Options
Optimal concentration and temperatures of solar thermal power plants
Author(s)
Date Issued
2012-08
Date Available
2013-11-12T09:04:58Z
Abstract
Using simple, finite-time, thermodynamic models of solar thermal power plants, the existence of an optimal solar receiver temperature has previously been demonstrated in literature. Scant attention has been paid, however, to the presence of an optimal level of solar concentration at which the conversion of incident sunlight to electricity (solar-to-electric efficiency) is maximized. This paper addresses that gap. The paper evaluates the impact, on the design of Rankine-cycle solar-trough and solar-tower power plants, of the existence of an optimal receiver temperature and an optimal level of solar concentration. Mathematical descriptions are derived describing the solar-to-electric efficiency of an idealized solar thermal plant in terms of its receiver
temperature, ambient temperature, the receiver irradiance (radiation striking unit receiver area), solar receiver surface to working fluid conductance, condenser conductance, solar collector efficiency, convective loss coefficients and radiative loss coefficients. Using values from the literature appropriate to direct-steam and molten-salt plants, curves of optimal solar receiver temperature, and optimal solar-to-electric conversion efficiency, are generated as a function of receiver irradiance. The analysis shows that, as the thermal resistance of the solar receiver and condenser increases, the optimal receiver temperature increases whilst the optimal receiver irradiance decreases. The optimal level of receiver irradiance, for solar thermal plants
employing a service fluid of molten salts, is found to occur within a range of values achievable using current solar tower technologies. The tradeoffs (in terms of solar-to-electric efficiency) involved in using molten salts rather than direct steam in the case of solar towers and solar troughs are investigated. The optimal receiver temperatures calculated with the model suggest the use of sub-critical Rankine cycles for solar trough plants, but super-critical Rankine cycles for solar tower plants, if the objective is to maximize solar-to-electric efficiency
temperature, ambient temperature, the receiver irradiance (radiation striking unit receiver area), solar receiver surface to working fluid conductance, condenser conductance, solar collector efficiency, convective loss coefficients and radiative loss coefficients. Using values from the literature appropriate to direct-steam and molten-salt plants, curves of optimal solar receiver temperature, and optimal solar-to-electric conversion efficiency, are generated as a function of receiver irradiance. The analysis shows that, as the thermal resistance of the solar receiver and condenser increases, the optimal receiver temperature increases whilst the optimal receiver irradiance decreases. The optimal level of receiver irradiance, for solar thermal plants
employing a service fluid of molten salts, is found to occur within a range of values achievable using current solar tower technologies. The tradeoffs (in terms of solar-to-electric efficiency) involved in using molten salts rather than direct steam in the case of solar towers and solar troughs are investigated. The optimal receiver temperatures calculated with the model suggest the use of sub-critical Rankine cycles for solar trough plants, but super-critical Rankine cycles for solar tower plants, if the objective is to maximize solar-to-electric efficiency
Sponsorship
Other funder
Other Sponsorship
US Department of State for funding through the Science
and Technology PhD program
Type of Material
Journal Article
Publisher
Elsevier
Journal
Energy Conversion and Management
Volume
60
Start Page
226
End Page
232
Copyright (Published Version)
2012 Elsevier
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
File(s)
Loading...
Name
ECOS_2011_McGovern_Smith_Submitted done.pdf
Size
407.22 KB
Format
Adobe PDF
Checksum (MD5)
c72dfbc709f51c58a9a8c5c50c0434a0
Owning collection