Now showing 1 - 2 of 2
  • Publication
    Visible Light-Driven Gas-Phase Artificial Photosynthesis Reactions over Ruthenium Metal Nanoparticles Modified with Anatase TiO2
    Ruthenium metal nanoparticles with a narrow size distribution have been synthesised via a solvothermal method. The solids were characterised using a range of analytical techniques (XRD, TEM, TPD, and XPS) and tested in the CO2+H2O reaction under simulated solar radiation, showing photocatalytic activity towards the production of CH4 and CO. The photocatalysis was promoted through a plasmonic excitation of the Ru. The addition of Ti to the preparation resulted in the formation of anatase TiO2. Notwithstanding the fact that the energy of the light used during the photocatalysis was insufficient to excite TiO2, its presence affects the catalysts’ optical and chemical properties and the product (CH4/CO) ratios, favouring the evolution of CO over that of CH4 (suggesting exciton transfer to TiO2 from plasmonically excited Ru).
      386Scopus© Citations 2
  • Publication
    Scope for spherical Bi2WO6 quazi-perovskites in the artificial photosynthesis reaction – the effects of surface modification with amine groups
    The synthesis, characterisation, modification (with n-propyl amine groups) of Bi2WO6 particles and the scope for its application in artificial photosynthesis reactions is described. The synthesis involves microwave activation of spherical Bi2O3 precursors followed by a hydrothermal treatment in the presence of Na2WO4. These are characterised using electron microscopy (TEM and SEM), BET, XRD, FTIR, FT-Raman and UV-Visible spectroscopies and CO2 TPD. Subsequently this material is modified through the condensation of propyl amine groups to surface hydroxyl groups, and the composites prepared are characterised using FTIR and D-FTIR following exposure to CO2. Both the spherical particles and the amine-modified analogues are applied in the artificial photosynthesis reaction under batch conditions. O2, CO and CH4 are the observed gaseous products during the reaction and there is FTIR evidence for the formation of adsorbed alcohols and carbonylated products. Although the modification with amine groups decreased the overall photocatalytic reactivity, it also altered the product selectivity with respect to the CH4/CO ratio. The catalyst tends to improve the oxygen production ability after about 20h of operation, with a decline in CH4 and CO production, indicating that other condensates are probably generated. This opens up new possibilities and scope for this catalyst and further research is required to understand the observations.
      52Scopus© Citations 3