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Abstract This Chapter examines cash dividends and share repurchases in
the United States during the period 1990 to 2008. In the extant literature
a variety of classical statistical methodologies have been adopted, foremost
among these is the method of panel regression modelling. Instead,in this
Chapter, we have informed our model speci�cations and our coe�cient esti-
mates using a genetic program. Our model captures e�ects from awide range
of pertinent proxy variables related to the agency cost-based lifecycle the-
ory, the signalling theory and the catering theory of corporate payout policy
determination. In line with the extant literature, our �ndings indicat e the pre-
dominant importance of the agency-cost based life cycle theory. The adopted
evolutionary algorithm approach also provides important new insights con-
cerning the inuence of �rm size, the concentration of �rm ownership and
cash ow uncertainty with respect to corporate payout policy determination
in the United States.
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1 Introduction

In this Chapter we examine United States corporate payout policy determi-
nation using a genetic programming methodology, during the period 1990 to
2008. The term corporate payout policy relates to the disbursing of cash, by
a corporation, to shareholders by way of cash dividends and/or share repur-
chases. Clearly, alongside investment and capital structure optimisation this
is a chief responsibility of an organisation's �nancial o�cer.

The adopted Genetic Programming [1] methodology is also known as a
symbolic regression methodology. It identi�es the functional form as well as
the optimal coe�cients which optimises a program-performance criterion.
As a result, this class of model estimation methodology is complementary
to the random e�ects panel regression methodology, typically adopted in
the conventional mainstream literature regarding corporate payout policy
determination [2]. In addition, it is worthwhile emphasizing that while genetic
programming techniques have been adopted to specify trading rules in foreign
exchange markets [3, 4] and more broadly in �nancial modelling [5], there is
no contribution to the extant literature which avails of Genetic Prog ramming
techniques to evaluate the determination of corporate payout policy.

By way of a foundation, to the topic of corporate payout policy determina-
tion, the Miller-Modigliani irrelevance proposition [6] indicates that, w ithin
a stylised setting, once corporate investment policy is optimal (i.e. once the
Fisherian Net Present Value rule is satis�ed), corporate payout policy has
no implication for the value of the �rm. In this setting, corporate pa yout
policy merely involves di�erent methods of distributing free cash ows - by
way of cash dividends or share repurchases - and hence has no implication for
the value arising from investment decisions. Notwithstanding, DeAngelo, and
DeAngelo [7] conclude that the distribution/retention decision with r egard
to free cash ows, even assuming the stylised setting outlined in theMiller-
Modigliani proposition [6], has `�rst-order value consequences'. In brief, this
follows from the fact that the feasible set of distribution/retentio n decisions,
in the Miller-Modigliani stylised setting, is exactly the optimal set, i.e. full
payout. Evidently, this precludes a payout policy decision. To mitigate for this
oversight, DeAngelo and DeAngelo [7] advocate an extension of theclassic
Fisherian Net Present Value `rule' with regard to capital budgeting decisions,
to include the distribution of the full present value of free cash ows during
the life of the �rm. Essentially, it is now evident that there is consider able
scope for value creation and destruction, by means of corporatepayout pol-
icy. As a result, the determination of corporate payout policy merits careful
attention.

In relaxing the con�guration of assumptions underpinning the Miller-
Modigliani proposition extended to include the assumption of full payout,
several theories, which are mutually inclusive in principle, arise concerning
the determination of the timing and form of optimal corporate payout policy.
The open question appears to hinge on the relative importance of these the-
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ories with regard to explaining the determination of corporate payout policy.
In particular, these theories comprise:�rst , the so-called agency cost-based
life cycle theory (see [8, 9, 7, 10] which implies that the decision to distribute
or retain free cash ows, a trade-o� between the prospect of credit constraints
and excessive �nancial slack, varies according to the evolution of the phases
of the �rm's life cycle i.e. as typi�ed by a �rm's size, pro�tability, the nature
of its capital structure and the growth opportunities of the �rm. The recon-
ciling of Jensen's agency cost-based theory [11, 12] with the life-cycle theory
appears particularly bene�cial. Indeed, the agency requirement of persuasion,
on the part of the principal, for the agent to distribute free cash  ows may
be requisite such that the corporation disgorges cash.Second, the so-called
signaling theory [13, 14, 15] which emphasises the importance of utilising cor-
porate payout policy, to circumvent the information asymmetry wh ich may
arise between the management of the �rm, who enjoy insider information, and
the �rm's investors. Third , the catering theory [16, 17] of corporate payout
policy determination, which highlights the importance of corporate payout
policy to satisfy the preferences of various, possibly time-varying, heteroge-
nous payout clienteles. While there has been considerable evidence gathered
to the contrary, with respect to the general increase in the levelof dividends
and a general tendency to increase dividends [18, 10], it cannot be rejected
that this latter theory may contribute, albeit, perhaps, in a secondary man-
ner, to the understanding in the extant literature of corporate payout policy
determination.

