Now showing 1 - 10 of 47
  • Publication
    Poly(ethylene glycol)-based backbones with high peptide loading capacities
    Polymer-peptide conjugates are a promising class of compounds, where polymers can be used to overcome some of the limitations associated with peptides intended for therapeutic and/or diagnostic applications. Linear polymers such as poly(ethylene glycol) can be conjugated through terminal moieties and have therefore limited loading capacities. In this research, functionalised linear poly(ethylene glycol)s are utilised for peptide conjugation, to increase their potential loading capacities. These poly(ethylene glycol) derivatives are conjugated to peptide sequences containing representative side-chain functionalised amino acids, using different conjugation chemistries, including copper-catalysed azide-alkyne cycloaddition, amide coupling and thiol-ene reactions. Conjugation of a sequence containing the RGD motif to poly(allyl glycidyl ether) by the thiol-ene reaction, provided a conjugate which could be used in platelet adhesion studies.
      204Scopus© Citations 8
  • Publication
    Local delivery of macromolecules to treat diseases associated with the colon
    Current treatments for intestinal diseases including inflammatory bowel diseases, irritable bowel syndrome, and colonic bacterial infections are typically small molecule oral dosage forms designed for systemic delivery. The intestinal permeability hurdle to achieve systemic delivery from oral formulations of macromolecules is challenging, but this drawback can be advantageous if an intestinal region is associated with the disease. There are some promising formulation approaches to release peptides, proteins, antibodies, antisense oligonucleotides, RNA, and probiotics in the colon to enable local delivery and efficacy. We briefly review colonic physiology in relation to the main colon-associated diseases (inflammatory bowel disease, irritable bowel syndrome, infection, and colorectal cancer), along with the impact of colon physiology on dosage form design of macromolecules. We then assess formulation strategies designed to achieve colonic delivery of small molecules and concluded that they can also be applied some extent to macromolecules. We describe examples of formulation strategies in preclinical research aimed at colonic delivery of macromolecules to achieve high local concentration in the lumen, epithelial-, or sub-epithelial tissue, depending on the target, but with the benefit of reduced systemic exposure and toxicity. Finally, the industrial challenges in developing macromolecule formulations for colon-associated diseases are presented, along with a framework for selecting appropriate delivery technologies.
      931Scopus© Citations 52
  • Publication
    An Enteric-Coated Polyelectrolyte Nanocomplex Delivers Insulin in Rat Intestinal Instillations when Combined with a Permeation Enhancer
    The use of nanocarriers is being researched to achieve oral peptide delivery. Insulin-associated anionic polyelectrolyte nanoparticle complexes (PECs) were formed that comprised hyaluronic acid and chitosan in an optimum mass mixing ratio of 5:1 (MR 5), followed by coating with a pH-dependent polymer. Free insulin was separated from PECs by size exclusion chromatography and then measured by HPLC. The association efficiency of insulin in PECs was >95% and the loading was ~83 µg/mg particles. Dynamic light scattering and nanoparticle tracking analysis of PECs revealed low polydispersity, a negative zeta potential range of −40 to −50 mV, and a diameter range of 95–200 nm. Dissolution studies in simulated small intestinal fluid (FaSSIF-V2) revealed that the PECs were colloidally stable. PECs that were coated with Eudragit® L-100 delayed insulin release in FaSSIF-V2 and protected insulin against pancreatin attack more than uncoated PECs. Uncoated anionic PECs interacted weakly with mucin in vitro and were non-cytotoxic to Caco-2 cells. The coated and uncoated PECs, both concentrated further by ultrafiltration, permitted dosing of 50 IU/kg in rat jejunal instillations, but they failed to reduce plasma glucose or deliver insulin to the blood. When ad-mixed with the permeation enhancer (PE), sucrose laurate (100 mM), the physicochemical parameters of coated PECs were relatively unchanged, however blood glucose was reduced by 70%. In conclusion, the use of a PE allowed for the PEC-released bioactive insulin to permeate the jejunum. This has implications for the design of orally delivered particles that can release the payload when formulated with enhancers.
