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Abstract At a high level, data centres are large IT facilities hosting physical
machines (servers) that often run a large number of virtual machines (VMs)—
but at a lower level, data centres are an intricate collection of interconnected
and virtualised computers, connected services, complex service-level agree-
ments. While data centre managers know that reassigning VMs to the servers
that would best serve them and also minimise some cost for the company can
potentially save a lot of money—the search space is large and constrained,
and the decision complicated as they involve different dimensions. This pa-
per consists of a comparative study of heuristics and exact algorithms for the
Multi-objective Machine Reassignment problem. Given the common intuition
that the problem is too complicated for exact resolutions, all previous works
have focused on various (meta)heuristics such as First-Fit, GRASP, NSGA-II
or PLS. In this paper, we show that the state-of-art solution to the single ob-
jective formulation of the problem (CBLNS) and the classical multi-objective
solutions fail to bridge the gap between the number, quality and variety of
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solutions. Hybrid metaheuristics, on the other hand, have proven to be more
effective and efficient to address the problem — but as there has never been
any study of an exact resolution, it was difficult to qualify their results. In this
paper, we present the most relevant techniques used to address the problem,
and we compare them to an exact resolution (e-Constraints). We show that
the problem is indeed large and constrained (we ran our algorithm for 30 days
on a powerful node of a supercomputer and did not get the final solution for
most instances of our problem) but that a metaheuristic (GeNePi) obtains ac-
ceptable results: more (+188%) solutions than the exact resolution and a little
more than half (52%) the hypervolume (measure of quality of the solution set).

Keywords Machine Reassignment - Metaheuristics - Multi-objective.

1 Introduction

Data centres are facilities dedicated to hosting many computer resources, and
while they have been around for decades, they are now the centre of (a lot of)
attention as they are increasingly the crucial element of our digital lives (e.g.,
the Cloud). Data centres evolve constantly as for instance machines age and are
eventually decommissioned, new ones (more powerful) are bought regularly,
and processes hosted are updated to potentially more greedy ones. Data centre
managers adapt their systems to these evolutions and migrate processes from
one machine to another one following technical and non-technical constraints
and preferences. This is what we call reassignment of processes to machines.
For instance, managers may want to increase the reliability of their data centres
and move the workload from overloaded machines to less loaded and/or more
powerful ones. Often, they also try to move the workload to power efficient
machines, to lower the cost and environmental impact of the data centres.

One problem is that machines can range to up to tens of thousands (e.g.,
OVH, a European leader in the domain, have 150,000 servers in 12 data cen-
tres!), and services up to millions (e.g., VMware ESX accepts up to 320 VMs
per host). At this scale, any instance of the reassignment problem becomes a
challenge to the existing heuristics/solvers and finding the ‘best’ (re-) assign-
ment an illusion. Another problem is that, as we mentioned in the previous
paragraph, managers have different perspectives on what is a ‘good’ solution,
and ranking all the solutions according to a single utility function (e.g., min-
imising energy consumption) is probably not relevant.

This is a perfect example of a problem where multi-objective decision mak-
ing makes sense: an optimisation problem with various independent objectives
that only decision-makers can compare — possibly collectively. For instance,

( ) describe such an enterprise environment where managers of
hosting departments have various perspectives when it comes to placement
decisions. Hence we call the problem we address in this paper Multi- Objective
Optimisation for the Machine Reassignment Problem (MOMRP). While this

1 Source: http://www.ovh.com/fr/backstage/ — accessed on 16/05/2018.
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problem has been addressed in the context of machine assignment ( ,

), or for dynamic assignment of a small number of machines (

, ), it has not been in itself the topic of research in the past. In this
paper, we identify three objectives for the problem: (i) reliability, i.e., a penalty
is given to assignments that load too much the machines; (ii) migration, i.e.,
assignments that move processes too much (especially to remote locations) are
penalised; and (iii) electricity: trying to obtain assignments that minimises the
(electrical) cost of running the data centre.

In this paper, we show that classical solutions do not perform well against
this problem, in terms of the number of non-dominated solutions found (the
quantity of solutions) or the hypervolume ( , ) of the
search space area defined by the Pareto frontier (the guality of the solutions).
Algorithms of the First Fit family (e.g., First Fit decreasing, Random Fit,
First Fit descent bin-balancing ( , )) tend to fail to satisfy the
large number of constraints of the problem and have poor results as soon as the
instances of the problem become large enough (and realistic). The state-of-the-
art momno-objective machine reassignment algorithm, i.e., Constraint-Based
Large Neighbourhood Search (CBLNS) ( , ) finds solutions
that improve the initial assignment, but these solutions lack diversity as they
are focused around one area of the search space (low quality). Pareto Local
Search (PLS) ( , ; , ; , )
usually finds solutions but they are grouped in one area of the search space
(small hypervolume), and it is ‘by nature’ a slow algorithm. NSGA-IT (

, ) needs a good initial population to operate properly, while here it
gets only one solution: the initial assignment. GRASP ( )
does not perform well either in such large search spaces and ends up trylng alot
of non-feasible combinations, eventually finding few or no solution at all. We
describe a novel hybrid algorithm called GeNePi ( , ), which
uses successfully three steps: a first step (inspired from GRASP) to explore
quickly the whole search space, a second (using NSGA-II) to introduce some
variety and quality in the solutions and a last one (PLS-based) to increase
the number of solutions. GeNePi outperforms all the algorithms above and
some classical bin packing ones, finding nearly 5 times more non-dominated
solutions on average than non-hybrid algorithms and covering the search space
better with more than 100% hypervolume on average than the best non-hybrid
techniques).

The comparison against other hybrid metaheuristics illustrates the impor-
tance of having a three-step method (a greedy algorithm, a genetic algorithm
and a local search) with more than 2 times improvement in terms of num-
ber of non-dominated solutions and nearly 16% increase in hypervolume when
compared against the second best hybrid metaheuristic.

Now, while we know that one hybrid metaheuristic outperforms the other
algorithms, it is difficult to assess the efficiency and effectiveness of GeNePi
in absolute terms. We have implemented an exact resolution (e-Constraints
method ( , )) of the problem in the same instances used for the
comparison of the heuristic algorithms. We ran our implementation for up to
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30 days (depending on the instance of the problem) on one node of a super-
computer. We observe that GeNePi gets more non-dominated solutions than
the exact resolution (+188%) and achieves a little more than half the hy-
pervolume of the exact resolution (52%). GeNePi also succeeds in keeping its
execution time low, as it is tens of thousands of times faster than e-Constraints.
GeNePi is even faster or in the same order of magnitude as a single iteration
of e-Constraints.
In summary, in this paper we make the following contributions:

— We formally define the multi-objective machine reassignment problem.

— We show that classical multi-objective and state-of-the-art mono-objective
solutions do not perform well on the multi-objective optimisation version
for the machine reassignment problem.

— We describe our novel three-step algorithm called GeNePi and show that
GeNePi outperforms the other algorithms in terms of number and quality
of solutions.

— We implement the e-Constraints exact method and run it for 30 days. We
show that GeNePi achieves good results in comparison to the e-Constraints
method while not requiring as much execution time.

In the rest of this paper we first start by reviewing some of the work related
to machine reassignment (Section 2), then we give a formal definition of the
problem, with the constraints and the three objectives that we identified as
the most relevant (Section 3). Next, we describe GeNeP1i, our algorithm for
solving this MOMRP (Section 4). After this, Section 5 proposes an evaluation
of the different state-of-the-art algorithms. Next, we describe the e-Constraints
method which provides an exact resolution of the problem, and we compare
GeNePi against it (Section 7). Finally, we make some concluding remarks
(Section 8).

2 Related Work

In this section, we present a survey of the literature relevant to our study:
d-dimensional vector bin packing, machine reassignment and multi-objective
reassignment.