Our �ndings may be summarised adopting three main sets of key points.
First, we show the best evolved symbolic regression models with respect to
the root mean square error criterion, these optimal speci�cations are evi-
dently di�erent to the conventional random e�ects panel regression model
speci�cations. According to this approach, the theory which best explicates
cash dividend payouts and share repurchases is the life-cycle theory of cor-
porate payout policy determination, and it appears that a hybrid hy pothesis
with respect to both the agency cost-based theory and the life-cyle theory
is of particular interest. Second, adopting the Pearson correlation coe�cient,
scatter plots and regressor containment we show the nature of the relation
between individual regressors and identi�ed optimal model speci�cations and
expression-trees of the best-of-run individuals. Speci�cally, in linewith the
�ndings in the extant literature as well as the various theories of corporate
payout, we document a positive relation between both the size of the �rm
and the earnings to assets ratio and cash dividend payouts and share repur-
chases. In the same vein, we document a compelling negative relationbetween
the concentration of �rm ownership and corporate payout and a somewhat
weaker relation between cash ow uncertainty and corporate payout. These
con�rmations of earlier published �ndings are important in light of the rela-
tively exible model speci�cation adopted in this Chapter. Third, we a dopt
a speci�cation which comprises all the explanatory proxy variables ina sin-
gle model speci�cation. Consistent with theory, this auxiliary extended model
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convincingly out-performs the individual models with regard to the root mean
squared error criterion. Once again the aformentioned relations,with regard
to the direction of e�ects, are evident in the data. Taken together, our �nd-
ings support the agency cost-based life-cycle theory of corporate payout pol-
icy determination despite the adoption of a distinctive model speci�cation
modelling methodology.

The Chapter is organized as follows. In the second section, we present
the sample of data examined, we outline the proxy variables adoptedand
their hypothesised relations with respect to the theories of corporate payout
policy determination assessed. In the third section, we describe the adopted
genetic programming methodology and in the fourth section we examine our
�ndings. We o�er some concluding remarks in the �nal section.

2 Literature Review

Published �ndings with respect to United States corporate payout policy can
be summarised by adopting �ve key points. First , as documented by Fama
and French [8], due to equally important factors: changing �rm characteristics
- low pro�tability, high growth opportunities and relatively intangible � xed
assets - as well as a declining propensity to pay, the fraction of US industrial
�rms paying cash dividends has dropped considerably from 66.5% in 1978
to 20.8% in 1999.Second, following a Securities and Exchange Commisions
Ruling in 1982 legalising open market repurchases by corporate manage-
ment, this tax favoured and exible method, relative to cash dividends, of
disbursing cash to shareholders has become of �rst order importance. Indeed,
Skinner [19] indicates that share repurchases are now the preferred method
for distributing cash to investors in the United States. Third the total value
(nominal and real) of cash dividends and share repurchases has risen almost
incessantly for several decades. In fact, Weston and Siu [20] show that the
US corporate sector's cash dividend payout ratio has increased from 40% in
1971 to around 60% in 1990 and to 81% in 2001. Once share repurchases are
included this payout ratio reaches 116 % in 2001.

