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Abstract. Assessing the similarity between cases is a key aspect of the
retrieval phase in Case-Based Reasoning (CBR). In most CBR work,
similarity is assessed based on feature-value descriptions of cases using
similarity metrics which use these feature values. In fact it might be said
that this notion of a feature-value representation is a defining part of
the CBR world-view – it underpins the idea of a problem space with
cases located relative to each other in this space. Recently a variety of
similarity mechanisms have emerged that are not feature-based. Some
of these ideas have emerged in CBR research but many of them have
arisen in other areas of data analysis. In fact research on Support Vec-
tor Machines(SVM) is a rich source of novel similarity representations
because of the emphasis on encoding domain knowledge in the kernel
function of the SVM. In this paper we review these novel featureless
similarity measures and assess the implications these measures have for
CBR research.

1 Introduction

Similarity is central to CBR because case retrieval depends on it. The standard
methodology in CBR is to represent a case as a feature vector and then to
assess similarity based on this feature vector representation (see Figure 1(a)).
This methodology shapes the CBR paradigm; it means that problem spaces are
visualised as vector spaces, it informs the notion of a decision surface and how
we conceptualise noisy cases, and it motivates feature extraction and dimension
reduction which are key processes in CBR systems development.

But this approach has its drawbacks, the main issue being that it introduces
a level of abstraction between the similarity mechanism and the cases that are
being compared. It is inevitable that there will be a loss of information in the
feature extraction process that produces the feature vector representation (la-
belled as F in Figure 1(a)). If similarity is assessed more directly on the raw
case data (S′(ci, cj) in Figure 1(b)) then there is the potential for the similarity
score to be more accurate. This strategy also broadens the notion of similarity
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and increases the potential to incorporate domain knowledge in the similarity
mechanism.

In this paper we review a number of strategies for similarity that are fea-
tureless in this sense and consider the implications that this new paradigm has
for CBR research. Some of these strategies have already been presented in CBR
research (e.g. compression-based similarity in [1] and Edit Distance in [2, 3]) but
most come from other areas of Machine Learning (ML) research. We propose
that these strategies can be divided into three categories:

– Information theoretic measures,
– Transformation-based measures,
– Emergent measures arising from an in-depth analysis of the data.

This idea of featureless representation has also received some attention in Pattern
Recognition research under the title of dissimilarity representations [4] – this title
is motivated by the idea that the dissimilarity (or similarity) scores between
objects ((matrix S in Figure 1(b)) is the central knowledge representation.

C1
C2
C3
C4

Cn

S

Vector

Representation
F

C1
C2
C3
C4

Cn

S

(a)

(b)
! 

S F(ci),F(c j )( )

! 

S' ci,c j( )

Fig. 1. A comparison of Feature-based (a) and Featureless (b) similarity assessment –
in (a) F is the Feature Extraction process, S(F (ci), F (cj)) scores similarity based on
features extracted from the cases and in (b) S′(ci, cj) operates more directly on the
raw case data.

Before embarking on a review of featureless similarity measures in section
3 we summarise the standard feature-based approach to similarity in section 2.
Then in section 4 we will review the implications of this new similarity paradigm
for CBR research. The paper concludes with a summary and suggestions for
future research in section 6.



2 Feature-based Similarity

The fundamental idea in CBR is problem solving based on the retrieval of similar
cases, in its simplest form this is Nearest Neighbour Classification. The intuition
underlying this is quite straightforward, examples are classified based on the class
of their nearest neighbours. It is often useful to take more than one neighbour into
account so the technique is more commonly referred to as k-Nearest Neighbour
(k-NN) Classification where k nearest neighbours are used in determining the
class.

The basic idea is as shown in Figure 2 which depicts a 3-Nearest Neighbour
classifier on a two-class problem in a two-dimensional feature space. In this
example the decision for q1 is straightforward – all three of its nearest neighbours
are of class O so it is classified as an O. The situation for q2 is a bit more
complicated at it has two neighbours of class X and one of class O. This can be
resolved by simple majority voting or by distance weighted voting (see below).

Fig. 2. A simple example of 3-Nearest Neighbour Classification

So k−NN classification has two stages; the first is the determination of the
nearest neighbours and the second is the determination of the class using those
neighbours.