2.1 d-Dimensional Vector Bin Packing

The d-dimensional vector bin packing consists of packing a set of items of
various sizes, in the least number of homogeneous bins. In the case of VMs
and servers, each dimension of the space represents an independent resource.
Vector bin packing has been a very popular challenge in computer science and
engineering, for instance in the system domain ( , ).

In the context of 2-dimensional vector bin packing,
( ) developed a set of heuristics and exact solutions, which were since
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outperformed by an approximation algorithm proposed by
( ) with a performance ratio of 2 in the worst-case.

( ) modelled the problem with more than 2 re-
sources and made a thorough evaluation of different algorithms for assigning
tasks in a multiprocessor computer — whereas ( ) focus
on systems running tasks in parallel.

( ) studied the d-dimensional vector bin packing
with conflicting items and proposed some approximation algorithms, while

( ) proposed several heuristics and lower bounds which
take into consideration this set of constraints.

Most Recent works deal with the d-dimensional vector bin packing for stor-
ing multi-media content. They either study different algorithms (e.g., heuris-
tics from the First-Fit family ( , )) or try to find a better
approximation algorithm ( ,

2.2 Machine Reassignment

While the d-dimensional vector bin packing aims at reducing the number of
bins, the machine reassignment problem (MRP) considers moving items be-
tween an already given set of bins (a.k.a., machines).

In the context of managing resources in cloud environments, several optimi-
sation problems have been defined and studied ( ) ).

( ) worked on optimising resource utilisation by reassigning tasks to differ-
ent machines by comparing commonly used First Fit algorithms.

( ) worked on the reduction of data centres’ energy footprint and
proposed resource allocation heuristics to tackle this problem.
( ) pushed the boundaries further by considering a resource allocation with
heterogeneous machines.

Due to the increasing popularity and scale of the cloud, Google (one of the
leaders on the market) proposed a challenge at the ROADEF/EURO (2012)
forum with a detailed formulation for the MRP and a real-life instance scales.
The challenge attracted many participants, with algorithms of different types.
Although the majority were based on a local search Local Search (LS) (

, ), Large Neighbourhood Search (LNS) (

Variable Neighbourhood Search (VNS) ( , ) or Multi-Start
Local Search (MS-LS) ( , ), there were others based on
Greedy Randomized Adaptive Search (GRASP) ( , ),
Simulated Annealing (SA) ( , ), or a combination of either

Constraints Programming (CP) or Mixed-integer linear programming (MILP)
solvers, with some other optimisation solutions (e.g., Local Search with either
a CP ( , ), or a MILP solver ( , ).

The problem proposed by Google to the ROADEF/EURO challenge con-
tinued to attract researchers even years after its end to work on it and push
the optimisation boundaries set by the initial state-of-the-art. Some of the
works tried to improve the solutions that were submitted to the challenge
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while others designed and evaluated new algorithms. ( )
enhance the work of ( ) by finely tuning parameters of the
large neighbourhood search to get an effective Constraint Programming Based
Large Neighbourhood Search which achieves near-optimal results.

( ) propose a hyperheuristic (i.e., a combination of several meta-
heuristics) that is inspired by the Simulated Annealing algorithm and that is
composed of two levels of heuristics.

Recently, ( ) proposed an evolutionary parallel Late Accep-
tance Hill Climbing algorithm. The same group of authors developed a year
later an Evolutionary Simulated Annealing (ESA) algorithm ( ,

) by replacing the Late Acceptance Hill Climbing algorithm with a Sim-
ulated Annealing. In another work from ( ), the authors do
not aim at finding the best solution but instead study the different neigh-
bourhood structures that are employed in Large Neighbourhood Searches to
generate and evaluate their neighbourhoods and show that they have an im-
pact on the performance of these algorithms. In their very latest work on the
topic ( , ), the authors combine several components in a coop-
erative evolutionary heterogeneous simulated annealing (CHSA) which allows
them to achieve higher quality solutions.

2.3 Multi-Objective Machine Reassignment

The multi-objective consolidation (reassignment) of processes / Virtual Ma-
chines (VMs) in a data centre has been described recently as an essential
research challenge for data centres ( , ). Although we can
find many works dealing with this problem in the literature ( , ;

, ), most of them either consider systems of small
and unrealistic scales, or use a ‘weak’ multi-objective formulation (e.g., com-
bining the objectives using a weighted-sum ( , ) or limiting their
study to only a bi-objective resolution ( , ).

The MOMRP is a novel optimisation problem. It is largely inspired by the
MRP proposed by Google but considers objectives that are relevant to data
centres’ managers in non-aggregated fashion. The first attempt at modelling
it and creating an algorithm to tackle it ( , ) was quite recent.

( ) proposed a linear formulation for the same multi-objective
problem and studied the usability of a MILP solver, but was only limited to
the smallest instances. The authors also extended the work to a combination of
metaheuristics and exact solutions ( , ). A formulation similar
to the MOMRP has also been studied in the context of decentralised data cen-
tres ( , , ), which considers that each site is independent
when making its machine placement. The study provides a full model of the
MOMRP in such infrastructures and conducts a thorough evaluation of several
algorithms. The most recent formation of the problem in a decentralised in-
frastructure ( , ) considers the possibility of decommissioning
workload to public clouds with varying pricing schemes.
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3 Problem Definition

The Multi-Objective Machine Reassignment Problem consists of optimising the
usage of a set of machines M according to various objectives. Any reassignment
has to satisfy constraints (often in large number) of the system and find a new
machine M (p) for every process p in the set of existing processes P, initially
placed in machine My(p). The multi-objective reassignment tries to find non-
dominated solutions (better than every other solution in some directions of
the space). In some cases My(p) = M (p), which means that the process p € P
does not move during the reassignment.

The model we describe below is loosely inspired by several works e.g.,
( , ) for an integer programming model, among which the prob-
lem definition of the ROADEF challenge (2012) has an important place.

3.1 Reassignment Problem

A machine m € M belongs to a location | € L (the site where the server is
located). It is also in a neighbourhood N(m) € N with N(m) C M, which
represents a set of machines with which it is linked to by fast connections
or with which it shares the same protocol. Each machine belongs to one and
only one location and one neighbourhood. Every machine m has also several
resources r € R (e.g., RAM, CPU, disk), in limited capacities Q, . We con-
sider that the quantity of resource r that the process p needs is fixed to d, ,
and corresponds to a V.M parameter/SLA?. The first constraint of the system
describes the resource capacities of the machines m as limiting the resource
demands of the processes p hosted on them.

S dpr £ Quan YmeEMVreRr (1)

pEP | M(p)=m

The reassignment of a process is achieved using a live migration, meaning
that the process is transferred to the final machine while keeping it running
on its initial one. Some resources are called transient: r € TR C R. Such
resources (e.g., RAM and disk) are needed on both machines (initial and final
machines) during a live migration, as the processes use the resources on both
machines during the reassignment.

> dpy < Qmyry ¥me M,VreTR 2)

pEP|Moy(p)=mVM(p)=m

Other resources are called non-transient: r e NR = R\ TR.
Services/applications are often multi-tier (e.g., to separate concerns) and
replicated (for performance and security reasons), so it is realistic to assume

2 aService-Level Agreement (SLA) is a contract agreed between a data centre provider and
a customer which describes the service provided (e.g., allocated resources, time to recover
after an outage).
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here that processes (the atomic element of workload) are organised by services.
It is common for services to have an anti-cohabitation constraint ( ,

), i.e., the processes composing a service cannot share the same host — for
some reliability, security and performance reasons. Let S the set of services,
then the anti-cohabitation constraint can be expressed as in (3).

Vpi,p; € Pyi # §,Vs €S, (pi,p;) € 8> = M(p;) # M(p;) (3)

For the same reasons of reliability, security and performance, services require
that the number of locations hosting at least one process has to be greater than
a certain number, called spread number and denoted o. This allows increasing
the resilience in case of failure of a data centre: the bigger the spread number
o, the safer the service s € S.