As a fourth key point, DeAngelo, DeAngelo and Skinner [21] show that
there has been increasing levels of concentration of dividends and earnings
since the 1980s - nowadays a mere 25 �rms account for over 50% ofindustrial
earnings and dividends in the United States. In addition it is indicated that
while there has been a decline in the number of industrial payers since1978,
the number of �nancial and utility payers has increased, as has thetotal value
of their payout. These �ndings show how a declining tendency to disburse
cash dividends, an increasing tendency of cash dividend payers to repurchase
shares and a rising total value of real payout are internally consistent. Fifth,
DeAngelo, DeAngelo and Stulz [10] show that a �rm at an early phase of
its �nancial life-cycle with a corresponding low level of retained earnings
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to total contributed capital in its equity capitalization will tend not t o pay
dividends or will pay very little by way of a dividend. In the same vein,
mature �rms are inclined to pay dividends and to pay relatively more. In
addition, DeAngelo, DeAngelo and Stulz emphasise the agency costswhich
may arise if more mature �rms were not to increasingly disburse cashto
shareholders with the decline of their investment opportunity sets in line
with the maturation of their �nancial life-cycles. With this backdrop in mind
with regard to corporate payout policy in the United States we turn to the
determination of corporate payout policy in the United States.

2.1 Sample Data and Proxy Explanatory Valriables

Our data is sourced in theWorldscope database as detailed in Table 1. The
sample extends from 1990 through to 2008 inclusive. The data is tailored
such that it excludes �rms in the �nancial and utilities industries, as w ell as
American Depositary Receipts and foreign �rms. The sample also excludes
�rms whose dividends are greater than their total sales, �rms whose divi-
dend, net income or sales �gures are omitted and �rms with negativebook
value of equity, market to book ratio, sales, dividends or share repurchases.
In addition, we search the databases for active as well as dead andsuspended
listings in order to avoid survivor bias. Otherwise, the sample comprises of
every �rm headquartered in United States and listed on New York Stock
Exchange (NYSE), for which there is available our set of proxy explanatory
variables. These �lters yield 1665 industrial (and transport) �rms . Within
this group, 960 �rms disclose their cash dividend policy in 1990 of which
588 are cash dividend payers. This �gure is 1059 in 2008 with a negligible
increase in cash dividend payers to 596. Turning to repurchase observations,
there are 958 �rms which disclose their share repurchases policy in 1990 with
399 �rms are observed to conduct share repurchases. This �gure grows to
1039 �rms disclosing their policy in 2008 with 670 �rms conducting share
repurchases. The total sample includes 14,507 �rm-year observations on cash
dividends of which 7,846 are cash dividend payers and 6,661 are �rms that
do not pay cash dividends. There are 14,405 �rm-year observations on share
repurchases of which 7,571 �rm-year observations are for repurchasers and
6,834 for non-repurchasers. Our study examines the United States (primar-
ily NYSE) circumstances, separately investigatingcash dividend payingand
share repurchasing�rms, using a real US Dollar numeraire (1990 prices) in
each instance.

Our principal payout variables are cash dividends (DIV) and share re-
purchases (SR). Share repurchases correspond to actual gross amounts. We
arrange our principal proxy explanatory variables into groups according to
their advocated theoretical linkages with respect to explicating the agency
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Table 1 Description of the variables used in the random e�ect s panel regression
models.

Regressands Description

Cash Dividends The logarithm of the total real value of commo n cash dividends distributed by the
(DIV) �rm, in United States dollar 1990 prices. The logistic random e�ects panel regression models

are speci�ed to include a dummy variable =1 if cash dividends are paid, otherwise zero.

Share Repurchases The logarithm of the total real value of op en market share repurchases undertaken by
(SR) the �rm, in United States dollar 1990 prices. The logist ic random e�ects panel regression models

are speci�ed to include a dummy variable =1, if share repurch ases occur, otherwise zero.

Regressors Description

Firm Ownership (OWN) The percentage of common stock held by t he ten largest shareholders.

Cash Holding (CASH) The sum of cash and short term investment s as a percentage of the total assets of the �rm.

Leverage Rate (LR) The sum of short-term and long-term debt a s a percentage of total assets.

R & D Exp. (RnD) Research and development expenses percentag e of the total assets of the �rm.

Retained Earnings The retained earnings as a percentage of t he market value of �rm equity.
(RETE)

Asset Growth (DAA) The relative (percentage) change in the r eal value of total assets.

Market to Book The market to book value of the �rm.
Value (MBF)

Market Value (SIZE) Percentile ranking (annual) of a �rm wit h respect to the criterion of market value.

