Centre for Water Resources Research Collection

Permanent URI for this collection

For more information, please visit the official web page.

Browse

Recent Submissions

Now showing 1 - 5 of 123
  • Publication
    Assessment of the Extent and Impact of Barriers on Freshwater Hydromorphology and Connectivity in Ireland (Reconnect)
    The Reconnect project advanced knowledge on the impact of low-head barriers on connectivity in Irish rivers in terms of sediment dynamics and ecology (fish, macroinvertebrates and macrophytes) through studies undertaken from 2016 to 2020 in four core study areas on the Duag, Dalligan and Burren rivers and Browns Beck Brook and at 35 other locations across 12 river/stream systems. The project also developed a methodology for prioritising barriers for modification or removal to improve hydromorphology and connectivity.
      7
  • Publication
    Identifying Sources of Faecal Contamination in a Small Urban Stream Catchment: A Multiparametric Approach
    Small urban streams discharging in the proximity of bathing waters may significantly contribute to the deterioration of water quality, yet their impact may be overlooked. This study focuses on the Elm Park stream in the city of Dublin that is subject to faecal contamination by unidentified sources. The aim of the study was to identify a minimum number of “sentinel” sampling stations in an urban catchment that would provide the maximum amount of information regarding faecal pollution in the catchment. Thus, high-resolution sampling within the catchment was carried out over the course of 1 year at 11 stations. Faecal indicator bacteria were enumerated and microbial source tracking (MST) was employed to evaluate human pollution. In addition, ammonium, total oxidised nitrogen, and phosphorus levels were monitored to determine if these correlated with faecal indicator and the HF183 MST marker. In addition, the effect of severe weather events on water quality was assessed using automated sampling at one of the identified “sentinel” stations during baseflow and high flow conditions over a 24-h period. Our results show that this urban stream is at times highly contaminated by point source faecal pollution and that human faecal pollution is pervasive in the catchment. Correlations between ammonium concentrations and faecal indicator bacteria (FIB) as well as the human MST marker were observed during the study. Cluster analysis identified four “sentinel” stations that provide sufficient information on faecal pollution in the stream, thus reducing the geographical complexity of the catchment. Furthermore, ammonium levels strongly correlated with FIB and the human HF183 MST marker under high flow conditions at key “sentinel” stations. This work demonstrates the effectiveness of pairing MST, faecal indicators, and ammonium monitoring to identify “sentinel” stations that could be more rapidly assessed using real-time ammonium readouts to assess remediation efforts.
      6Scopus© Citations 12
  • Publication
    Eco-Engineering of Seawalls—An Opportunity for Enhanced Climate Resilience From Increased Topographic Complexity
    In the context of “green” approaches to coastal engineering, the term “eco-engineering” has emerged in recent years to describe the incorporation of ecological concepts (including artificially water-filled depressions and surface textured tiles on seawalls and drilled holes in sea structures) into the conventional design process for marine infrastructures. Limited studies have evaluated the potential increase in wave energy dissipation resulting from the increased hydraulic roughness of ecologically modified sea defences which could reduce wave overtopping and consequent coastal flood risks, while increasing biodiversity. This paper presents results of small-scale laboratory investigations of wave overtopping on artificially roughened seawalls. Impulsive and non-impulsive wave conditions with two deep-water wave steepness values (=0.015 and 0.06) are evaluated to simulate both swell and storm conditions in a two-dimensional wave flume with an impermeable 1:20 foreshore slope. Measurements from a plain vertical seawall are taken as the reference case. The seawall was subsequently modified to include 10 further test configurations where hydraulic effects, reflective of “eco-engineering” interventions, were simulated by progressively increasing seawall roughness with surface protrusions across three length scales and three surface densities. Measurements at the plain vertical seawall compared favorably to empirical predictions from the EurOtop II Design Manual and served as a validation of the experimental approach. Results from physical model experiments showed that increasing the length and/or density of surface protrusions reduced overtopping on seawalls. Benchmarking of test results from experiments with modified seawalls to reference conditions showed that the mean overtopping rate was reduced by up to 100% (test case where protrusion density and length were maximum) under impulsive wave conditions. Results of this study highlight the potential for eco-engineering interventions on seawalls to mitigate extreme wave overtopping hazards by dissipating additional wave energy through increased surface roughness on the structure.