Zmin(l,|{p|p€s AN M(p)el}|)>os, VseS (4)
leL

Services can also depend on each other and in this case the processes of these
services need to be close to each other — to increase the performance of the
system. Let D be the set of service dependencies in the system and we denote
any services dependency with <. Of course, as the dependencies between ser-
vices can be complex, the assignment can be tricky: a process p € P, belonging
to service s; € & which is dependent on service s; € & and service s, € S,
needs to be assigned to a machine M (p’) € N(M(p)) such that p’ € s; N sp.

Vsi, 55 €S, s = 85 = Vpy €54, Ipy €55 | N(M(pu)) = N(M(py)) (5)

Figure 1 shows graphically a scenario (i.e., instance and initial solution) of
the problem. Note that resource capacities and demands are not represented
here to make it simpler to understand.

Definition 1 (Machine Reassignment) An assignment A of processes to
machines is a mapping: A : P — M, such that A(p, M) — m, which satisfies
all the previous constraints 1, 2, 3, 4 and 5.

A reassignment is a function that modifies an initial assignment: ReA : A — A
and gives a new assignment of processes to machines.

3.2 Objectives

As said in the introduction, there are several perspectives on the best op-
timisation, which translate in our case into several objectives. Some stud-
ies ( , ) show that a large number of objectives
decreases drastically the performance of evolutionary algorithms, and that
decision-makers tend to favour a small number of dimensions. We focus here
on three objectives: electricity cost, VM migration cost and reliability cost, as
they are recognised in the literature ( , ; , ;

, ) and make sense in practice. The multi-objective
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—— Depends
on
— Assigned

Fig. 1 Simple scenario of a correct assignment of processes to machines (spread= 2).

variant of the Machine Reassignment Problem (see Definition 1) consists of
minimising the cost functions defined by the objectives.

There are many elements that can help data centre operators to predict
the risk of failure of a server: to name a few the age of a machine, the vendors
of its parts (e.g., processor maker) and the past history of similar machines.
They are complex to collect and understand, and we do not know exactly
how to process them to obtain an objective that the data centre operators
and decision-makers could use (the literature seems uncertain on the mat-
ter ( , )). One thing we know is that as opposed to
the risk of failure, the reliability is easier to compute and gathers fewer ques-
tions. Machines do operate better when they are not too loaded, and reliability
can be estimated through the load: the more loaded a machine, the greater
the risk of performance issues or failures.

Definition 2 (Reliability Cost) A machine m € M is reliable if it is not
loaded more than a reliability value p(m,r) for each resource r € R, and we
compute a reliability cost of m, p(m), as:

p(m) = Zmax 0, Z dpyr — p(m,r) (6)
reER pEP | Mo(p)=m V M(p)=m

If the safety capacity® of m for the resource r is higher than the sum of the
demands, then it does not impact the safety of the machine.

3 The concept of safety capacity is introduced in the Google/ROADEF/EURO chal-
lenge (2012): if one or several resources of a machine are over-loaded then the machine
may not be able to satisfy its SLAs.
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Migrating a process has a cost which is often neglected by research in
the area but is well known by practitioners ( , ). Basi-
cally, this consists of the time needed to prepare a process p for a migration
(111 (p, My(p))), to transfer p (ua(p, Mo(p), M(p))) and to install p on a new
machine (u3(p, M(p))). All these costs are dependent on some process pa-
rameters (e.g., size of the data stored on disk and RAM, complexity of the
installation) and topology parameters (e.g., number of hops, bandwidth), that
we do not evaluate in this paper.

Definition 3 (Migration Cost) The cost of migrating a process p € P from
a machine My(p) to a machine M (p) is defined:

w(p, Mo(p), M(p)) = pa(p, Mo(p)) + p2(p, Mo(p), M(p)) + p3(p, M(p)) (7)

Electricity cost of running machines accounts for up to 50% of their oper-
ating costs ( , ) and it is a burden for countries’ electricity pro-
duction systems: in 2007, Western European data centres consumed 56 TWh
of electricity, and this is expected to double (104 TWh, or about 4 times the
annual production or Ireland) by 2020 ( , ). There is a global
trend towards more greener and power-aware practices, and this will certainly
lead to an increase in the electricity price and other incentives for data centre
managers to minimise their electricity consumption. Modelling electricity cost
is complex but we follow the general assumption that states that it is a linear
function of its CPU usage ( , ; , ). We then
just define two parameters, «,, (linear factor) and f,, (fixed cost of running
m with any given load on the CPU) for every machine m. This does not take
into account other elements that may be relevant but are somehow out of the
scope of our study here (e.g., cooling of data centres).

Definition 4 (Electricity Cost) The electricity cost of a machine m € M in
the location I € £ depends on the variables au,, B, (electricity consumption
constants) and ~; (electricity cost in [), and is expressed by the following
formula:

B v X | g X > dpcru + Bm if m is running
e(m) = ( pEP|M (p)=m (8)
otherwise
Note that a machine m € M is considered running if at least one process
is reassigned to it. Conversely, a machine m € M is considered off if and only
if no process is reassigned to it.

4 Description of our Solution: GeNePi

GeNePi applies successively three optimisation algorithms: GRASP (modi-
fied), NSGA-II and PLS. This idea of using three steps has successfully been
used in different ( ; , ) areas for an approx-
imate problem resolution, but is new in the domain of machine reassignment
and not implemented in an exact way.
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4.1 Ge: a variant of the constructive phase of GRASP

We use a variant of the constructive phase of Greedy Randomized Adaptive
Search Procedure (GRASP) ( , ). Solutions are generated
by trying to reassign processes one after the other, according to a greedy
heuristic which is slightly relaxed to include a random factor. This method
is commonly used for combinatorial problems and applied to get some quick
initial solutions with good objectives. After ranking the processes according
to their dependencies (if a service so which contains a process ps depends
on a service s; which contains a process p;, then the process po is ordered
after p;) and their resource requirements (a process with a larger resource
needs is ordered before a process with a smaller resource needs), they are
selected one by one. A decision of reassigning one per cent of the processes
from their initial hosts has been taken, because of the tightness of transient
resource constraints that limits the number of reassignments. We have noticed
that without such a restriction, most of the generated reassignments were
unfeasible due to the violation of transient constraints. Setting this one per
cent limit reduces the number of transient constraint violations and allows
the generation of more feasible solutions. While this limit seems restrictive
and looks like a handicap, we saw interesting performance achievements by
Ge against the regular GRASP (see Section 6). Furthermore, this limit is
dropped in the following phases of GeNePi, which allows the second phase to
compensate for this restriction. Note that setting this value did not undergo a
full-scale parameter optimisation sweep. We believe that a better tuning of this
parameter will likely yield a more significant performance improvement. The
choice of the reassignment of every process is based on a linear combination
of the three utility /objective functions (one per objective). Even if a linear
combination of these utility functions allows us to go beyond the objective
types barrier, its static definition induces getting solutions with them same
objectives level of interest. This behaviour goes against the aim of a multi-
objective optimisation. That is why we adopted a panel of triplet weights (\;,
Aj, Ag) in J0,1[%, with A, = 1 — X\; — \;. They are chosen in such a way
they cover a maximum search space by optimising the objectives separately in
addition to their trade-offs. They will be used to introduce a diversification in
the interest of each objective, ensuring a trade-off between them. The random
part of GRASP lays in the assignment of a machine to each process, at each
iteration. For each process, a set of assignable machines RM that respect the
constraints is computed. A utility value U™ is also calculated for each machine
m € RM which captures the effect of assigning the process p on m with respect
to the objective ¢ € {1,2,3}. Then, a utility value U™ (the lower the better)
is assigned to every machine m € RM using a weighted-sum: Z§:1 AU
We consider minU and maxU as respectively the lowest and largest utility
obtained by any machine m € RM. Therefore, we define a set of interesting
reassignable machines IRM as the machines that belong to RM and have
a utility lower than or equal to (minU + (1 —7) * [mazU — minU]), with
r € [0,1]. A machine is randomly selected from this set of interesting machines
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IRM to assign the process to it. During the assignment, it may happen that
a process has no machine able to host it. The solution is declared infeasible,
and removed from the initial solutions. Globally, at the end of this step, we
expect to have a set of decent solutions spread over the search space.