      125Scopus© Citations 14
  • Publication
    Salcaprozate sodium (SNAC) enhances permeability of octreotide across isolated rat and human intestinal epithelial mucosae in Ussing chambers
    Octreotide is approved as a one-month injectable for treatment of acromegaly and neuroendocrine tumours. Oral delivery of the octapeptide is a challenge due mainly to low intestinal epithelial permeability. The intestinal permeation enhancer (PE) salcaprozate sodium (SNAC) has Generally Regarded As Safe (GRAS) status and is a component of an approved oral peptide formulation. The purpose of the study was to examine the capacity of salcaprozate sodium (SNAC), to increase its permeability across isolated rat intestinal mucosae from five regions and across human colonic mucosae mounted in Ussing chambers. Apical-side buffers were Kreb's-Henseleit (KH), fasted simulated intestinal fluid (FaSSIF-V2), rat simulated intestinal fluid (rSIF), and colonic simulated intestinal fluid (FaSSCoF). The basal apparent permeability coefficient (Papp) of [3H]-octreotide was equally low across rat intestinal regional mucosae in KH, rSIF, and FaSSIF-V2. Apical addition of 20 mM SNAC increased the Papp across rat tissue in KH: colon (by 3.2-fold) > ileum (3.4-fold) > upper jejunum (2.3-fold) > duodenum (1.4-fold) > stomach (1.4-fold). 20 mM and 40 mM SNAC also increased the Papp by 1.5-fold and 2.1-fold respectively across human colonic mucosae in KH. Transepithelial electrical resistance (TEER) values were reduced in the presence in SNAC especially in colonic regions. LC-MS/MS analysis of permeated unlabelled octreotide across human colonic mucosae in the presence of SNAC indicated that [3H]-octreotide remained intact. No gross damage was caused to rat or human mucosae by SNAC. Attenuation of the effects of SNAC was seen in rat jejunal mucosae incubated with FaSSIF-V2 and rSIF, and also to some extent in human colonic mucosae using FaSSCoF, suggesting interaction between SNAC with buffer components. In conclusion, SNAC showed potential as an intestinal permeation enhancer for octreotide, but in vivo efficacy may be attenuated by interactions with GI luminal fluid contents.
      320Scopus© Citations 18
  • Publication
    Drug Delivery Formulations and Devices Tailored for Paediatric and Older Patients
    (Frontiers Media, 2021-12-01)
    “Drugs don’t work in patients who don’t take them,” C. Everett Coop, US Surgeon General (1985). This is a quote widely used in discussions of poor compliance with drug dosing regimens. It is particularly apt in relation to the non-adherence to medications by children and older persons, where ascertaining correct doses in the context of physiological differences according to age profiles is a key consideration in making acceptable formulations and devices for delivery. The concept of the average patient is a myth—there is no average child or older person, hence one formulation will not necessarily be safe and effective for all patients. When a new medicine is submitted to regulatory agencies for approval, clinical trials are generally carried out on patients over the age of 18 and under the age of 65. Trials in “average” patients aim to determine if a medicine will be safe and efficacious, but drugs are also required for patients that lie outside of the average, including paediatrics and older persons. Few drugs have undergone clinical trials in paediatric patients, so in the absence of specific formulations, physicians can opt to use such drugs off-label and/or in an unlicensed fashion (Chen et al., 2021). Off-label use is one when a licenced product is used outside the specifics of the license or label granted by the national regulator. For use in paediatrics and older persons, this might include the age range, the dose level, or its use in other clinical indications.
  • Publication
    Best practices in current models mimicking drug permeability in the gastrointestinal tract - An UNGAP review
    The absorption of orally administered drug products is a complex, dynamic process, dependant on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but both in vitro and ex vivo tools provide initial screening approaches and are important tools for assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
      99Scopus© Citations 11
  • Publication
    An intra-articular salmon calcitonin-based nanocomplex reduces experimental inflammatory arthritis
    Prolonged inappropriate inflammatory responses contribute to the pathogenesis of rheumatoid arthritis (RA) and to aspects of osteoarthritis (OA). The orphan nuclear receptor, NR4A2, is a key regulator and potential biomarker for inflammation and represents a potentially valuable therapeutic target. Both salmon calcitonin (sCT) and hyaluronic acid (HA) attenuated activated mRNA expression of NR4A1, NR4A2, NR4A3, and matrix metalloproteinases (MMPs) 1, 3 and 13 in three human cell lines: SW1353 chondrocytes, U937 and THP-1 monocytes. Ad-mixtures of sCT and HA further down-regulated expression of NR4A2 compared to either agent alone at specific concentrations, hence the rationale for their formulation in nanocomplexes (NP) using chitosan. The sCT released from NP stimulated cAMP production in human T47D breast cancer cells expressing sCT receptors. When NP were injected by the intra-articular (I.A.) route to the mouse knee during on-going inflammatory arthritis of the K/BxN serum transfer model, joint inflammation was reduced together with NR4A2 expression, and local bone architecture was preserved. These data highlight remarkable anti-inflammatory effects of sCT and HA at the level of reducing NR4A2 mRNA expression in vitro. Combining them in NP elicits anti-arthritic effects in vivo following I. A. delivery.
