Ciritoglu, Hilmi EgemenHilmi EgemenCiritogluMurphy, JohnJohnMurphyThorpe, ChristinaChristinaThorpe2020-03-202020-03-202019 the A2019-10-21Journal of Big Data2196-1115http://hdl.handle.net/10197/11328The Hadoop distributed file system (HDFS) is responsible for storing very large data-sets reliably on clusters of commodity machines. The HDFS takes advantage of replication to serve data requested by clients with high throughput. Data replication is a trade-off between better data availability and higher disk usage. Recent studies propose different data replication management frameworks that alter the replication factor of files dynamically in response to the popularity of the data, keeping more replicas for in-demand data to enhance the overall performance of the system. When data gets less popular, these schemes reduce the replication factor, which changes the data distribution and leads to unbalanced data distribution. Such an unbalanced data distribution causes hot spots, low data locality and excessive network usage in the cluster. In this work, we first confirm that reducing the replication factor causes unbalanced data distribution when using Hadoop’s default replica deletion scheme. Then, we show that even keeping a balanced data distribution using WBRD (data-distribution-aware replica deletion scheme) that we proposed in previous work performs sub-optimally on heterogeneous clusters. In order to overcome this issue, we propose a heterogeneity-aware replica deletion scheme (HaRD). HaRD considers the nodes’ processing capabilities when deleting replicas; hence it stores more replicas on the more powerful nodes. We implemented HaRD on top of HDFS and conducted a performance evaluation on a 23-node dedicated heterogeneous cluster. Our results show that HaRD reduced execution time by up to 60%, and 17% when compared to Hadoop and WBRD, respectively.enThe Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Hadoop distributed file system (HDFS)Replication factorReplica management frameworkSoftware performanceHaRD: a heterogeneity-aware replica deletion for HDFSJournal Article6110.1186/s40537-019-0256-62019-10-2413/RC/2094https://creativecommons.org/licenses/by-nc-nd/3.0/ie/