that any surveys will take place, and thus issues regarding persistence will go un-noticed. Critically, in the absence of selection pressure they will have the same lack of advantage as current *Brassicae* feral and/or hybrid populations. If on the other hand, IMI oilseed rape is grown in proximity to GMHT oilseed rape, then there is the possibility of stacked tolerant genes being located in feral or hybrid *Brassicae*. There are some reports of multiple-trait oilseed rape in Canada (Beckie *et al.*, 2006; Downey, 1999; Hall *et al.*, 2000), in France (Champolivier *et al.*, 1999; Méssean, 1997) and the United Kingdom (Simpson *et al.*, 1999). While these populations can be controlled through alternative management regimes, their prevalence erodes existing strategies and increases the risk of these gene-stacked populations persisting and expanding.

Discussion

There are many descriptions of the biological diversity of the Earth; comparatively fewer describe the biodiversity of cultural landscapes. This has been addressed to some extent with the AgBiota project (Purvis *et al.*, 2009), which examined non-tillage landscapes. Very few long-term research projects have examined the landscape impacts of agriculture or the potential influence that agricultural activities can have on biodiversity (Paoletti, 1995), even though it is recognised that agriculture would not be possible without the ecosystem services that habitat and species diversity provides (Butler *et al.*, 2007; Costanza *et al.*, 2007; Jackson *et al.*, 2007). Still, biodiversity must be given perspective. Biodiversity is not quantified, nor is it universally agreed of what it constitutes and how it is to be regarded or measured and thus is open to diverse interpretations. Rather, it is a notional representation of all life forms and their interaction with human processes. It is therefore a highly useful term for broad representations of ecological processes especially when it comes to discussing the agri-environment and it is often studied using indicators. In addition to this, unwanted weed or invasive species may have the potential of influencing some basic ecosystem services (van Andel and Aronson, 2006). Any new crop or land usage may give rise, in time, to an alteration of the biodiversity on an area. In some instances this may include a species (native or alien) that is later adjudged to be ‘invasive’, i.e. one that is negatively impacting on the wider diversity to the detriment of rare, threatened or endangered species and/or habitats. This is a complex and understudied area despite the relevance to landscape impact assessment and land use change.
With a growing demand for food security there may be an intensification of farming in Ireland. This may mean that the impact on biodiversity (from the removal of hedgerows, for example) may follow those impacts seen in the UK and continental Europe after the Second World War. Any future adoption of GM crops in Ireland could see a higher demand for land, and thus the incorporation of marginal land into farming. However, reduced chemical spraying and lower management activity could have a greater beneficial impact on species and habitats (Collier and Mullins, 2010). The GM coexistence issue illustrates that land management is key to biodiversity impact and that a successful coexistence strategy would ensure a higher standard of management. It is also suggested that a clustering arrangement with a collaborative methodology is an optimal mechanism for ensuring efficient coexistence and a minimal impact on neighbouring lands.

Conclusions
The lack of a working understanding of agri-environmental biodiversity, co-existence strategies and basic data on species prevalence in Ireland make a strong case for the use of scenario testing, such as presented here. The four scenarios above were specifically designed to hypothesise a worst-case situation, which could viably occur with the cultivation of GMHT oilseed rape crops. Scenarios are conceivable whereby the GMHT / IMI traits may persist in feral/volunteer populations of *B. napus* populations and/or be successfully introgressed into wild populations of *B. rapa*. While hybridisation is not the exception; it is the rule in natural systems. It is the consequence of the gene flow events, which is critical; for without selection pressure through the application of herbicides, these plants are no more likely to persist than current conventional oilseed rape-derived populations.

Furthermore, if HT *B. napus* x *B. rapa* hybrids or HT *B. napus* volunteers are identified, they can be eradicated using alternative agricultural herbicides. If populations of GMHT / IMI *B. rapa* do arise and are subjected to selection pressure (i.e. spraying), they will have an opportunity to increase their numbers in the short term before the rest of the vegetation returns. In the long term, typical ecological process will prevail (e.g. successional growth) and competition (e.g. for light, nutrients, water, etc.) will impact on the HT populations as with all plants. The limiting factor in all scenarios is the management regimes of either the crop and/or the semi-natural areas, which was shown elsewhere (Collier and Mullins, 2010). The requisite monitoring of GMHT oilseed rape ought to reveal any persistence issues in the short term. This monitoring or control is not legally required for IMI crops, or for any other crops in the Irish landscape, and thus any issues regarding persistence may not be noticed until some time has passed. By following current best practices in farm
management, coupled with the established guidelines for the coexistence of GM and non-GM crops in Ireland, the risk of either GMHT crop becoming any more prominent in the landscape than existing non-GM crops is minimal.

Yet, given the principal of precaution in these matters, might there be the potential for the management of *Brassicae* (GM and non-GM) to impact detrimentally on farm landscape biodiversity? Even if, under the rare likelihood of a population of HT hybrids or crop volunteers persisting locally, there is no evidence that these may become invasive or in any way impact detrimentally on Irish species and/or habitats or ecosystem services. There are no data to show that *Brassicae* have invaded or are otherwise occupying an ecological niche of a native species. The prevalence and persistence of escaped *Brassicae* have not been shown to have impacted upon Irish flora in a negative manner that would pose a problem for landscape biodiversity. In addition, these flowering plants may provide additional support for nectar feeders in the rural landscape, something that has long been suspected (Free and Nuttall, 1968). Beside the lack of information upon which to base concrete conclusions, this study also reveals a double-standard in scientific thinking (Ammann, 2012). It can be seen that while GM crops have engendered a significant volume of impact-related research over the last few decades, this is not counterpointed by similar research for non-GM or conventional crops which also have the potential for impacting on agri-environmental biodiversity via the same mechanisms and pathways. Until this area of research has begun to show clear insights into the morphology of landscape biodiversity, scenario and literature-based research may be the best way to assess potential impacts of land use change.

Acknowledgements

This research was funded by the Irish Environmental Protection Agency (ERTDI 2006-B-MS-46 and 2007-B-DS-1-S1) and by Teagasc the Irish Agriculture and Food Development Authority. The authors would like to express our appreciation for helpful comments from reviewers and the editor.

References

Teagasc, 2008, Sectoral Road Map - Tillage and Energy Crops, Oak Park, Carlow.