      14Scopus© Citations 32
  • Publication
    Peatland dynamics: A review of process-based models and approaches
    Despite peatlands' important feedbacks on the climate and global biogeochemical cycles, predicting their dynamics involves many uncertainties and an overwhelming variety of available models. This paper reviews the most widely used process-based models for simulating peatlands' dynamics, i.e., the exchanges of energy and mass (water, carbon, and nitrogen). ‘Peatlands’ here refers to mires, fens, bogs, and peat swamps both intact and degraded. Using a systematic search (involving 4900 articles), 45 models were selected that appeared at least twice in the literature. The models were classified into four categories: terrestrial ecosystem models (biogeochemical and global dynamic vegetation models, n = 21), hydrological models (n = 14), land surface models (n = 7), and eco-hydrological models (n = 3), 18 of which featured “peatland-specific” modules. By analysing their corresponding publications (n = 231), we identified their proven applicability domains (hydrology and carbon cycles dominated) for different peatland types and climate zones (northern bogs and fens dominated). The studies range in scale from small plots to global, and from single events to millennia. Following a FOSS (Free Open-Source Software) and FAIR (Findable, Accessible, Interoperable, Reusable) assessment, the number of models was reduced to 12. Then, we conducted a technical review of the approaches and associated challenges, as well as the basic aspects of each model, e.g., spatiotemporal resolution, input/output data format and modularity. Our review streamlines the process of model selection and highlights: (i) standardization and coordination are required for both data exchange and model calibration/validation to facilitate intercomparison studies; and (ii) there are overlaps in the models' scopes and approaches, making it imperative to fully optimize the strengths of existing models rather than creating redundant ones. In this regard, we provide a futuristic outlook for a ‘peatland community modelling platform’ and suggest an international peatland modelling intercomparison project.
    Scopus© Citations 5  7
  • Publication
    SARS-CoV-2 variant trends in Ireland: Wastewater based epidemiology and clinical surveillance
    SARS-CoV-2 RNA quantification in wastewater is an important tool for monitoring the prevalence of COVID-19 disease on a community scale which complements case-based surveillance systems. As novel variants of concern (VOCs) emerge there is also a need to identify the primary circulating variants in a community, accomplished to date by sequencing clinical samples. Quantifying variants in wastewater offers a cost-effective means to augment these sequencing efforts. In this study, SARS-CoV-2 N1 RNA concentrations and daily loadings were determined and compared to case-based data collected as part of a national surveillance programme to determine the validity of wastewater surveillance to monitor infection spread in the greater Dublin area. Further, sequencing of clinical samples was conducted to determine the primary SARS-CoV-2 lineages circulating in Dublin. Finally, digital PCR was employed to determine whether SARS-CoV-2 VOCs, Alpha and Delta, were quantifiable from wastewater. No lead or lag time was observed between SARS-CoV-2 wastewater and case-based data and SARS-CoV-2 trends in Dublin wastewater significantly correlated with the notification of confirmed cases through case-based surveillance preceding collection with a 5-day average. This demonstrates that viral RNA in Dublin's wastewater mirrors the spread of infection in the community. Clinical sequence data demonstrated that increased COVID-19 cases during Ireland's third wave coincided with the introduction of the Alpha variant, while the fourth wave coincided with increased prevalence of the Delta variant. Interestingly, the Alpha variant was detected in Dublin wastewater prior to the first genome being sequenced from clinical samples, while the Delta variant was identified at the same time in clinical and wastewater samples. This work demonstrates the validity of wastewater surveillance for monitoring SARS-CoV-2 infections and also highlights its effectiveness in identifying circulating variants which may prove useful when sequencing capacity is limited.
      137Scopus© Citations 24