4.2 Ne: NSGA-II

We use for this step a genetic algorithm called Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) ( , ). This step is useful for the improve-
ment of the Pareto set* obtained from the first step. This metaheuristic allows
to get a good dissemination of the solutions around the Pareto frontier and
prevent their accumulation in some area of the search space. Hopefully, it
allows GeNePi getting a smooth frontier and increases the number and the
quality of the non-dominated solutions. It is a genetic algorithm, i.e., it runs
an evolutionary process which matches individuals (i.e., solutions or assign-
ments) at each generation and mixes their features (as the biological evolution
would do with genes). The two main actions are crossover which mixes genes
from two parents, and mutation that randomly creates individuals with new
features. There exist several ways of doing crossovers, which is more or less a
cut and paste operation where assignments in the set of actual solutions are
split into regular length segments and swapped with one another ( ,

). In our case, crossovers consider the exchange of services (i.e., exchang-
ing the assignments for all the processes belonging to a same service s between
the two given solutions a; and a; by swapping the assignments of every pro-
cess p; in s from the solution a; with the process p; in s from the solution
a;) rather than blocks of process assignments—which minimises the number
of crossovers that generate infeasible solutions. Of course the diversity is less
than with crossovers on processes, but we compensate with a bigger proba-
bility of mutations (i.e., random assignments in solutions to see whether this
improves the utilities). After a generation has “passed”, some new individuals
are kept (usually the fittest, those with the best objective values: low dom-
ination rank, but also some other that allow introducing some variety: high
crowding-measure ( , )), and others are suppressed. Hence the
global population of assignments only improves (descendants worse than their
parents are likely to be suppressed). Besides, last generations tend to be well
distributed over the Pareto frontier.

4.3 Pi: a Pareto Local Search
Finally, we try to improve the Pareto set by using a Pareto Local Search

(PLS) ( , ). It consists of applying several local search
operators on the solutions belonging to the Pareto frontier. Few simple moves

4 Pareto set: a set of non-dominated solutions (i.e., better than all other solutions in one
or more objectives).
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Fig. 2 Overview of the different components of GeNePi.

are chosen from the work of ( ) to analyse the neighbour-
hood of actual solutions: (i) swap, i.e., taking two processes and exchanging
their assignments; (ii) 1-exchange, where one process at a time is selected and
reassigned to any machine that accepts it; (iii) shift, where processes belonging
to the same service are reassigned to the machine of their following process in
a chain rotation fashion (which maintains the satisfaction on the dependency
constraints). These moves allow probing of a large neighbourhood around the
current solutions, which may generate some redundancies if the solutions are
close of one another. To overcome this problem, we generate boxes by cluster-
ing solutions and apply a local search to the most isolated solution in each of
them (i.e., has the largest crowding-measure value). Only one neighbourhood
is generated for every selected solution at every iteration, even if new inter-
esting solutions have been found. This balances the improvement and reduces
the execution time as redundancy is less likely.

Figure 2 is a flowchart which shows the composition of GeNePi as three
successive steps. GeNeP1i receives a model of the MOMRP instance in addition
to the initial assignment. GeNeP1i uses Ge (a modified version of GRASP) as an
initial step to generate multiple solutions. Then, the best solutions among them
(based on the ranking and crowding metrics) are sent to Ne (an implementation
of NSGA-II) to perform an evolutionary process and get better solutions. The
best solutions that result of Ne are fed to the third and last step (i.e., Pe)
which performs a PLS on some of the Pareto solutions. All the non-dominated
solutions that are found after Pe are returned by GeNePi to the decision-
makers as the final set of non-dominated solutions.

5 Experimental Setups

In this section, we evaluate the performance of our solution against other
state-of-the-art multi-objective reassignment solutions, using several metrics:
time, quantity (number of solutions) and quality of solutions (hypervolume).
We create a benchmark® inspired by the ROADEF Challenge (2012).

5 Available at: http://galapagos.ucd.ie/wiki/OpenAccess/Saber2019Dataset MOMRP
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5.1 Experimental Setups

The ROADEF challenge (2012) is particularly suited to our needs, as it is
rather realistic (proposed by Google) and it is quite comprehensive: a lot of
resources for the machines/processes while many papers in the area only con-
sider two (namely, RAM and CPU), reasonably high number of machines and
processes, complex dependencies and constraints on the services and processes
which make the assignments not straightforward. The ROADEF dataset dis-
tinguishes three categories of instances (a_1 are considered ‘easy’, a_2 ‘medium’
and b ‘hard’).

In this paper, we pick up 14 instances (see Table 1), leaving out only
the biggest ones (as they require a large execution time). We have added
variables ., and f,, to each machine m € M, and ~; for every location
l € L in order to include electricity consumption. All our algorithms have been
developed in C++. Experiments were run on a computing cluster with 24 cores
2.0GHz Intel Ivy Bridge CPU and 128GB of RAM. Furthermore, experiments
with algorithms having random parameters (all algorithms except the exact
e-Constraints method) were repeated 10 times. Note that all our algorithms
are fully sequential and do not take advantage of this parallelism with the
exception of the e-Constraints method which uses a mono-objective solver
(i.e., CPLEX) that has enabled multi-processing capabilities.

Instance | [R| | |[TR| | M| | |L] |S| |P| [N |D|
a_1-1 2 0 4 4 79 100 1 0
a_12 4 1 100 4 980 1,000 2 40
a_1.3 3 1 100 25 216 1,000 5 342
a_l4 3 1 50 50 142 1,000 50 297
a_1.5 4 1 12 4 981 1,000 2 32
a_2_1 3 0 100 1 1,000 1,000 1 0
a_2_2 12 4 100 25 170 1,000 5 0
a_2_3 12 4 100 25 129 1,000 5 577
a2.4 12 0 50 25 180 1,000 5 397
a2.5 12 0 50 25 153 1,000 5 506
b_1 12 4 100 10 2,512 5,000 5 4,412
b_2 12 0 100 10 2,462 5,000 5 3,617
b_3 6 2 100 25 | 15,025 | 20,000 5 16,560
b_4 6 0 500 50 1,732 20,000 5 40,485

Table 1 The dataset used for our evaluation (ID and size of the different instances). |R|: the
number of resources, |7R|: the number of transient resources, |M|: the number of machines,
|£]: the number of locations, |S|: the number of services, |P|: the number of processes, |N|:
the number of neighbourhoods, and |D|: the number of dependencies.

5.2 Metrics

Comparing multi-objective optimisation approaches is complex as the set of
solutions they give on a problem can be seen from different perspectives: cov-
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erage, closeness to the Pareto frontier, variety, and many more ( ,

). The problem probably comes from the fact that the Pareto frontier is
unknown most of the time, and that the different objectives cannot be taken
in isolation to give the quality of any solution. In this paper, we decided to
take only a few unary operators as metrics (for a more comprehensive study
of the various possible operators, see ( , )): unary as they take
a set of solutions and give a single value, allowing to compare the different
approaches.

The first metric we use is the number of non-dominated (efficient) solutions
and we refer to it as the quantity of solutions in the non-dominated set. Finding
a large number of solutions is always better as it provides more alternatives
to the decision-makers.