Let us assume that we have a training dataset D made up of (xi)i∈[1,|D|]
training samples. The examples are described by a set of features F and any
numeric features have been normalised to the range [0,1]. Each training example
is labelled with a class label yj ∈ Y . Our objective is to classify an unknown
example q. For each xi ∈ D we can calculate the distance between q and xi as
follows:

d(q,xi) =
∑
f∈F

wfδ(qf ,xif ) (1)



There are a large range of possibilities for this distance metric; a basic version
for continuous and discrete attributes would be:

δ(qf ,xif ) =

0 f discrete and qf = xif

1 f discrete and qf 6= xif

|qf − xif | f continuous
(2)

The k nearest neighbours are selected based on this distance metric. Then
there are a variety of ways in which the k nearest neighbours can be used to
determine the class of q. The most straightforward approach is to assign the
majority class among the nearest neighbours to the query.

It will often make sense to assign more weight to the nearer neighbours in
deciding the class of the query. A fairly general technique to achieve this is
distance weighted voting where the neighbours get to vote on the class of the
query case with votes weighted by the inverse of their distance to the query.

V ote(yj) =
k∑

c=1

1
d(q,xc)n

1(yj , yc) (3)

Thus the vote assigned to class yj by neighbour xc is 1 divided by the distance
to that neighbour, i.e. 1(yj , yc) returns 1 if the class labels match and 0 otherwise.
In equation 3 n would normally be 1 but values greater than 1 can be used to
further reduce the influence of more distant neighbours.

2.1 Similarity and Distance Metrics

While the terms similarity metric and distance metric are often used colloquially
to refer to any measure of affinity between two objects, the term metric has a
formal meaning in mathematics. A metric must conform to the following four
criteria (where d(x, y) refers to the distance between two objects x and y):

1. d(x, y) ≥ 0; non-negativity
2. d(x, y) = 0 iff x = y; identity
3. d(x, y) = d(x, y); symmetry
4. d(x, z) ≤ d(x, y) + d(y, z); triangle inequality

It is possible to build a k-NN classifier that incorporates an affinity measure
that is not a proper metric, however there are some performance optimisations
to the basic k-NN algorithm that require the use of a proper metric [5, 6]. In
brief, these techniques can identify the nearest neighbour of an object without
comparing that object to every other object but the affinity measure must be a
metric, in particular it must satisfy the triangle inequality.

The basic distance metric described in equations 1 and 2 is a special case of
the Minkowski Distance metric – in fact it is the 1-norm (L1)Minkowski distance.
The general formula for the Minkowski distance is

MDp(q,xi) =

∑
f∈F

|qf − xif |p
 1

p

(4)



The L1 Minkowski distance is the Manhattan distance and the L2 distance is
the Euclidean distance. It is unusual but not unheard of to use p values greater
than 2. Larger values of p have the effect of giving greater weight to the attributes
on which the objects differ most. To illustrate this we can consider three points
in 2D space; A = (1, 1), B = (5, 1) and C = (4, 4). Since A and B differ on one
attribute only the MDp(A,B) is 4 for all p, whereas MDp(A,C) is 6, 4.24 and
3.78 for p values of 1, 2 and 3 respectively. So C becomes the nearer neighbour
to A for p values of 3 and greater.

The other important Minkowski distance is the L∞ or Chebyshev distance.

MD∞(q,xi) = max
f∈F

|qf − xif |

This is simply the distance in the dimension in which the two examples are
most different; it is sometimes referred to as the chessboard distance as it is the
number of moves it takes a chess king to reach any square on the board.

2.2 Kullback-Leibler Divergence and the χ2 Statistic

The Minkowski distance defined in (4) is a very general metric that can be
used in a k-NN classifier for any data that is represented as a feature vector.
When working with image data a convenient representation for the purpose of
calculating distances is a colour histogram. An image can be considered as a
grey-scale histogram H of N levels or bins where hi is the number of pixels that
fall into the interval represented by bin i (this vector h is the feature vector). The
Minkowski distance formula (4) can be used to compare two images described
as histograms. L1, L2 and less often L∞ norms are used.

