Now showing 1 - 10 of 48
  • Publication
    Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRAS G13D
    Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is extensively rewired in cells expressing transforming levels of KRASG13D (mtKRAS). The factors driving PPIN rewiring are multifactorial including changes in protein expression and phosphorylation. Mathematical modelling also suggests that the binding dynamics of low and high affinity KRAS interactors contribute to rewiring. PPIN rewiring substantially alters the composition of protein complexes, signal flow, transcriptional regulation, and cellular phenotype. These changes are validated by targeted and global experimental analysis. Importantly, genetic alterations in the most extensively rewired PPIN nodes occur frequently in CRC and are prognostic of poor patient outcomes.
  • Publication
    A dynamic model of the MYCN regulated DNA damage response in Neuroblastoma
    Neuroblastoma is the most common the most common cancer in infancy with an extremely heterogeneous phenotype that is mainly driven by the MYCN oncogene. The MYCN transcription factor and its amplification is commonly associated with poor prognosis in patients, although it has also been shown that elevated MYCN levels correlates with apoptosis sensitization in cells. HMGA1 is one of MYCN target genes and is involved in triggering apoptosis through a DNA Damage Response (DDR) by inducing ataxia-telangiectasia-mutated (ATM) gene expression. But HMGA1 is also involved in preventing apoptosis by directly binding HIPK2 and decreasing its presence in the nucleus, therefore decreasing phosphorylation of p53 at serine 46 which is required for the activation of p53 apoptotic targets. In this article, we propose a model in which MYCN protein regulates the HMGA1-ATM-p53 and HMGA1-HIPK2-p53 subsystems. Because the molecular details concerning the HMGA1-HMGA1 interaction are uncertain several possibilities were explored in simulations. Our model points towards an important role of MYCN-dependent regulation of HMGA1 expression levels and the subsequent HIPK2 nuclear/cytoplasmic re-localization and led to experimentally testable predictions that can discern between alternative model structures.  
  • Publication
    Systems biology embedded target validation: improving efficacy in drug discovery
    The pharmaceutical industry is faced with a range of challenges with the ever-escalating costs of drug development and a drying out of drug pipelines. By harnessing advances in -omics technologies and moving away from the standard, reductionist model of drug discovery, there is significant potential to reduce costs and improve efficacy. Embedding systems biology approaches in drug discovery, which seek to investigate underlying molecular mechanisms of potential drug targets in a network context, will reduce attrition rates by earlier target validation and the introduction of novel targets into the currently stagnant market. Systems biology approaches also have the potential to assist in the design of multidrug treatments and repositioning of existing drugs, while stratifying patients to give a greater personalization of medical treatment.
      2715Scopus© Citations 19
  • Publication
    HER2-HER3 dimer quantification by FLIM-FRET predicts breast cancer metastatic relapse independently of HER2 IHC status
    Overexpression of HER2 is an important prognostic marker, and the only predictive biomarker of response to HER2-targeted therapies in invasive breast cancer. HER2-HER3 dimer has been shown to drive proliferation and tumor progression, and targeting of this dimer with pertuzumab alongside chemotherapy and trastuzumab, has shown significant clinical utility. The purpose of this study was to accurately quantify HER2-HER3 dimerisation in formalin fixed paraffin embedded (FFPE) breast cancer tissue as a novel prognostic biomarker. FFPE tissues were obtained from patients included in the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) study. HER2-HER3 dimerisation was quantified using an improved fluorescence lifetime imaging microscopy (FLIM) histology-based analysis. Analysis of 131 tissue microarray cores demonstrated that the extent of HER2-HER3 dimer formation as measured by Förster Resonance Energy Transfer (FRET) determined through FLIM predicts the likelihood of metastatic relapse up to 10 years after surgery (hazard ratio 3.91 (1.61–9.5), p = 0.003) independently of HER2 expression, in a multivariate model. Interestingly there was no correlation between the level of HER2 protein expressed and HER2-HER3 heterodimer formation. We used a mathematical model that takes into account the complex interactions in a network of all four HER proteins to explain this counterintuitive finding. Future utility of this technique may highlight a group of patients who do not overexpress HER2 protein but are nevertheless dependent on the HER2-HER3 heterodimer as driver of proliferation. This assay could, if validated in a group of patients treated with, for instance pertuzumab, be used as a predictive biomarker to predict for response to such targeted therapies.
      274Scopus© Citations 21
  • Publication
    Nonlinear signalling networks and cell-to-cell variability transform external signals into broadly distributed or bimodal responses
    We show theoretically and experimentally a mechanism behind the emergence of wide or bimodal protein distributions in biochemical networks with nonlinear input–output characteristics (the dose–response curve) and variability in protein abundance. Large cell-to-cell variation in the nonlinear dose–response characteristics can be beneficial to facilitate two distinct groups of response levels as opposed to a graded response. Under the circumstances that we quantify mathematically, the two distinct responses can coexist within a cellular population, leading to the emergence of a bimodal protein distribution. Using flow cytometry, we demonstrate the appearance of wide distributions in the hypoxia-inducible factor-mediated response network in HCT116 cells. With help of our theoretical framework, we perform a novel calculation of the magnitude of cell-to-cell heterogeneity in the dose–response obtained experimentally.