The other metric is the hypervolume (also known as the S metric) and was
introduced by ( ). We sometimes call it quality of the
solutions. This is a widely used metric in the area of optimisation to evaluate
the performance of multi-objective algorithms that aims at understanding how
the output sets are spread in the different dimensions. In short, the hypervol-
ume measures the space (in the n dimensions of the n objectives) defined by
the set of non-dominated solutions and a reference point, picked in the space
as far as possible from the Pareto frontier. The bigger the hypervolume, the
more interesting are the solutions in the found non-dominated solutions set, as
they increase the dominated area. Fleischer ( , ) proved that the
maximisation of the hypervolume is equivalent to finding the optimal Pareto
frontier. Note that in order to compare the result sets of different algorithms,
we use the same reference points for each instance of the MOMRP.

5.3 Algorithms

In our study, we compare four different types of algorithms against the baseline
results when only considering the initial assignment (called Initial), running
for the same period of time. The first algorithms are from the First Fit family.
These heuristics are designed for Vector Bin Packing ( , )
and they are considered efficient. Each of them uses an ordered sequence (by
resource demands) of processes they aim to place on machines as input. We
chose among them First Fit (FF) which selects the first machine that fits for
every process; Random Fit (RF) which selects randomly a machine among
those which fit; and First Fit Descent Bin-Balancing (BB) which selects the
least loaded machine for each process.

The second set of algorithms is the state-of-the-art solutions from the
multi-objective optimisation field. The first of them is GRASP in its origi-
nal definition, i.e., the choice of reassigning processes to machines is based on
a uniform probability distribution of the possible machines. We also evaluate
the first step of GeNePi (Ge) as it is a variation of GRASP that we expect to
be better than GRASP for our scenario. The last algorithm in this family is a
Pareto Local Search (PLS), with a number of boxes at every iteration equals
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the number of solutions in the non-dominated solutions set. Notice that we do
not compare to a genetic algorithm (alone) here as we observe that running
one (e.g., NSGA-II) with a random generation of its initial population could
not make any improvement over the initial solution. The seed, i.e., the initial
population’s individuals are important for genetic algorithms.

The third set consists of the state-of-the-art mono-objective machine reas-
signment algorithm that was designed for the Google/ROADEF/EURO 2012
challenge, i.e., Constraint-Based Large Neighbourhood Search (CBLNS) (

, ). More precisely, we use the finely tuned version of the algo-
rithm ( , ) which achieves near-optimal results. As its name
indicates, CBLNS is a hybrid algorithm which uses a combination of Large
Neighbourhood Search metaheuristic (LNS) and Constraint Programming (CP).
CBLNS is not multi-objective (which is also the case for other algorithms used
for the ROADEF challenge) and it cannot be applied directly to our multi-
objective problem. To cope with this, we adapted CBLNS and came up with
a ‘weak’ multi-objective version using a weight-sum with a vector of equal
weights.

We also evaluate different hybrid metaheuristics: (i) GrNe where we reserve
a third of the execution time to GRASP in order to create an initial population
and run NSGA-II in the two remaining thirds of the execution time, (ii) GeNe
with an initial population obtained with our adapted greedy algorithms (i.e.,
Ge), and (iii) GeNePi with its three successive steps.

5.4 Statistical Analysis and Tests

To validate the significance of our comparison, we perform the non-parametric
two-tailed Mann-Whitney U test (MWU). For two distinct algorithms, MWU
takes in the different performance values obtained on a given metric from each
run (in our case 10). MWU returns the p-value that the algorithms obtain
different values. We consider tests to be significant when the p-values are be-
low the 0.05 significance level. Furthermore, given the small number of runs
in our experiment (due to the long time each of them takes), and in order to
reduce the chances of having incorrect rejection of the true null hypothesis, we
use a conservative but safe adjustment (i.e., the standard Bonferroni adjust-

ment ( , )) which lowers the risk of their erroneous rejec-
tion. Moreover, following the advice in the practical guide proposed by

( ), we measure the effect of size using the the non-parametric
Ay ( ) ) which evaluates the ratio of runs from the

first algorithm that outperform the second one. In the literature, it is con-
sidered that when Alg is above 0.71 that differences between the algorithms
are large. Given that these significance tests can only be performed on two
algorithms at a time, and to avoid the combinatorial explosion when reporting
the results in our manuscript, we only report the results for GeNePi against
the other best algorithm.
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5.5 Tuning the steps of GeNePi

Each of the three steps composing GeNePi has several parameters that need
to be tuned, and globally we need to decide how many iterations or how much
time we allocate to each of them to make the best use of each. Note that our
tuning has been done on one instance (a_1.5), as tuning is computationally
expensive and we think the conclusions can be extended to the process in
general.
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Fig. 3 Average hypervolume obtained with Ge over 10 runs on instance a_1_5 using different
values for the parameter «.

The first step of GeNePi is Ge (based on GRASP), which has only one
value to tune: ¢, the factor leading to more randomised greedy search (bigger
a) or local search (smaller o). We conducted a thorough evaluation of the
impact of different values of « from 0.05 to 0.95 (repeated 10 times for each
value).

Figure 3 shows the average hypervolume obtained using Ge over 10 runs on
instance a_1_5 when setting the parameter o to different values ranging from
0.05 to 0.95. We see that low values of « lead to a bad hypervolume and that
the hypervolume increases until o = 0.6 before decreasing slightly. Therefore,
the best value of « seems to be 0.6 regardless of the number of iterations.
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Fig. 4 Average hypervolume obtained with GeNe over 10 runs on instance a_1_5 by setting
a to 0.6, size of the population to 50 and the number of iterations to 100, while varying
both P. and Pp,.
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For Ne (i.e., NSGA-II), we combined 9 possible values {0.1,0.2,...,0.9}
for P. and P,,, obtaining 81 different variations of the parameters (we again
run 10 times each combination).

Figure 4 shows the average hypervolume obtained using GeNe over 10 runs
on instance a_1_5 when setting a to 0.6, size of the population to 50 and the
number of iterations to 100, while varying both P, and P,, within the interval
[0.05, 0.95]. Since results with P, < 0.5 and P. > 0.8 are not good and for
readability, we only show the evolution of the hypervolume for 0.5 < P, < 0.8.

We realise that P. (the probability of crossover) values between 0.6 and
0.7 give better results, while the impact of P,, (the probability of mutation)
seems less important between 0.1 and 0.3. However, 0.2 gives slightly better
results. We then decided to use P. = 0.6 and P,, = 0.2.

Pi has only one parameter that we can tune here: the number of zones
(boxes) that it can explore. This number of zones has an impact on the quality
of the Pareto frontier, and hence on the hypervolume. A small number of zones
means less neighbourhood probing, but also less redundancy and execution
time, while more zones allow analysing more neighbourhoods (and to find
more solutions) but there is a cost in redundancy and execution time. After
performing a limited parameter sweep, we decided to use 10 zones to search for
potential local non-dominated solutions as this value seems to be a good trade-
off between finding more non-dominated solutions and keeping the execution
time low.

Table 2 summarises the tuning parameters for each step of GeNePi that
we define to provide decision-makers with a set of good solutions, covering the
solutions space, in a reasonable time.

Ge (1°! step - GRASP) | Ne (277 step - NSGA-II) Pi (377 step - PLS)
«a 0.6 Probability of crossover | 0.6 | # zones (# boxes) | 10
|A] 4 Probability of mutation | 0.2 # iterations 1
# iterations | 100 Size of population 50

# iterations 100

Table 2 Parameters for the different steps of GeNePi after a tuning study.