Other popular measures for comparing histograms are the Kullback-Leibler
divergence (5) [7] and the χ2 statistic (6) [8].

dKL(H,K) =
N∑

i=1

hi log
(

hi

ki

)
(5)

dχ2(H,K) =
N∑

i=1

hi −mi

hi
(6)

where H and K are two histograms, h and k are the corresponding vectors
of bin values and mi = hi+ki

2 .
While these measures have sound theoretical support in information theory

and in statistics they have some significant drawbacks. The first drawback is
that they are not metrics in that they do not satisfy the symmetry requirement.
However, this problem can easily be overcome by defining a modified distance
between x and y that is in some way an average of d(x, y) and d(y, x) – see [8]
for the Jeffrey divergence which is a symmetric version of the Kullback-Leibler
divergence.

A more significant drawback is that these measures are prone to errors due
to bin boundaries. The distance between an image and a slightly darker version



of itself can be great if pixels fall into an adjacent bin as there is no consideration
of adjacency of bins in these measures.

2.3 Summary

The important point to emphasise is that the use of feature-based representations
in CBR has wide ranging implications. It formulates the problem space as a
vector space, it emphasises the dimensionality of the data as an issue and it
abstracts the similarity mechanism from the raw data.

3 Featureless Similarity Measures

The alternative strategy is depicted in Figure 1(b) where similarity is assessed
more directly from the raw data. In this section we describe a variety of similarity
measures that are not based on a vector space representation of the data. Some
of these measures are genuinely featureless in the sense that the raw data is used
in similarity assessment (e.g. compression-based similarity). Others, such as the
Earth-Mover Distance, are based on a quantization of the data so they are not
strictly featureless, however the quantization of the image does not produce a
vector space representation. We organise these featureless similarity metrics as
follows:

– Information Theoretic Measures
• Compression-based similarity for text [9, 1]
• Information-based gene sequence similarity [10]

– Transformation-based measures
• Edit distance (Levenshtein distance) [11]
• Alignment kernels for biological sequences [12]
• Earth-mover distance [8] (also knows as the Mallows distance [13])

– Emergent measures
• Random forests [14]
• Cluster kernels [15]

3.1 Information Theoretic Measures

It should not be surprising that Information Theory offers a variety of techniques
for assessing the similarity of two objects. Perhaps the most dramatic of these
is Compression-Based Similarity.

Compression-Based Similarity for Text: In recent years the idea of basing
a similarity metric on compression has received a lot of attention [9, 16]. Indeed
Li et al. [9] refer to this as The similarity metric. The basic idea is quite straight-
forward; if two documents are very similar then the compressed size of the two
documents concatenated together will not be much greater than the compressed
size of a single document. This will not be true for two documents that are very



different. Slightly more formally, the difference between two documents A and
B is related to the compressed size of document B when compressed using the
codebook produced when compressing document A.

The theoretical basis of this metric is in the field of Kolmogorov complexity,
specifically in conditional Kolmogorov complexity [9]. A definition of similarity
based on Kolmogorov complexity is:

dKv(x, y) =
Kv(x|y) + Kv(y|x)

Kv(xy)
(7)

where Kv(x) is the length of the shortest program that computes x, Kv(x|y)
is the length of the shortest program that computes x when y is given as an
auxiliary input to the program and Kv(xy) is the length of the shortest pro-
gram that outputs y concatenated to x. While this is an abstract idea it can be
approximated using compression

dC(x, y) =
C(x|y) + C(y|x)

C(xy)
(8)

C(x) is the size of data x after compression, and C(x|y) is the size of x
after compressing it with the compression model built for y. If we assume that
Kv(x|y) ≈ Kv(xy)−Kv(y) then we can define a practical compression distance

dNC(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))
(9)

It is important that C(.) should be an appropriate compression metric for
the type of data. Delany and Bridge [1] show that compression using Lempel-Ziv
(GZip) is effective for text. They show that this compression based metric is more
accurate in k-NN classification than distance-based metrics using a bag-of-words
representation of the text (i.e. a feature vector).

Information-Based Similarity for Biological Sequences An interesting
characteristic of gene sequence data is that the data is typically not compress-
ible using standard (text) compression techniques [17]. Information theory tells
us that biological sequences should be compressible because they encode infor-
mation, i.e. they are not random. However, the regularity in biological sequences
is more subtle than in text, thus specialised algorithms are required to compress
them. Li. et al. [10] have shown that a compression based similarity metric can
be very effective for phylogenitic studies provided that a compression algorithm
specialised for the data is used – they use the GenCompress algorithm developed
by Chen et al. [17] which is based on approximate matching. This research is
of general importance because it illustrates a novel strategy to bring domain
knowledge to bear in assessing similarity.