Capital Expenses It represent the funds used to acquire �xed assets other than those associated with
(CapEx) acquisitions percentage of total assets

Stock Return (DPP) The annual percentage change in stock pri ce measured at the end of the previous year.

Earnings Ratio (EA) The �rm earnings before interest but aft er tax as a percentage of total assets.

Catering Theory A dummy variable (annual), which indicates whether the cash dividend payer (share
Proxy Variable repurchaser) has a higher median MBF than the cash dividend (share repurchaser) non payer.
(CCD) If true, dummy = 1 otherwise it's zero. A further requir ement for a year speci�c

non-zero dummy variable is a minimum of �ve observations for both payers and non-payers.

Earning Reporting The frequency (1 to 4 times) at which earni ngs are reported per annum. 4 = Annual and
Frequency (ERF) 1 = Quarterly Reporting.

Cash-Flow The standard deviation of stock returns over the m ost recent two year period
Uncertainty (VOL24)

Operating The standard deviation of the operating rate of re turn ( i.e. , operating income
Pro�tability as a percentage of total assets) during the mos t recent three year period, including the
Volatility (INCV) current �scal year.

Income Risk (SDS) The standard deviation of the net income du ring the most recent �ve year period divided
by the most recent year-speci�c total sales.

Year (YEAR) Year of Observation.

Constant (CONST) The intercept of the regression equation.



Title Suppressed Due to Excessive Length 7

cost-based theory, the catering theory, the life-cycle theory and the signaling
theory of corporate payout policy.

We assess the empirical importance of the agency cost-based theory adopt-
ing 3 proxy explanatory variables. First, following Dittmar and Mahrt -
Smith [22] and Pinkowitz et al. [23] we adopt cash and short term investments
(CASH) as a measurement of prospective agency costs. The greater these
prospective costs, the greater the expected corporate payout. In a similar
vein, following Chay and Suh [24] and LaPortaet al. [12] the more concen-
trated the ownership of the �rm (OWN), the smaller the scope for prospec-
tive agency costs. Finally, in regard to agency costs, following Black[25],
Jensen [11] and von Eije and Megginson [2], we adopt a leverage ratio (LR)
i.e the book value of debt divided by the book value of assets, to approximate
for the scope for prospective agency costs. The greater the leverage of a �rm
the smaller the scope for prospective agency costs and the smallerthe ex-
pected payo�. Alternatively, higher leverage may proxy for a �rm's maturity
which would imply a possible positive relation between �rm payout and the
leverage ratio (LR).

With regard to catering theory, we follow Baker and Wurgler [16, 17]
and specify a dummy variable (CCD) that takes the value 1 if the natural
logarithm of the median market to book value of a paying �rm is greater than
that of the median non-paying �rm, otherwise zero. The focus, with regard to
catering theory, is whether there is a payout (dividend or share repurchase)
premium e�ect and, if so, how this e�ect varies over time.

Turning now to the life-cycle theory of corporate payout policy, weadopt 4
proxy explanatory variables. First, following, DeAngelo et al. [10] we include a
proxy explanatory variable for the phase of the life cycle of the �rm, the ratio
of retained earnings to total equity (RETE) and, in the vein of, Fama and
French [8] as well as Grullon and Michaelly [26] we adopt the market value
of the �rm to reect �rm size (SIZE), another complementary indic ation
of the phase of the life cycle of the �rm. The greater the maturity of the
individual �rm whether reected in retained earnings to total equit y (RETE)
or �rm size (SIZE), the greater its expected payout. Fourth, in r espect to
the development of the �rm's set of investment opportunities, we include
in our speci�cations the change in total assets (DAA) following Fama and
French [26] and Denis and Osobov (2008). Finally, also following Fama and
French (2001) and Denis and Osobov (2008), we adopt the marketto book
ratio (MBF) to reect the set of the �rm's investment opportunitie s. The
larger the investment opportunity set, the smaller the expected payout.

