Options
Cummins, Eoin P.
Preferred name
Cummins, Eoin P.
Official Name
Cummins, Eoin P.
Research Output
Now showing 1 - 10 of 11
- PublicationRegulation of IL-1β-induced NF-κB by hydroxylases links key hypoxic and inflammatory signaling pathways(National Academy of Sciences, 2013-10)
; ; ; ; ; ; ; ; ; ; ; Hypoxia is a prominent feature of chronically inflamed tissues. Oxygen-sensing hydroxylases control transcriptional adaptation to hypoxia through the regulation of hypoxia-inducible factor (HIF) and nuclear factor κB (NF-κB), both of which can regulate the inflammatory response. Furthermore, pharmacologic hydroxylase inhibitors reduce inflammation in multiple animal models. However, the underlying mechanism(s) linking hydroxylase activity to inflammatory signaling remains unclear. IL-1β, a major proinflammatory cytokine that regulates NF-κB, is associated with multiple inflammatory pathologies. We demonstrate that a combination of prolyl hydroxylase 1 and factor inhibiting HIF hydroxylase isoforms regulates IL-1β-induced NF-κB at the level of (or downstream of) the tumor necrosis factor receptor-associated factor 6 complex. Multiple proteins of the distal IL-1β-signaling pathway are subject to hydroxylation and form complexes with either prolyl hydroxylase 1 or factor inhibiting HIF. Thus, we hypothesize that hydroxylases regulate IL-1β signaling and subsequent inflammatory gene expression. Furthermore, hydroxylase inhibition represents a unique approach to the inhibition of IL-1β-dependent inflammatory signaling.223Scopus© Citations 121 - PublicationRegulation of gene expression by carbon dioxide(Wiley Blackwell (Blackwell Publishing -The Physiological Society), 2011-01-04)
; Carbon dioxide (CO2) is a physiological gas found at low levels in the atmosphere and produced in cells during the process of aerobic respiration. Consequently, the levels of CO2 within tissues are usually significantly higher than those found externally. Shifts in tissue levels of CO2 (leading to either hypercapnia or hypocapnia) are associated with a number of pathophysiological conditions in humans and can occur naturally in niche habitats such as those of burrowing animals. Clinical studies have indicated that such altered CO2 levels can impact upon disease progression. Recent advances in our understanding of the biology of CO2 has shown that like other physiological gases such as molecular oxygen (O2) and nitric oxide (NO), CO2 levels can be sensed by cells resulting in the initiation of physiological and pathophysiological responses. Acute CO2 sensing in neurons and peripheral and central chemoreceptors is important in rapidly activated responses including olfactory signalling, taste sensation and cardiorespiratory control. Furthermore, a role for CO2 in the regulation of gene transcription has recently been identified with exposure of cells and model organisms to high CO2 leading to suppression of genes involved in the regulation of innate immunity and inflammation. This latter, transcriptional regulatory role for CO2, has been largely attributed to altered activity of the NF-κB family of transcription factors. Here, we review our evolving understanding of how CO2 impacts upon gene transcription.268Scopus© Citations 33 - PublicationREST mediates resolution of HIF-dependent gene expression in prolonged hypoxia(Springer Nature, 2015-12-09)
; ; ; ; ; ; ; ; The hypoxia-inducible factor (HIF) is a key regulator of the cellular response to hypoxia which promotes oxygen delivery and metabolic adaptation to oxygen deprivation. However, the degree and duration of HIF-1a expression in hypoxia must be carefully balanced within cells in order to avoid unwanted side effects associated with excessive activity. The expression of HIF-1a mRNA is suppressed in prolonged hypoxia, suggesting that the control of HIF1A gene transcription is tightly regulated by negative feedback mechanisms. Little is known about the resolution of the HIF-1a protein response and the suppression of HIF-1a mRNA in prolonged hypoxia. Here, we demonstrate that the Repressor Element 1-Silencing Transcription factor (REST) binds to the HIF-1a promoter in a hypoxia-dependent manner. Knockdown of REST using RNAi increases the expression of HIF-1a mRNA, protein and transcriptional activity. Furthermore REST knockdown increases glucose consumption and lactate production in a HIF-1a- (but not HIF-2a-) dependent manner. Finally, REST promotes the resolution of HIF-1a protein expression in prolonged hypoxia. In conclusion, we hypothesize that REST represses transcription of HIF-1a in prolonged hypoxia, thus contributing to the resolution of the HIF-1a response.234Scopus© Citations 49 - PublicationREST is a hypoxia-responsive transcriptional repressor(Springer Nature, 2016-08-17)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia.288Scopus© Citations 46 - PublicationNF-B Links CO2 Sensing to Innate Immunity and Inflammation in Mammalian Cells(The American Association of Immunologists, 2010-09-03)