6 Evaluation of GeNePi against other heuristics

In this section we compare our solution, GeNePi, against other heuristics (see
Section 5.3) in terms of quality (hypervolume) and quantity of solutions.
Table 3 summarises our evaluation, for all instances, all algorithms and
both metrics. We also put in bold the best value for each instance and each
metric. Note that all comparisons between GeNePi and the other best algo-
rithm on every instance and metric have an adjusted Bonferroni MWU value
less than 5% and an Alg score of 1. At first glance, we see that GeNePi out-
performs other algorithms in both number of solutions and hypervolume.
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First Fit family algorithms (i.e., RF, FF and BB) only work on less con-
strained problems as they tend to reassign many processes to machines differ-
ent from their initial ones—which is likely to generate constraint violations.

The same behaviour is observed for GRASP, which tends to reassign several
processes. GRASP generates a lot of solutions, but most of them end up being
infeasible and violating one or several constraints. Ge, the first step of GeNePi
gets a good hypervolume but not an outstanding number of solutions. This
was expected as it is only an improvement of GRASP which itself suffers from
a lack of solutions. Results for PLS are contrasted as they can be good in
terms of quantity (better than Ge at times) but are poor in terms of quality.

GrNe, being dependent on the quality of the initial population, performs
badly as genetic algorithms require a good initial population to perform well.
GeNe takes advantage of the improvement made to GRASP by Ge to find
‘good’ and diverse solutions as an initial population. CBLNS finds new non-
dominated reassignment on all instances. However, their overall hypervolume
is at the same level as Ge on average. GeNePi is by far the best algorithm, and
we explain it by the composition of its elements: Ge (i.e., modified GRASP)
finds a large number of solutions in multiple directions of the search space,
allowing Ne (i.e., NSGA-II) to operate properly and to find new solutions that
balance all the objectives, while PLS, the last step, increases the number of
solutions around the previously found ones.

Instance | Metric | Initial | RF | FF | BB | GRASP Ge PLS | GrNe | GeNe | CBLNS | GeNePi
all #sol 1 4 10 87 20 42 10 14 106 56 224
T hyp elb 3.34 2.60 | 2.95 | 3.73 2.73 3.60 2.40 2.80 3.91 3.02 3.98
12 #sol T - - - - 26 2 - 7} 36 182
o hyp el6 7.49 8.47 7.49 8.92 8.25 9.22
al3 #sol 1 19 2 27 29 132
B hyp el6 4.17 4.27 4.17 4.30 4.25 4.32
4 #sol T - 1 - 0 2 - 75 58 136
T hyp el6 9.72 11.10 | 9.72 12.10 11.00 12.17
als #sol 1 4 10 2 14 49 32 16 112 15 282
T hyp el8 2.42 2.51 | 2.51 | 2.45 2.59 2.74 2.52 2.57 2.92 2.69 3.15
Aol #sol 1 33 41 _ 69 57 4 71 152 35 231
T hyp €19 4.57 4.86 | 4.95 5.41 5.43 4.61 5.46 5.83 5.06 5.93
2429 #sol 1 22 2 41 8 197
B hyp 20 1.33 1.55 1.33 1.68 1.51 1.72
o3 #sol 1 - - - - 30 | 67 - 57 21 202
T hyp el8 2.02 2.36 2.04 2.59 2.31 2.66
a24 #sol 1 28 2 80 26 253
T hyp el8 6.42 7.62 6.42 8.68 7.09 9.07
os #sol T - - - - 28 2 - 76 14 220
T hyp el8 9.91 10.30 | 9.91 10.80 10.29 10.90
b #sol 1 27 39 58 43 242
hyp 20 8.20 8.34 8.34 8.50 8.38 8.53
o #sol 1 - - - - 23 2 - 93 7 300
hype 21 1.43 1.48 1.43 1.51 1.46 1.53
b3 #sol 1 20 108 43 23 162
B hyp e21 6.25 6.27 6.27 6.298 6.28 6.301
o #sol T - - - - 22 3 - 31 2 118
B hyp e21 3.65 3.67 3.67 3.69 3.67 3.70

Table 3 Summary of average over 10 runs of number of solutions found (#sol) and
hypervolume.10* (hyp) for the various algorithms and each ROADEF instance we use. For
both metrics, the higher the better. We put in bold the best values for each instance. Note
that all the comparisons between GeNePi and the other best algorithm have an adjusted
Bonferroni MWU value less than 5% and an Alg score of 1. (‘- indicates that the algorithm
does not improve on the initial assignment)
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Table 4 summarises the improvement of GeNePi in comparison to the sec-
ond best algorithm on both hypervolume and number of non-dominated so-
lutions. We show these results with the hybrid methods (comparison done
against all algorithms including those combining more than one technique,
i.e., GrNe, GeNe and CBLNS) and without the hybrid methods (comparison
done only against algorithms composed of one technique, i.e., RF, FF, BB,
GRASP, GE and PLS).

Table 4 shows that GeNePi significantly outperforms all non-hybrid algo-
rithms with an increase of nearly 400% in non-dominated solutions and of more
than 100% in hypervolume on average. It also shows that GeNePi achieves at
least an improvement of 50% in terms of number of non-dominated solutions
and at least more than 49% in terms of hypervolume against these same non-
hybrid algorithms.

Table 4 shows that GeNeP1i also outperforms hybrid metaheuristics on ev-
ery single instance, both quantitatively (more than 108% non-dominated so-
lutions on average) and qualitatively (more than 15% increase in hypervolume
on average).

% Improvement of GeNePi against 2”? best algorithm
# Solutions Hypervolume
w/o hybrid | w hybrid | w/o hybrid w hybrid

a 1.1 157.47 111.32 63.15 11.90
a_l2 600.00 313.64 76.91 21.05
a_1.3 594.74 355.17 49.46 15.26
al4 240.00 81.33 77.80 2.95
a_l5 475.51 151.79 129.22 46.25
a 21 234.78 51.97 57.91 8.28
a_2.2 795.45 380.49 78.39 11.53
a2.3 201.49 201.49 87.04 12.18
a2.4 803.57 216.25 120.90 17.26
a2.5 685.71 189.47 155.54 11.29
b_1 520.51 317.24 139.64 10.13
b_2 1,204.35 222.58 91.28 23.59
b_3 50.00 50.00 139.64 7.00
b_4 436.36 280.65 150.00 25.00
Average 400.00 108.81 101.18 15.98

Table 4 Summary of the improvement (in per cent) obtained using GeNePi on both num-
ber of non-dominated solutions and hypervolume when applied on the different ROADEF
instances. The table includes results with (w) and without (w/o) taking into account hybrid
algorithms.

One of the challenges here is that the execution time is limited: even if the
reassignment is done on a monthly or a quarterly basis, as it often happens,
the decision process is complex and decision-makers cannot wait more than
a few hours or days: they verify and modify the solutions to suit their needs
before making any decision.

Table 5 shows the average execution time over 10 runs of the studied al-
gorithms on the different instances to obtain the aforementioned results (i.e.,
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Instance a_l1 a_1l.2 a_1.3 ald4 | alb
Time (s) 2 3,106 441 309 332
Instance a21 a2.2 a2.3 a24 | az2b
Time (s) 3,905 600 695 342 347
Instance b_1 b_2 b_3 b_4
Time (s) | 14,991 | 10,028 | 39,596 | 63,535

Table 5 Average execution time (s) of GeNeP1i over 10 runs and other evaluated algorithms
on the different instances.

shown in Table 3). We notice that GeNePi works in a short time for the easy
and medium instances, and in a reasonable time for the bigger ones. The 17
hours of running GeNeP1i for the biggest instance we consider (b_4) are totally
justified if this can save money, increase the reliability and do not put the data
centre at risk by performing too many migrations. Especially as GeNePi can
give 118 solutions for this instance, i.e., 118 options for the operators to make
the most informed decision.

To give the reader a sense of what happens during the optimisation of
the different algorithms, we plot the hypervolume improvement curve for the
different instances and the different algorithms. Each point corresponds to one
or several new non-dominated solutions found (with the timestamp of this new
solution in the x-axis and the new hypervolume of the solution set in y-axis).
We especially want to see here the relative impacts of the 3 phases of GeNePi.