To assess the empirical importance of the signaling theory of corporate
payout policy we turn to our set of 5 proxy explanatory variables. We ini-
tially follow Wood [27] and von Eije and Megginson [18] and specify an Earn-
ings Reporting Frequency (ERF) variable, corresponding to the frequency at
which earnings are reported, by a �rm, per annum. The greater the frequency,
the smaller the expected payout and the lower the incentive to payout. Fol-
lowing Lintner [28], Miller and Rock [15] and von Eije and Megginson [2],
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we also specify an explanatory variable corresponding to the Earnings Ratio
(EA). It is computed as the earnings before interest but after tax divided
by the book value of total assets. The greater the earnings ratio, the greater
the expected payout. Another variable examined, primarily in respect to the
signaling theory, is income uncertainty. Anticipated income uncertainty is
expected to negatively impact cash dividend payouts due to the expected
information content of a subsequent cash dividend decline deteriorating �rm
value as well as the tendency for external �nancing to be relativelycostly.
This latter proxy explanatory variable is operationalised in three ways: (1)
income risk (SDS) is computed following von Eije and Megginson [2] as the
standard deviation of income during the last 5-years scaled by total sales,
(2) operating pro�tability volatility (INCV) is computed following Chay and
Suh [24] as the three-year standard deviation of the operating rate of re-
turn and (3) cash-ow uncertainty (VOL24) is computed following C hay and
Suh [24] and Lintner [28] as the standard deviation of stock returns during the
most recent 3-year period. The greater the income uncertainty,the smaller
the expected payout.

In addition we adopt several further control variables. Following von Eije
and Megginson [2] we include a lagged return (DPP). There is expected to be
a negative relation between this explanatory variable and subsequent payout.
Following Fama and French [8] as well as Denis and Osobov [18], we also
include in our speci�cations a year variable (Year), with a view to assessing
secular trends over time.

3 Methodology

3.1 Genetic Programming

Genetic Programming (GP) [29, 30, 31, 32] is an automatic programming
technique that employs an Evolutionary Algorithm (EA) to search th e space
of candidate solutions, traditionally represented using expression-tree struc-
tures, for the one that optimises some sort of program-performance criterion.
The highly expressive representation capabilities of programming languages
allows GP to evolve arithmetic expressions that can take the form ofregres-
sion models. This class of GP application has been termed \Symbolic Regres-
sion", and is potentially concerned with the discovery of both the functional
form and the optimal coe�cients of a regression model. In contrast to other
statistical methods for data-driven modelling, GP-based symbolic regression
does not presuppose a functional form, i.e. polynomial, exponential, logarith-
mic, etc., thus the resulting model can be an arbitrary arithmetic expression
of regressors [1]. GP-based regression has been successfully applied to a wide
range of �nancial modelling tasks [5].
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GP adopts an Evolutionary Algorithm (EA), which is a class of stochastic
search algorithms inspired by principles of natural genetics and survival of
the �ttest. The general recipe for solving a problem with an EA is as follows.
Chose a representation space in which candidate solutions can be speci�ed;
design the �tness criteria for evaluating the quality of the solution, a parent
selection and replacement policy, and a variation mechanism for generating
o�spring from a parent or a set of parents. The rest of this section details
each of these processes in the case of GP.

In GP, programs are usually expressed using hierarchical representations
taking the form of syntax-trees, as shown in Figure 1. It is commonto evolve
programs into a constrained, and often problem-speci�c user-de�ned lan-
guage. The variables and constants in the program are leaves in thetree
(collectively named as terminal set), whilst arithmetic operators are internal
nodes (collectively named as function set). In the simplest case of symbolic
regression, the function set consists of basic arithmetic operators, while the
terminal set consists of random numerical constants and a set ofexplanatory
variables termed regressors. Figure 1 illustrates an example expression-tree
representing the arithmetic expressionx + (2 � y).

GP �nds out how well a program works by executing it, and then testing
its behaviour against a number of test cases; a process reminiscent of the
process of black-box testing in a conventional software engineering practice.
In the case of symbolic regression, the test cases consist of a setof input-
output pairs, where a number of input variables represent the regressors and
the output variable represents the regressand. Under this incarnation of pro-
gram evaluation, GP becomes an error-driven model optimisation procedure,
assigning program �tness that is based on some sort of error between the
program output value and the actual regressand value; mean squared error
being the most prominent form of error employed. Those programsthat do
well (i.e. high �tness individuals) are chosen to be varied and producenew
programs for the new generation. The primary variation operators to per-
form transitions within the space of computer programs are crossover and
mutation.

