Guest Editorial

A novel twist to uterine torsion and abomasal displacement in dairy cows

Every bovine practitioner is acutely aware of the increased risk of the occurrence of ‘transition cow disease’ in dairy cows during their transition from late pregnancy to early lactation. Changes in management during this time can result in a multitude of problems including those associated with metabolic and energy imbalances, as well as infection of the uterus and mammary gland (Mulligan et al., 2006; LeBlanc, 2008). The periparturient period can thus be quite a precarious phase in terms of the health of these ‘high performance athletes’ that are constantly balancing on a tightrope between health and disease.

In an article by Dr. Richard Laven and colleagues from the Institute of Veterinary Animal and Biomedical Sciences, Massey University, New Zealand (Lawrence et al., 2012), published in this edition of The Veterinary Journal, it is exactly during this period in a dairy cow’s production cycle that the authors report an increased incidence in uterine torsion and abomasal displacement. The time periods that are compared are those before and after the foot-and-mouth disease (FMD) outbreak in the UK in 2001. This epidemic had a massively disruptive impact on the farming industry and on the UK as a whole, both in economic and sociologic terms, and the period has left an indelible mark on the consciousness of farming communities, veterinarians and the wider public. Radical changes to cattle farming both at the level of individual farming enterprises as well as to the industry as a whole resulted from the outbreak. Many herds that were traditionally pasture-based morphed into herds that were predominantly housed, a change that had particular implications for the nutritional management of the animals involved. Another upshot was the restocking of depopulated
farms with new cows of different genetic background and infection status which required
alterations to husbandry and biosecurity.

The increased incidence in both abomasal displacement and uterine torsion in dairy
cows in the UK in the aftermath of the FMD outbreak reported by Lawrence et al. (2012) is a
fascinating finding and begs the question ‘why ?’. In terms of pathogenesis both diseases
have similarities: both affected organs have mesenteric attachments within the peritoneal
cavity that leaves a lot of ‘room for manoeuvre’ so that they can fairly readily become
displaced from their normal position. In the case of uterine torsion, increased frequency of
movement of the calf in utero, together with the increased frequency with which the cow
lies/stands, seem to be important in the twisting of the entire organ around the ‘fixed’
positions of the mesovarium and cervix/vagina (Drost, 2007). In the case of the abomasum,
periparturient changes to dietary constituents or intake can lead to increased production of
intra-luminal gas which, when combined with the associated atony of the organ, can lead, not
only to its distension, but also to its increased mobility within the abdomen. Given such
mechanisms are at play, changes in the abdominal size/shape of cows are likely to contribute
to both diseases.

Previously in The Veterinary Journal, Doll et al. (2009) detailed risk factors
associated with abomasal displacement and concluded that the tall stature and increased body
depth of Holstein-Friesians predisposes these animals to displacement. It is well established
that the Holstein-Friesian population has changed in size and shape over the last number of
decades (Wittek et al., 2007). This change, in combination with the reconfigurations in organ
topography within the bovine abdomen occurring from the last trimester of pregnancy
through to the first months of lactation leaves these animals more predisposed to both uterine
torsions (before) and abomasal displacement (after) parturition (Wittek et al., 2007). There is
also evidence that the genetic background of an animal is an important risk factor for both
abomasal displacement (Zwald et al., 2004) and uterine torsion (Frazer et al., 1996). The
Brown Swiss and Holstein-Friesian breeds have the greatest and lowest predispositions to
developing uterine torsion, respectively (Frazer et al., 1996). Increasing calf size also
amplifies the risk of uterine torsion and this parameter is directly related to the genetic
composition of both sire and dam (Hansen et al., 2004).

The article by Lawrence et al. (2012) describes an interesting and perhaps somewhat
unexpected legacy of this FMD outbreak whereas heretofore the focus has been on the spread
of endemic infectious diseases such as bovine tuberculosis that resulted from large-scale post-
outbreak farm restocking (Johnston et al., 2011). It is important we bear such unexpected
consequences in mind when normal dairy production resumes in the months and years
following a major disease incident.

Marijke Beltman
School of Veterinary Medicine,
University College Dublin,
Belfield,
Dublin 4,
Ireland
E-mail address: Marijke.Beltman@ucd.ie

References
displacement. The Veterinary Journal 181, 90-96.