It is worth mentioning that, even though we have included this in the Information-
theoretic category, it has some of the characteristics of a Transformation-based
metric.



3.2 Transformation-based measures

An alternative perspective on assessing the distance or similarity between objects
is the effort required to transform one into the other. This is the principle un-
derlying the notion of Edit Distance which has quite a long history in Computer
Science [11]. Edit Distance has already been used in CBR research as an affinity
measure [2, 3], indeed the whole CBR field of Adaptation Guided retrieval is
based on a view of similarity as ‘transformation effort’ [18].

Edit Distance (Levenshtein distance) The Edit Distance (ED) is the most
basic of these transformation-based measures. It counts the number of insertions,
deletions and substitutions required to transform one string to another – the
ED from cat to rat is 1 and the ED from cats to cat is 1. Edit distances
can be calculated efficiently using Dynamic Programming and the algorithm is
O(n2) in time and space where n is the string length. In terms of the subject
matter of this paper, Edit Distance has the added importance that it can be
augmented with specific knowledge about the data to produce a very knowledge-
based (dis)similarity measure.

Alignment Measures for Biological Sequences The problem of assessing
similarity for biological sequences has been receiving attention for many years.
There are a variety of sequence alignment problems in biology, e.g. in comparing
DNA, RNA or protein sequences. The protein sequences GAATCCG and GATTGC
might be aligned as follows [19]:

G-AATCCG-

GAT-T-G-C

This alignment is scored as the the sum of the contributions of the alignment
scores (G ↔ G, A ↔ T, T ↔ T, etc.) minus penalty terms for the gaps. The
alignment scores (e.g. A ↔ T) are read from a substitution matrix. For any
pair of strings there will be a number of possible alignments and associated
scores. The actual alignment score is the one associated with the alignment
with the highest score – the Smith-Waterman algorithm determines this using
dynamic programming [19]. This is a transformation score that is specialised
for the problem at hand with similarity knowledge encoded in this substitution
matrix and in the manner the gap penalty is calculated. Alignment scores such
as this embody a notion of similarity that is in tune with the way biologists view
the data.

Earth Mover Distance The Earth Mover Distance (EMD) is a a transformation-
based distance for image data. It overcomes many of the problems that arise from
the arbitrariness of binning when using histograms (see section 2.2). As the name
implies, the distance is based on an assessment of the amount of effort required



to convert one image to another based on the analogy of transporting mass from
one distribution to another (see Figure 3).

Grey-scale HistogramsSource Image

Target Image

Fig. 3. An example of the EMD effort required to transform one image to another with
images represented as histograms.

In their analysis of the EMD Rubner et al. [8] argue that a measure based on
the notion of a signature is better than one based on a histogram. A signature
{sj = mj , wmj} is a set of j clusters where mj is a vector describing the mode
of cluster j and wmj is the fraction of pixels falling into that cluster. Thus a
signature is a generalisation of the notion of a histogram where boundaries and
the number of partitions are not set in advance; instead j should be ‘appropriate’
to the complexity of the image [8].

For two images described by signatures S = {mj , wmj
}n

j=1 and Q = {pk, wpk
}r

k=1

we are interested in the work required to transfer from one to the other for a
given flow pattern F:

WORK(S, Q,F) =
n∑

j=1

r∑
k=1

djkfjk (10)

where djk is the distance between clusters mj and pk and fjk is the flow
between mj and pk that minimises overall cost. An example of this in a 2D
colour space is shown in Figure 4. Once the transportation problem of identifying
the flow that minimises effort is solved (using dynamic programming) the EMD
is defined to be:

EMD(S, Q) =

∑n
j=1

∑r
k=1 djkfjk∑n

j=1

∑r
k=1 fjk

(11)

Efficient algorithms for the EMD are described in [8] however this measure is
expensive to compute with cost increasing more than linearly with the number of
clusters. Nevertheless it is an effective measure for capturing similarity between
images.



Fig. 4. An example of the EMD effort required to transform one image to another
with images represented as signatures: the source image is represented by two clusters
(black circles) and the target image by three clusters.