The most commonly used form of crossover is subtree crossover,depicted in
Figure 1. Given two parents, subtree crossover randomly (and independently)
selects a cross-over point (a node) in each parent tree. Then, it creates two
o�spring programs by replacing the subtree rooted at the crossover point in a
copy of the �rst parent with a copy of the subtree rooted at the crossover point
in the second parent, and vice-versa. Copies are used to avoid disrupting the
original individuals. Crossover points are not typically selected with uniform
probability. Function sets usually lead to expression-trees with an average
branching factor of at least two, so the majority of the nodes in anexpression-
tree are leaf-nodes. Consequently, the uniform selection of crossover points
leads to crossover operations frequently exchanging only very small amounts
of genetic material (i.e., small subtrees); many crossovers may in fact reduce
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(a)

(b)

(c)

Fig. 1 Genetic programming representation and variation operato rs.

to simply swapping two leaves. To counteract this tendency, inner-nodes are
randomly selected 90% of the time, while leaf-nodes 10% of the time.

The most commonly used form of mutation in GP is subtree mutation,
which randomly selects a mutation point in a tree and substitutes thesub-
tree rooted there with a randomly generated subtree. An exampleapplication
of the mutation operator is depicted in Figure 1. Another common form of
mutation is point mutation, which is roughly equivalent to the bit-ip mu ta-
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tion used in genetic algorithms. In point mutation, a random node is selected
and the primitive stored there is replaced with a di�erent random prim itive
of the same rarity taken from the primitive set. When subtree mutation is
applied, this involves the modi�cation of exactly one subtree. Point muta-
tion, on the other hand, is typically applied on a per-node basis. That is,
each node is considered in turn and, with a certain probability, it is altered
as explained above. This allows multiple nodes to be mutated independently
in one application of point mutation.

Like in any evolutionary algorithm, the initial population of GP individ-
uals is randomly generated. Two dominant methods are thefull and grow
methods, usually combined to form theramped half-and-half expression-tree
initialisation method [1]. In both the full and grow methods, the initial indi-
viduals are generated so that they do not exceed a user-speci�edmaximum
depth. The depth of a node is the number of edges that need to be traversed
to reach the node starting from the tree's root node (the depth of the tree is
the depth of its deepest leaf). Thefull method generates full tree-structures
where all the leaves are at the same depth, whereas thegrow method allows
for the creation of trees of more varied sizes and shapes.

3.2 Evolving symbolic regression programs

Our GP algorithm is a standard elitist (the best is always preserved),genera-
tional (populations are arranged in generations, not steady-state), panmictic
(no program mating restrictions) genetic algorithm with an expression-tree
representation. The algorithm uses tournament selection with a tournament
size of 7. Root mean squared error (RMSE) is employed as a �tness func-
tion. Evolution proceeds for 50 generations, and the population size is set
to 1,000 individuals. Ramped-half-and-half tree creation with a maximum
depth of 5 is used to perform a random sampling of rules during run initiali-
sation. Throughout the evolution, expression-trees are allowed to grow up to
a depth of 8. The evolutionary search employs a combination of crossover,
subtree mutation and point mutation; a probability governing the ap plication
of each set to 0:5, 0:25 and 0:25 for each operator respectively. We employed a
standard single-typed program representation; the function set is consisted of
the four basic arithmetic operators (protected division), whereas the terminal
set contains the regressors.

3.3 Model over�tting avoidance

In order to avoid model over�tting [4, 33], we employed a technique that
combines the three datasets (training, validation, testing) machine learning
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methodology, and the objective of minimising the structural complexity of
the model [34]. The two sets methodology (training and test dataset) for
learning a model using an iterative model-training technique does notpre-
vent by itself over�tting the training set. A common approach is to a dd a
third set { a validation set { which helps the learning algorithm to measure
its generalisation ability. Another common practice that has been shown to
prevent model over�tting in learning algorithms that employ symbolic model
representations is to minimise the model structural complexity. The learn-
ing technique uses a validation set to select best-of-generation individuals
that generalise well; individuals considered for candidate elitists are those
that reside in the Pareto-frontier of a two-objective population ranking of
program-size versus the root mean square error (RMSE) criterion.