      903Scopus© Citations 58
  • Publication
    Evolving peptides for oral intake
    (Springer, 2020-05-11)
    The delivery of therapeutic peptides via the oral route remains a great challenge for the pharmaceutical industry. Oral delivery is the most convenient administration route, as it leads to higher patient compliance than for sub-cutaneous and intra-muscular injections and, for some chronic diseases, to earlier adoption of treatment.
      81Scopus© Citations 6
  • Publication
    Investigations of Piperazine Derivatives as Intestinal Permeation Enhancers in Isolated Rat Intestinal Tissue Mucosae
    A limiting factor for oral delivery of macromolecules is low intestinal epithelial permeability. 1-phenylpiperazine (PPZ), 1-(4-methylphenyl) piperazine (1-4-MPPZ), and 1-methyl-4-phenylpiperazine (1-M-4-PPZ) have emerged as potential permeation enhancers (PEs) from a screen carried out by others in Caco-2 monolayers. Here, their efficacy, mechanism of action, and potential for epithelial toxicity were further examined in Caco-2 cells and isolated rat intestinal mucosae. Using high content analysis, PPZ and 1-4-MPPZ decreased mitochondrial membrane potential and increased plasma membrane potential in Caco-2 cells to a greater extent than 1-M-4-PPZ. The Papp of the paracellular marker, [14C]-mannitol, and of the peptide, [3H]-octreotide, were measured across rat colonic mucosae following apical addition of the three piperazines. PPZ and 1-4-MPPZ induced a concentration-dependent decrease in transepithelial electrical resistance (TEER) and an increase in the Papp of [14C]-mannitol without causing histological damage. 1-M-4-PPZ was without effect. The piperazines caused the Krebs-Henseleit buffer pH to become alkaline, which partially attenuated the increase in Papp of [14C]-mannitol caused by PPZ and 1-4-MPPZ. Only addition of 1-4-MPPZ increased the Papp of [3H]-octreotide. Pre-incubation of mucosae with two 5-HT4 receptor antagonists, a loop diuretic, and a myosin-light chain kinase inhibitor reduced the permeation enhancement capacity of PPZ and 1-4-MPP for [14C]-mannitol. 1-4-MPPZ holds most promise as a PE, but intestinal physiology may also be impacted due to multiple mechanisms of action.
      104Scopus© Citations 11
  • Publication
    Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin
    Due to excellent efficacy, low toxicity, and well-defined selectivity, development of new injectable peptides is increasing. However, the translation of these drugs into products for effective oral delivery has been restricted due to poor oral bioavailability. Nanoparticle (NP) formulations have potential to overcome the barriers to oral peptide delivery through protecting the payload and increasing bioavailability. This study describes the rational design, optimization and evaluation of a cyclodextrin-based NP entrapping insulin glulisine for intestinal administration. A cationic amphiphilic cyclodextrin (click propyl-amine cyclodextrin (CD)) was selected as the primary complexing agent for NP development. Following NP synthesis, in vitro characterization was performed. The insulin glulisine NPs exhibited an average size of 109 ± 9 nm, low polydispersity index (0.272) negative zeta potential (−25 ± 3 mV), high association efficiency (71.4 ± 3.37%) and an insulin loading of 10.2%. In addition, the NPs exhibited colloidal stability in intestinal-biorelevant media (SIF, supplemented-SIF 1% (w/v) and FaSSIF-V2) for up to 4 h. Proteolysis studies indicated that the NPs conferred protection to the entrapped insulin relative to free insulin. In vivo rat jejunal instillation studies demonstrated that the NPs mediated systemic insulin absorption, accompanied by a decrease in blood glucose levels. The relative bioavailability of the instilled insulin (50 IU/kg) from the NP was 5.5% compared to subcutaneous administration of insulin solution (1 IU/kg). The pharmacodynamic and pharmacokinetic data indicate that this cyclodextrin-based formulation may have potential for further research as an oral insulin dosage form.
      579Scopus© Citations 43