; ; ; Molecular O2 and CO2 are the primary substrate and product of aerobic metabolism, respectively. Levels of these physiologic gases in the cell microenvironment vary dramatically both in health and in diseases, such as chronic inflammation, ischemia, and cancer, in which metabolism is significantly altered. The identification of the hypoxia-inducible factor led to the discovery of an ancient and direct link between tissue O2 and gene transcription. In this study, we demonstrate that mammalian cells (mouse embryonic fibroblasts and others) also sense changes in local CO2 levels, leading to altered gene expression via the NF-κB pathway. IKKα, a central regulatory component of NF-κB, rapidly and reversibly translocates to the nucleus in response to elevated CO2. This response is independent of hypoxia-inducible factor hydroxylases, extracellular and intracellular pH, and pathways that mediate acute CO2-sensing in nematodes and flies and leads to attenuation of bacterial LPS-induced gene expression. These results suggest the existence of a molecular CO2 sensor in mammalian cells that is linked to the regulation of genes involved in innate immunity and inflammation.384Scopus© Citations 80 - PublicationThe role of HIF in immunity and inflammationUncontrolled or non-resolving inflammation underpins a range of disease states including rheumatoid arthritis, inflammatory bowel disease and atherosclerosis. Hypoxia is a prominent feature of chronically inflamed tissues. This is due to elevated oxygen consumption by highly metabolically active inflamed resident cells and activated infiltrating immunocytes, as well as diminished oxygen supply due to vascular dysfunction. Tissue hypoxia can have a significant impact upon inflammatory signaling pathways in immune and non-immune cells and this can impact upon disease progression. In this review, we will discuss the relationship between tissue hypoxia and inflammation and identify how hypoxia-sensitive signaling pathways are potential therapeutic targets in chronic inflammatory disease.
973Scopus© Citations 104 - PublicationFIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1(Public Library of Science, 2016-01-11)
; ; ; ; ; ; ; ; ; The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.225Scopus© Citations 60 - PublicationHypoxia-dependent regulation of inflammatory pathways in immune cells(American Society for Clinical Investigation, 2016-07-25)
; ; ; Uncontrolled inflammation underpins a diverse range of diseases where effective therapy remains an unmet clinical need. Hypoxia is a prominent feature of the inflammatory microenvironment that regulates key transcription factors including HIF and NF-κB in both innate and adaptive immune cells. In turn, altered activity of the pathways controlled by these factors can affect the course of inflammation through the regulation of immune cell development and function. In this review, we will discuss these pathways and the oxygen sensors that confer hypoxic sensitivity in immune cells. Furthermore, we will describe how hypoxia-dependent pathways contribute to immunity and discuss their potential as therapeutic targets in inflammatory and infectious disease.382Scopus© Citations 118 - PublicationLoss of Prolyl Hydroxylase-1 Protects Against Colitis Through Reduced Epithelial Cell Apoptosis and Increased Barrier Function(Elsevier - WB Saunders, 2010-12)
; ; ; Background & Aims: Hypoxia inducible factor (HIF) prolyl hydroxylase inhibitors are protective in mouse models of inflammatory bowel disease (IBD). Here, we investigated the therapeutic target(s) and mechanism(s) involved. Methods: The effect of genetic deletion of individual HIF-prolyl hydroxylase (PHD) enzymes on the development of dextran sulphate sodium (DSS)–induced colitis was examined in mice. Results: PHD1−/−, but not PHD2+/− or PHD3−/−, mice were less susceptible to the development of colitis than wild-type controls as determined by weight loss, disease activity, colon histology, neutrophil infiltration, and cytokine expression. Reduced susceptibility of PHD1−/− mice to colitis was associated with increased density of colonic epithelial cells relative to wild-type controls, which was because of decreased levels of apoptosis that resulted in enhanced epithelial barrier function. Furthermore, with the use of cultured epithelial cells it was confirmed that hydroxylase inhibition reversed DSS-induced apo tosis and barrier dysfunction. Finally, PHD1 levels were increased with disease severity in intestinal tissue from patients with IBD and in colonic tissues from DSS-treated mice. Conclusions: These results imply a role for PHD1 as a positive regulator of intestinal epithelial cell apoptosis in the inflamed colon. Genetic loss of PHD1 is protective against colitis through decreased epithelial cell apoptosis and consequent enhancement of intestinal epithelial barrier function. Thus, targeted PHD1 inhibition may represent a new therapeutic approach in IBD.492Scopus© Citations 155 - PublicationCarbon dioxide-sensing in organisms and its implications for human diseaseThe capacity of organisms to sense changes in the levels of internal and external gases and to respond accordingly is central to a range of physiologic and pathophysiologic processes. Carbon dioxide, a primary product of oxidative metabolism is one such gas that can be sensed by both prokaryotic and eukaryotic cells and in response to altered levels, elicit the activation of multiple adaptive pathways. The outcomes of activating CO2-sensitive pathways in various species include increased virulence of fungal and bacterial pathogens, prey-seeking behavior in insects as well as taste perception, lung function, and the control of immunity in mammals. In this review, we discuss what is known about the mechanisms underpinning CO2 sensing across a range of species and consider the implications of this for physiology, disease progression, and the possibility of developing new therapeutics for inflammatory and infectious disease.
447Scopus© Citations 87