3.3 Emergent measures

The great increase in computing power available in recent years has resulted
in a sea change in ML research objectives. Speeding up algorithms is less im-
portant now, instead the challenge is to find ways to usefully exploit the power
available [20]. Techniques that represent this new direction in ML research are;
Random Forests [14], Ensemble Clustering [21], and Stability-based cluster val-
idation [22]. These might be viewed as analytic processes that are allowed to
simmer for an extended period to produce a characterisation of the data. Of
interest here are novel similarity scores that emerge from this characterisation.
The two techniques we consider here are Random Forests and Cluster Kernels:
these are not featureless given that the basic analysis is done on a feature-based
representation of the data. However, the emergent similarity measures are not
describable in a feature space.

Random forests A Random Forest is an ensemble of decision trees [14]. The
general strategy for generating a Random forest is as follows:

1. For each ensemble member the training set D is sub-sampled with replace-
ment to produce a training set of size |D|. (The remaining cases are referred
to as the out-of-bag (OOB) cases for that ensemble member).

2. Where F is the set of features that describes the data, m << |F | is selected
as the number of features to be used in the feature selection process. At each
stage (i.e. node) in the building of a tree, m features are selected at random
to be the candidates for splitting at that node.

In order to ensure diversity among the component trees, no pruning is em-
ployed as would be normal in building decision trees. It is normal when building
a random forest to generate many more ensemble members than would be used
in other ensemble techniques – 100 or even 1000 trees might be built. The effort
expended on building these trees has the added benefit of providing an analysis
of the data.



In particular a novel similarity measure emerges from all of these trees. The
idea is to track the frequency with which cases (both training and OOB) are
located at the same leaf node. Every leaf node in every tree is examined and a
|D| × |D| matrix is maintained where cell (i, j) is incremented each time cases i
and j share the same leaf node. If the matrix entries are divided by the number
of trees we have a proximity measure that is in tune with the classification
algorithm (the Random Forest). In [23] we have shown that this similarity metric
is more effective than a conventional feature-based similarity metric on a wide
range of classification tasks.

Cluster kernels Cluster Kernels are relevant in the context of semi-supervised
learning where only some of the available data is labelled [24]. Cluster Kernels
allow the unlabelled data to influence similarity. This is driven by the cluster
assumption that class labels do not change in regions of high density – instead
there should be some correspondence between cluster boundaries and the un-
known class boundaries. Thus the Cluster Kernel is a composition of a standard
kernel built from the labelled data and a kernel derived from clustering all the
data. This is a general principle and one embodiment of this idea for protein
sequence classification is [15]:

K(xi, xj) = Korig(xi, xj) ·Kbag(xi, xj) (12)

where Korig() is a basic neighbourhood kernel and Kbag() is a kernel derived
from repeated clustering of all the data. Kbag(xi, xj) is essentially a count of the
number of times xi and xj turned up in the same cluster (this is in the same
spirit as the strategy used in Random Forests). Thus we have a mechanism that
adjusts the similarity metric using measures drawn from repeated clustering of
the labelled and unlabelled data. Evaluations of the use of cluster kernels in
semi-supervised learning shows promising results [15] [24].

4 Implications for CBR Research

The new perspective on similarity outlined in this paper is not a paradigm shift in
CBR research since the feature-based view of similarity will still be the dominant
strategy. Instead this represents a new methodology for similarity in CBR. This
featureless methodology has two important ramifications for CBR:

– Where it is used, it de-emphasises the vocabulary knowledge container [25]
and increases the role of the similarity knowledge container.

– It increases the importance of strategies for speeding up case-retrieval as
these featureless similarity measures are usually very computationally ex-
pensive.

These issues will be discussed in the following sections.



5 De-emphasising the Vocabulary Knowledge Container

A popular perspective on the organisation of knowledge in CBR is Richter’s
knowledge containers model [25] - there are four containers:

1. The case description language (vocabulary)
2. The similarity measure
3. The solution transformation knowledge (adaptation knowledge)
4. The cases themselves

An important aspect of the knowledge containers’ view of CBR is the way it
highlights the high-level design decisions in the development of a CBR system.
Different design choices have the effect of moving knowledge from one container
to another. Clearly a ‘featureless’ approach to similarity moves knowledge from
the vocabulary knowledge container into the similarity measure.

