Render, HermannHermannRender2014-03-272014-03-272013 Sprin2013-08Ramanujan Journalhttp://hdl.handle.net/10197/5488Let Pn (α,β ) ( x ) be the Jacobi polynomial of degree n with parameters αβ The main result of the paper states the following: If b≠ 1 ; 3 and c are non-zero rel- atively prime natural numbers then P ( k +( d 3) = 2 ;k +( d 3) = 2) n p b=c 6 ≠ 0 for all natural numbers d;n and k 2 N 0 : Moreover, under the above assumption, the polynomial Q ( x ) = b c x 2 1 + ::: + x 2 d 1 + b c 1 x 2 d is not a harmonic divisor, and the Dirichlet problem for the cone f Q ( x ) < 0 g has polynomial harmonic solutions for polynomial data functions.enThe final publication is available at www.springerlink.comJacobi polynomialDirichlet problemIrreducible polynomialHarmonic divisors and rationality of zeros of Jacobi polynomialsJournal Article31325727010.1007/s11139-013-9475-12014-03-01https://creativecommons.org/licenses/by-nc-nd/3.0/ie/