The initial dataset is randomly segmented into two non-overlapping sub-
sets for training and testing with proportions of 60% and 40% respectively.
The training set is further randomly divided into two non-overlapping sub-
sets: the �tness evaluation data-set, with 67% of the training data, and the
validation data-set with the remaining 33%. The �tness measure consists of
minimising the RMSE on the �tness evaluation data-set. At each generation,
a two-objective sort is conducted in order to extract a set of non-dominated
individuals (Pareto front) with regards to the lowest �tness evalua tion data-
set RMSE, and the smallest model complexity in terms of expression-tree
size, as measured by the number of tree-nodes. The rationale behind this is
to create a selection pressure towards simpler prediction models that have
the potential to generalise better. These non-dominated individuals are then
evaluated on the validation data-set, with the best-of-generation model des-
ignated as the one with the smallest validation RMSE. The use of a Pareto-
frontier of canidate elitists reduces the number of individuals tested against
the validation set in order to avoid selecting best-of-generation programs that
are coincidentally performing well on the validation set. Additionally, such a
method allows the learning algorithm to evaluate the generalisation ability
of a wide range of accuracy/complexity tradeo�s.

During tournament selection based on the �tness evaluation data-set per-
formance, we used the model complexity as a second point of comparison in
cases of identical error rates, thus imposing a bias towards smallerprograms
though the use of lexicographic parsimony pressure. In every independent
evolutionary run, initial dataset segmentation is randomly performed.

3.4 Experimental context

We employ an evolutionary machine learning method to induce models
that best describe a regressand variable given a set of input regressor vari-
ables. Regressands are the Cash Dividends (DIV) and Share Repurchases
(SR), whereas regressors are related to four di�erent theoriesof corporate
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payout policy determination, namely, Agency theory, Life-cycle theory, and
Information-asymmetry signalling theory as well ascatering theory, for which
a dummy proxy variable is included. Our �rst aim is to discover accurate sym-
bolic regression models, given di�erent sets of regressor variablesde�ned in
each theory separately. Secondly, we are interested in determining whether
the evolutionary method will be able to learn models that are in accordance
to the conventional theories, by allowing the search algorithm to work on a
regressor-space that incorporates all of the regressor variables that are de-
�ned in the three conventional theories. This experiment has beenspecially
designed to take advantage from the inherent capability of the GP algorithm
to perform feature selection, by allowing the error-minimising search to con-
centrate of those areas of the model space that contain individuals consisting
of the most well-explanatory regressor variables. We performed 50 indepen-
dent evolutionary runs for each di�erent regressor-setup in order to account
for the stochastic nature of the adaptive search algorithm.

4 Results

Table 2 illustrates the best evolved symbolic regression models using regres-
sor variables from di�erent theories of corporate payout. The �r st column
indicates the regressand variable (either cash dividends, DIV or share repur-
chases, SR), whereas the second column indicates the regressors which we
adopt in relation to each theory of corporate payout. Resulting models have
been clustered according to the set of regressor variables de�ned in each dif-
ferent theory of corporate payout. These optimal solution models indicate
a considerable complexity with regard to model speci�cation relativeto the
variety of classical statistical models adopted in the mainstream literature,
particularly the panel regression modelling methodology. Figure 1 presents
a box-plot illustrating the distribution of best-of-run RMSE, indicat ing the
best-�t models from 50 independent evolutionary runs under eachdi�erent
regressor-setup. Contrasting among the corporate payout theories, results
suggest that both DIV and SR modelling are more accurately performed us-
ing regressor variables de�ned in Life-cycle theory; the best models attaining
a root mean square error (RMSE) of 1:72 and 2:20 respectively. In addition, it
is worthwhile observing that, in every instance, the theories of corporate pay-
out substantially outperform in their explanations of cash dividend payouts
relative to share repurchases.

In order to quantify the relationship between the use of each regressor
variable and the model-output (for the optimal models presented inTable 2),
we calculated their Pearson correlation coe�cient (PCC) via monitor ing the
model-output in a series of model invocations with model-inputs represented
by particular realisations of regressor variables. To complement our investi-
gation of the regressorvs. model-output relationship we present the scatter


















