Options
Towards the Leveraging of Data Deduplication to Break the Disk Acquisition Speed Limit
Date Issued
2016-11-23
Date Available
2023-11-30T12:26:16Z
Abstract
Digital forensic evidence acquisition speed is traditionally limited by two main factors: the read speed of the storage device being investigated, i.e., the read speed of the disk, memory, remote storage, mobile device, etc.), and the write speed of the system used for storing the acquired data. Digital forensic investigators can somewhat mitigate the latter issue through the use of high-speed storage options, such as networked RAID storage, in the controlled environment of the forensic laboratory. However, traditionally, little can be done to improve the acquisition speed past its physical read speed from the target device itself. The protracted time taken for data acquisition wastes digital forensic experts' time, contributes to digital forensic investigation backlogs worldwide, and delays pertinent information from potentially influencing the direction of an investigation. In a remote acquisition scenario, a third contributing factor can also become a detriment to the overall acquisition time - typically the Internet upload speed of the acquisition system. This paper explores an alternative to the traditional evidence acquisition model through the leveraging of a forensic data deduplication system. The advantages that a deduplicated approach can provide over the current digital forensic evidence acquisition process are outlined and some preliminary results of a prototype implementation are discussed.
Type of Material
Conference Publication
Publisher
IEEE
Copyright (Published Version)
2016 IEEE
Language
English
Status of Item
Peer reviewed
Journal
2016 8th IFIP International Conference on New Technologies, Mobility and Security, NTMS 2016
Conference Details
The 2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Larnaca, Cyprus, 21-23 November 2016
ISBN
9781509029143
This item is made available under a Creative Commons License
File(s)
Loading...
Name
TowardsDataDeduplication.pdf
Size
658.13 KB
Format
Adobe PDF
Checksum (MD5)
863566bcc36f4d679804818a0d12660b
Owning collection