Figure 5 shows the average hypervolume improvement curves of the differ-
ent algorithms on the different instances.

We see from Figure 5 that algorithms from the First Fit family are only
making some improvement for a limited number of instances.

GRASP has a somewhat similar behaviour, but achieves a better improve-
ment when it can make any. PLS finds many solutions, but they are somehow
local and thus have a marginal impact on the hypervolume in most instances.
Ge brings a very good improvement at the beginning (in the first third of the
execution time), but finds fewer solutions for the last 2 thirds of its execution
time.

GrNe is penalised by the poor initial population obtained from the GRASP
step, thus taking a large time to reach a significant hypervolume. CBLNS shows
a slow but steady improvement of the hypervolume in the first half of the op-
timisation, but we notice a quasi-stagnation after that due to the optimisation
in one direction of the search space. Algorithms which have the component
Ge (i.e., GeNe and GeNePi) show a good improvement in hypervolume at
the beginning. However, they cope with the lack of information between the
different steps, by substituting Ge with a genetic algorithm (i.e., NSGA-II),
which shows huge improvements in hypervolume in a short amount of time.
However, in the same way as Ge, GeNe also plateau in most instances, which
makes sense to have a wisely used local search as a third component (such as
in GeNePi).
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7 Evaluation of GeNePi against an Exact Resolution

In this section we compare the performance of GeNePi against an exact reso-
lution algorithm.

The aim of the multi-objective resolution is to find optimal non-dominated
solutions (Pareto optimal), which are solutions that cannot be strictly dom-
inated by others. There exist three different definitions of Pareto optimality
(i.e., Pareto optimal, Weakly Pareto Optimal, and Properly Pareto Optimal).
These three types of Pareto optimality have been defined by
(2004).

Based on the aforementioned definitions, the optimal non-dominated set
can be either (i) maximal: all the respective solutions of every image (codomain,
or the objective values for the given placement) in the objective research space,
(ii) minimal: one solution for each image, or (iii) supported: only the solutions
that have their image in the convex hull of the objective search space.

( ) showed on a knapsack problem that the number of
supported solutions grows linearly with the size of the problem, whereas the
maximal non-dominate set grows exponentially. Furthermore, finding multiple
solutions with the same objectives values might be interesting from an engi-
neering point of view, but not ideal for comparison purposes (the quality of the
Pareto front is not improved when finding multiple non-dominated solutions
with the same objective values). Therefore, we chose to use the most common
definition of Pareto optimality (i.e., Pareto optimal) and seek for the Minimal
Optimal Pareto Front.

Several methods exist in the literature to find the minimal optimal Pareto
front. In this paper we chose to compare our algorithm against the e-Constraints
method ( , ). In addition to finding the entire Pareto front (not
only solutions in the convex hull), the e-Constraints method does not need to
aggregate the objectives. It keeps the objectives of different types and scales
independent throughout the resolution.

7.1 Description of the e-Constraints Method

e-Constraints method is based on the transformation of multi-objective prob-

lem into several mono-objective ones, by considering only one of the objectives

and transforming the others as constraints bounded by a vector of values £.
Let assume the following multi-objective problem:

min  (fi1(x), fo(x), f3(x))

st. zeX.

9)

where f;, i € {1,2,3}, are three objective functions to be minimised, and
X is the set of feasible solutions represented in a form of a vector of decisions
x.

After converting the model (9) into the following model:
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min  f1(z)

s.t. fQ(LL') S €9
fo(a@) < es 10
reX.

e-Constraints method solves iteratively different instances of (9) using a suc-
cession of & = {e3, €3} vectors, which probe the entire Pareto optimal front.

7.2 Implementation of our Problem with e-Constraints

We have implemented the e-Constraints method on our problem considering
the objectives mentioned in Section 3 (i.e., Reliability Cost, Migration Cost
and Electricity Cost). The nature of the reliability and the migration costs (i.e.,
integer values), makes it easier to set an adequate e for each of them (setting it
to the last value of the objective minus one). However the electricity cost is a
real value, which makes finding a suitable € impossible without taking a risk of
either not finding all the non-dominated solutions (if € is set to be too large) or
having computational rounding errors (if € is set to be too small). That is why
we choose to always keep the electricity cost as the main optimised objective,
while generating constraints from the other objectives with variable e values.

7.3 CPLEX Solver

In our implementation of the e-Constraints method, we exploit the linear as-
pect of our problem while solving iterative mono-objective problems. We use
one of the best MILP solvers on the market: IBM ILOG CPLEX. In addition
to its performance in comparison to other MILP solvers, CPLEX has the ad-
vantage of solving problems in a parallel fashion. Thus, fully exploiting the
execution environment (i.e., one node of a computing cluster with 24 cores
2.0GHz Intel Ivy Bridge CPU and 128GB of RAM).

7.4 Results Obtained Using e-Constraints

We run e-Constraints on all instances used in the previous section, for a max-
imum of 30 days, and we extracted performance counters every 10 days. We
notice from Table 6 that we only get optimal/complete Pareto front for four
instances out of 14 during the 30 days (i.e., a_1.1, a_1.5, a 2.1, b_1).

Table 6 shows the results in terms of hypervolume and number of non-
dominated solutions obtained when running the e-Constraints method on the
different instances. The hypervolume is measured every 10 days for a duration
of 30 days. We see that results obtained after 10 days of execution time for
both hypervolume and number of non-dominated solutions are very high in
comparison to the initial assignment/placement. However, this improvement
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depends on the instance we are trying to solve as the required execution time
for solving the iterative mono-objective problems differs from an instance to
another. The difference in execution time per mono-objective problem can be
noticed based on the number of new solutions found by e-Constraints on the
different instances at a given timestamp. We also notice that both the quantity
of solutions and their respective quality keep increasing with the execution
time, which indicates that e-Constraints finds more solutions on the Pareto
front. However, we see that this increase in hypervolume is not linear. This
is due to the fact that the iterative mono-objective problems take more time
to be solved optimally using CPLEX. It is also due to the fact that they are
located close to each other, making the increase in hypervolume marginal.

Partial
Total

Execution Time (days)
= [l [3e) [\*) w w
o w o (7, ] o [V,]

w

o

3 <4
Instance

Fig. 6 Execution time in number of days of the e-Constraints method on the ROADEF
instances.

Table 7 shows a comparison of GeNePi and e-Constraints: the numbers
say how much (percentage) of the optimal solution found (within the 30 days)
GeNePi performs. A number lower than 100 means that GeNePi does not
reach the value of the exact resolution, while a number bigger than 100 means
GeNePi outperforms the exact resolution. Table 7 shows that GeNePi out-
performs e-Constraints in terms of number of non-dominated solutions with
respectively more than 364% (10 days), 241% (20 days) and 188% (30 days).
However if we take a look at the different instances in more details, we ob-
serve that GeNePi does not always outperform e-Constraints (e.g., GeNePi
does poorly on a_2_2 and a_2_3). It also shows that GeNePi gets a good hyper-
volume compared to e-Constraints reaching more than 70% of e-Constraints’
hypervolume after 10 days. Moreover, GeNePi’s good performance w.r.t. e-
Constraints does not decrease over time: GeNePi still gets 54.85% after 20
days and 51.54% after 30 days of running e-Constraints.