      391Scopus© Citations 18
  • Publication
    Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches
    Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches.
      320Scopus© Citations 108
  • Publication
    MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance
    The RAS/RAF/MEK/MAPK kinase pathway has been extensively studied for more than 25 years, yet we continue to be puzzled by its intricate dynamic control and plasticity. Different spatiotemporal MAPK dynamics bring about distinct cell fate decisions in normal vs cancer cells and developing organisms. Recent modelling and experimental studies provided novel insights in the versatile MAPK dynamics concerted by a plethora of feedforward/feedback regulations and crosstalk on multiple timescales. Multiple cancer types and various developmental disorders arise from persistent alterations of the MAPK dynamics caused by RAS/RAF/MEK mutations. While a key role of the MAPK pathway in multiple diseases made the development of novel RAF/MEK inhibitors a hot topic of drug development, these drugs have unexpected side-effects and resistance inevitably occurs. We review how RAF dimerization conveys drug resistance and recent breakthroughs to overcome this resistance.
      317Scopus© Citations 63
  • Publication
    Protein-protein interactions generate hidden feedback and feed-forward loops to trigger bistable switches, oscillations and biphasic dose-responses
    Protein-protein interactions (PPIs) defined as reversible association of two proteins to form a complex, are undoubtedly among the most common interaction motifs featured in cells. Recent large-scale proteomic studies have revealed an enormously complex interactome of the cell, consisting of tens of thousands of PPIs with numerous signalling hubs. PPIs have functional roles in regulating a wide range of cellular processes including signal transduction and post-translational modifications, and de-regulation of PPIs is implicated in many diseases including cancers and neuro-degenerative disorders. Despite the ubiquitous appearance and physiological significance of PPIs, our understanding of the dynamic and functional consequences of these simple motifs remains incomplete, particularly when PPIs occur within large biochemical networks. We employ quantitative, dynamic modelling to computationally analyse salient dynamic features of the PPI motifs and PPI-containing signalling networks varying in topological architecture. Our analyses surprisingly reveal that simple reversible PPI motifs, when being embedded into signalling cascades, could give rise to extremely rich and complex regulatory dynamics in the absence of explicit positive and negative feedback loops. Our work represents a systematic investigation of the dynamic properties of PPIs in signalling networks, and the results shed light on how this simple event may potentiate diverse and intricate behaviours in vivo.
      311Scopus© Citations 18
  • Publication
    Competing to coordinate cell fate decisions: the MST2-Raf-1 signaling device
    How do biochemical signaling pathways generate biological specificity? This question is fundamental to modern biology, and its enigma has been accentuated by the discovery that most proteins in signaling networks serve multifunctional roles. An answer to this question may lie in analyzing network properties rather than individual traits of proteins in order to elucidate design principles of biochemical networks that enable biological decision-making. We discuss how this is achieved in the MST2/Hippo-Raf-1 signaling network with the help of mathematical modeling and model-based analysis, which showed that competing protein interactions with affinities controlled by dynamic protein modifications can function as Boolean computing devices that determine cell fate decisions. In addition, we discuss areas of interest for future research and highlight how systems approaches would be of benefit
      265Scopus© Citations 21
  • Publication
    Signalling mechanisms regulating phenotypic changes in breast cancer cells
    In MCF-7 breast cancer cells epidermal growth factor (EGF) induces cell proliferation, whereas heregulin (HRG)/neuregulin (NRG) induces irreversible phenotypic changes accompanied by lipid accumulation. Although these changes in breast cancer cells resemble processes that take place in the tissue, there is no understanding of signalling mechanisms regulating it. To identify molecular mechanisms mediating this cell-fate decision process, we applied different perturbations to pathways activated by these growth factors. The results demonstrate that phosphoinositide 3 (PI3) kinase (PI3K) and mammalian target of rapamycin (mTOR) complex (mTORC)1 activation is necessary for lipid accumulation that can also be induced by insulin, whereas stimulation of the extracellular-signal-regulated kinase (ERK) pathway is surprisingly dispensable. Interestingly, insulin exposure, as short as 4 h, was sufficient for triggering the lipid accumulation, whereas much longer treatment with HRG was required for achieving similar cellular response. Further, activation patterns of ATP citratelyase (ACLY), an enzyme playing a central role in linking glycolytic and lipogenic pathways, suggest that lipids accumulated within cells are produced de novo rather than absorbed from the environment. In the present study, we demonstrate that PI3K pathway regulates phenotypic changes in breast cancer cells, whereas signal intensity and duration is crucial for cell fate decisions and commitment. Our findings reveal that MCF-7 cell fate decisions are controlled by a network of positive and negative regulators of both signalling and metabolic pathways.
      327Scopus© Citations 9