Centre for Water Resources Research Collection

Permanent URI for this collection

For more information, please visit the official web page.

Browse

Recent Submissions

Now showing 1 - 5 of 119
  • Publication
    SARS-CoV-2 variant trends in Ireland: Wastewater based epidemiology and clinical surveillance
    SARS-CoV-2 RNA quantification in wastewater is an important tool for monitoring the prevalence of COVID-19 disease on a community scale which complements case-based surveillance systems. As novel variants of concern (VOCs) emerge there is also a need to identify the primary circulating variants in a community, accomplished to date by sequencing clinical samples. Quantifying variants in wastewater offers a cost-effective means to augment these sequencing efforts. In this study, SARS-CoV-2 N1 RNA concentrations and daily loadings were determined and compared to case-based data collected as part of a national surveillance programme to determine the validity of wastewater surveillance to monitor infection spread in the greater Dublin area. Further, sequencing of clinical samples was conducted to determine the primary SARS-CoV-2 lineages circulating in Dublin. Finally, digital PCR was employed to determine whether SARS-CoV-2 VOCs, Alpha and Delta, were quantifiable from wastewater. No lead or lag time was observed between SARS-CoV-2 wastewater and case-based data and SARS-CoV-2 trends in Dublin wastewater significantly correlated with the notification of confirmed cases through case-based surveillance preceding collection with a 5-day average. This demonstrates that viral RNA in Dublin's wastewater mirrors the spread of infection in the community. Clinical sequence data demonstrated that increased COVID-19 cases during Ireland's third wave coincided with the introduction of the Alpha variant, while the fourth wave coincided with increased prevalence of the Delta variant. Interestingly, the Alpha variant was detected in Dublin wastewater prior to the first genome being sequenced from clinical samples, while the Delta variant was identified at the same time in clinical and wastewater samples. This work demonstrates the validity of wastewater surveillance for monitoring SARS-CoV-2 infections and also highlights its effectiveness in identifying circulating variants which may prove useful when sequencing capacity is limited.
      15Scopus© Citations 4
  • Publication
    Assessment of source apportionment and composition of trace elements in rainwater in the south-eastern region of Bangladesh  
    Rainwater is considered as a dependable potable and non-potable water source, used for domestic purposes as well as for human consumption in many cases. While it is usually believed that rainwater is safe for drinking purposes, many studies have explored the existence of trace metals in harvested rainwater, which can impose a serious health risk to human beings when present in relatively high concentrations. The concentration of trace elements in atmospheric precipitation including rainwater also provides a good indication of the environmental pollution caused by anthropogenic activities.
      81
  • Publication
    The effects of wave impacts on toe scouring and overtopping concurrently for permeable shingle foreshores
    Recent studies by the Intergovernmental Panel on Climate Change indicate that sea level will continue to rise in many low-lying areas due to the global climate change that would potentially cause the occurrence of more frequent extreme meteorological events and storm surges in future years. Concurrently, the damage to the critical infrastructures and surrounding properties from extreme climatic events such as wave overtopping, and scouring are expected to be exacerbated in future. Reliable prediction tools for wave overtopping and toe scouring characteristics at sea defences are therefore significantly important for climate resilience of coastal infrastructures. To date, however, most parametric studies regarding these aspects have tended to focus either only overtopping or scouring at sea defences, with investigations on the effects of wave impacts on both overtopping and scouring characteristics simultaneously, particularly for permeable shingle beaches in front of the structure being less well-studied. This limitation and research gap have driven the need to carry out a comprehensive suite of experimental investigations on the influence of wave impacts on toe scour and overtopping concurrently at sea defences with shingle foreshores.
      90
  • Publication
    Spatial Distribution of Wave-by-Wave Overtopping at Vertical Seawalls
    (Coastal Engineering Research Council, 2020-12-28) ; ; ;
    Over the years, many physical and numerical modelling research has been carried out to investigate the wave-structure interactions and the resulting mean overtopping characteristics at sea defences. The most reliable empirical predication formulae for prediction of mean overtopping rates have been reported in the overtopping manual, EurOtop (2018). In addition to average overtopping rates, in recent years, the spatial distribution of overtopped water has become an important topic of research to understand the safe zone behind coastal defences. The existing empirical formulae for spatial distribution of overtopping provide conservative predictions, as it has been derived from the mean overtopping volumes. The extreme wave overtopping hazards in generally originate from individual overtopping events rather than the mean overtopping volumes. This study presents comprehensive laboratory investigations on the spatial distribution of wave-by-wave overtopping at vertical seawalls.
      81
  • Publication
    Effectiveness of Eco-retrofits in Reducing Wave Overtopping on Seawalls
    (Coastal Engineering Research Council, 2020-12-28) ; ; ;
    Terms such as 'nature-based', 'living shoreline', 'green infrastructure' and 'ecological engineering' are increasingly being used to reflect biomimicry-based engineering measures in coastal defences. Innovative interventions for nature-based sea defences have included the retrofitting of man-made water filled depressions or 'vertipools' to existing seawalls (Hall et al., 2019; Naylor et al., 2017) and the addition of artificial drill-cored rock pools to intertidal breakwaters (Evans et al., 2016). Through their capacity to retain water, such measures serve to enhance biodiversity in the built environment (Browne and Chapman, 2014). Evans et al. (2016) for example, experimentally demonstrated that the introduction of artificial rock pools to an intertidal granite breakwater enhanced the levels of species richness compared to those observed on plain surfaces of the breakwater. Notwithstanding these biological benefits, the impetus for incorporation of ecologically friendly measures to existing defences remains low (Salauddin et al., 2020a). This situation could potentially change should it be shown that the addition of 'green' measures to sea defences could enhance wave attenuation and reduce wave overtopping as well as wave pressures on the coastal defence structures. This paper describes small-scale physical modelling investigations of seawalls and explores reductions in wave overtopping that could be realised by retrofitting sea defences with 'green' features (such as 'vertipools'). Surface protrusions of varying scale and density are used in the physical modelling to mimic 'green' features and the results from measurements of overtopping are benchmarked to reference conditions determined from tests on a plain seawall.
      67