In our early work on case-based spam filtering we worked with a vector-space
representation of messages [26]. This approach meant that careful consideration
had to be given to feature extraction and feature selection strategies. Feature
selection in the context of concept drift is a particular problem. The solution
we adopted required a periodic feature re-selection process. This is all much
more straightforward when compression-based similarity is used [1] as there is
no feature extraction and selection.

This is also true for transformation-based measures such as edit distance and
string alignment kernels. However, the EMD does have a feature extraction stage
where the signature is created using clustering - the granularity of this signature
is key to the effectiveness of the algorithm. The important point is that the use
of a novel featureless similarity measure can greatly simplify the design of other
aspects of the system.

5.1 Computational Complexity

Computationally expensive metrics such as the EMD and compression based
(dis)similarity metrics focus attention on the computational issues associated
with case-based classifiers. Basic case-based classifiers that use a simple Minkowski
distance will have a time behaviour that is O(|D||F |) where D is the training
set and F is the set of features that describe the data, i.e. the distance metric
is linear in the number of features and the comparison process increases linearly
with the amount of data. The computational complexity of the EMD and com-
pression metrics is more difficult to characterise but a case-based classifier that
incorporates an EMD metric is likely to be O(|D|n3 log n) where n is the number
of clusters [8]. The computational cost of compression-based similarity depends
on the compression algorithm – for text GZip is roughly linear while PPM is
O(n2) [27]. Even the linear time GZip is much slower than a feature-based mea-
sure. Delany and Bridge show that compression-based similarity using GZip can
be 200 times slower than the feature-based alternative [1].



There has been considerable research on alternatives to the exhaustive search
strategy that is used in the standard k-NN algorithm. Here is a summary of four
of the strategies for speeding up nearest-neighbour retrieval:

– Case-Retrieval Nets: Case-Retrieval Nets (CRNs) are perhaps the most
popular technique for speeding up the retrieval process. The cases are pre-
processed to form a network structure that is used at retrieval time. The
retrieval process is done by spreading activation in this network structure.
CRNs can be configured to return exactly the same cases as k-NN [28, 29].
However, CRNs depend on a feature-based case representation.

– Footprint-Based Retrieval: As with all strategies for speeding up nearest-
neighbour retrieval, Footprint-Based Retrieval involves a preprocessing stage
to organise the training data into a two level hierarchy on which a two stage
retrieval process operates. The preprocessing constructs a competence model
which identifies ‘footprint’ cases which are landmark cases in the data. This
process is not guaranteed to retrieve the same cases as k-NN but the results
of the evaluation of speed-up and retrieval quality are nevertheless impressive
[30].

– Fish & Shrink: This technique requires the distance to be a true metric as
it exploits the triangle inequality property to produce an organisation of the
case-base into candidate neighbours and cases excluded from consideration.
Cases that are remote from the query can be bounded out so that they need
not be considered in the retrieval process. Fish & Shrink can be guaranteed
to be equivalent to k-NN [5].

– Cover Trees for Nearest Neighbor: This technique might be considered
the state-of-the-art in nearest-neighbour speed-up. It uses a data-structure
called a Cover Tree to organise the cases for efficient retrieval. The use of
Cover Trees requires that the distance measure is a true metric, however they
have attractive characteristics in terms of space requirements and speed-up
performance. The space requirement is O(n) where n is the number of cases;
the construction time is O(c6n log n) and the retrieval time is O(c12 log n)
where c is a measure of the inherent dimensionality of the data [6].

While CRNs have no role in systems that incorporate featureless similarity,
the other three techniques are applicable and will help to make these expensive
similarity measures more generally usable.

6 Conclusion

In this paper we have discussed the centrality of the feature-value representation
of cases in the CBR paradigm. We have argued that in some circumstances
benefits can accrue from the use of similarity measures that work more directly
on the raw data. The benefit might be that the overall design of the system is
simplified or it may be that the featureless metric simply offers better accuracy
because it embodies specific knowledge about the data. This is very much in line
with current research on SVMs where it is understood that the effectiveness of



the classifier depends very much on the appropriateness of the kernel function
for the data (i.e. in encoding domain knowledge in the kernel function).

Thus there are two considerations for CBR research. The first is that a
broader perspective on similarity along the lines discussed in this paper may
be useful. The second is that the practicality of these computationally expensive
similarity measures may depend on clever retrieval techniques such as Cover
Trees to make them computationally tractable.
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