Table 8 summarises the execution time of both GeNePi and e-Constraints.
It also includes the average execution time per solution found during the e-
Constraints method, when run for 10, 20, and 30 days. We see that GeNePi is
1,000 times faster on average than e-Constraints, without taking into account
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s . e-Constraints
Initial | GeNePi 10 days | 20 days | 30 days
all #sol 1 224 1280 B
T hyp (el5) 3.34 3.98 9.55
al2 #sol 1 182 37 54 78
T hyp (el6) 7.49 9.22 9.99 10.06 10.12
al.3 #sol 1 132 83 152 212
T hyp (el6) 4.17 4.32 4.75 4.79 4.8
ald #sol 1 136 80 149 223
T hyp (el6) 9.72 12.17 12.59 12.79 12.89
allb #sol 1 282 56 7
hyp (el8) 2.42 3.15 4.12
221 #sol 1 231 109 B
T hyp (el9) 4.57 5.93 6.25
a.2.2 #sol 1 197 2,994 4,005 6,603
T hyp (e20) 1.33 1.72 2.77 2.81 2.88
a.2.3 #sol 1 202 2,890 3,421 4,173
T hyp (el8) 2.02 2.66 2.93 2.94 2.95
a2.4 #sol 1 253 615 1,034 1,440
- hyp (el8) 6.42 9.07 11.43 11.82 12.02
a2.5 #sol 1 220 1,355 2,478 3,516
- hyp (el8) 9.91 10.9 12.68 13.02 13.24
b1 #sol 1 242 272 B
- hyp (e20) 8.20 8.53 10.15
b.2 #sol 1 300 31 61 89
- hyp (e21) 1.43 1.53 1.52 1.52 1.53
b.3 #sol 1 162 246 478 714
- hyp (e21) 6.25 6.3 7.04 7.05 7.06
b 4 #sol 1 118 5 8 11
- hyp (e21) 3.65 3.7 3.66 3.69 3.69

Table 6 Number of non-dominated solutions (#sol) and hypervolume.10? (hyp) for GeNePi
and e-Constraints on the different instances. (- indicates that the execution of e-Constraints
finished)

instance a_1_1, and almost 23,000 times faster on average when considering all
the instances. It also shows that despite having a big variation in the execution
time ratio, GeNePi is always faster than e-Constraints with at least one order
of magnitude. It is even faster than a single solution found by e-Constraints
in 9 instances out of 14, and always within the same order of magnitude in
the rest of the instances. This shows that GeNePi is getting not only good
results, but also with an execution time that is either faster than or in the
same order of magnitude as solving one mono-objective problem (i.e., only
one solution of e-Constraints) with one of the best commercial MILP solvers
(i.e., CPLEX) while running on a cluster node. We also notice from Table
8 that e-Constraints average execution time per solution increases over time.
This consolidates the aforementioned result that the iterative mono-objective
problems get harder to solve over time.
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Performance of GeNePi: % of the results of e-Constraints
# Solutions Hypervolume

10 days | 20 days | 30 days | 10 days | 20 days | 30 days
a_1_1 17.50 17.50 17.50 22.49 22.49 22.49
a1l2 491.89 337.04 233.33 69.10 67.42 65.67
a13 159.04 86.84 62.26 26.00 24.31 23.76
al4 170.00 91.28 60.99 85.48 79.90 77.19
a_1l.5 503.57 503.57 503.57 42.87 42.87 42.87
a_2_1 211.93 211.93 211.93 80.71 80.71 80.71
a_2.2 6.58 4.92 2.98 27.04 26.33 25.23
a23 6.99 5.90 4.84 70.50 69.21 68.65
a24 41.14 24.47 17.57 52.95 49.09 47.29
a25 16.24 8.88 6.26 34.29 30.57 28.51
b_1 88.97 88.97 88.97 16.93 16.93 16.93
b_2 967.74 491.80 337.08 112.41 107.57 101.55
b_3 65.85 33.89 22.69 6.37 6.24 6.19
b_4 2,360.00 | 1,475.00 | 1,072.73 340.64 144.18 114.51
Average 364.82 241.57 188.76 70.56 54.85 51.54

Table 7 Comparison of GeNePi and e-Constraints, the latter running for 10, 20 and 30 days
for both number of non-dominated solutions and hypervolume on the different instances. A
number lower than 100 means GeNePi is outperformed by e-Constraints.

e-Constraints

GeNePi 10 days 20 days 30 days

Time Time [ rme Time me Time e
al.1 2 483,747 378 483,747 378 483,747 378
ai12 | 3,106 | 864,000 | 23,351 | 1,728,000 | 32,000 | 2,592,000 | 33,231
ai3 241 864,000 | 10,410 | 1,728,000 | 11,368 | 2,592,000 | 12,226
aid 300 864,000 | 10,800 | 1,728,000 | 11,597 | 2,592,000 | 11,623
alb 332 280,749 | 5,013 280,749 5013 280,749 5,013
a21 | 3005 | 267,638 | 2,455 267,638 2,455 267,638 2,455
222 600 864,000 289 1,728,000 431 2,592,000 393
a2.3 695 864000 299 1,728,000 505 2,592,000 621
a24 312 864,000 | 1,405 | 1,728,000 | 1,671 | 2,592,000 | 1,800
a25 347 864,000 638 1,728,000 697 2,592,000 737
b1 14,991 | 365,675 | 1,344 365,675 1,344 365,675 1,344
b2 10,028 | 864,000 | 27,871 | 1,728,000 | 28,328 | 2,592,000 | 29,124
b3 39,596 | 864,000 | 3,512 | 1,728,000 | 3,615 | 2,592,000 | 3,630
b4 63,535 | 864,000 | 172,800 | 1,728,000 | 216,000 | 2,592,000 | 235,636

Table 8 Comparison of e-Constraints execution time (s) and average time per solution (s)
when run for different periods on the different ROADEF instances, against GeNePi execution

time (s).

8 Conclusion

Reassigning processes to servers automatically is complex (a lot of dimensions
and constraints), large-scale for most of the real instances (data centres are

usually big computing facilities) and needs to consider different objectives.

Multi-objective approaches are good when the set of possible solutions
is large and extracting the ‘best solution’ is difficult. In this case, the system
needs to be assisted by decision-makers who can evaluate the different solutions
with respect to their value in the different dimensions of the problem. Here,
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we defined the machine reassignment in the three-dimensional space defined
by: (i) reliability of the assignment, (ii) migration cost of the reassignment,
and (iii) energy consumption of the assignment.

In this paper we define the multi-objective machine reassignment problem
and compare different algorithms: classical heuristics, metaheuristics and hy-
brid metaheuristics. In particular GeNePi, a hybrid metaheuristic based on
three successive optimisation steps: Ge, a variant of the constructive phase
of GRASP, which aims at finding an initial population with solutions rep-
resenting every objective; Ne, based on a genetic algorithm called NSGA-IT
that mixes solutions of the initial population and tries to find new solutions
(more diverse ones); and Pi a local search that looks for more solutions in the
neighbourhood of those that GeNePi has already found.

We showed on a large experimental validation that GeNePi outperforms
other non-hybrid algorithms: it finds 4 times more non-dominated solutions
that are scattered over more of the search space (hypervolume is more than
100% better) — which is desirable as we want to offer decision-makers a large
variety of different solutions. GeNePi also outperforms other hybrid meta-
heuristics (it finds more than double the amount of non-dominated solutions
and achieves a better hypervolume with over 15% on average). A comparison
of GeNePi against one of the well-known exact methods for solving multi-
objective problems (i.e., e-Constraints) shows that GeNePi gets more than
188% non-dominated solutions and a hypervolume of more than 21% on aver-
age than e-Constraints when it is run for 30 days. At the same time, GeNePi
succeeds in keeping its execution time relatively low. GeNePi is tens of thou-
sands of times faster on average than e-Constraints, and even faster or on
the same order of magnitude as one single mono-objective optimisation of the
same problem.

There are three directions that we would like to explore further in the
future: (i) the sensitivity of GeNePi to the parameter tuning, (ii) electricity
consumption which will need to incorporate more parameters (such as cooling
of data centres) and (iii) Service Level Agreements.
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