Now showing 1 - 2 of 2
  • Publication
    Inferring Semantics from Geometry - the Case of Street Networks
    This paper proposes a method for automatically inferring semantic type information for a street network from its corresponding geometrical representation. Specifically, a street network is modelled as a probabilistic graphical model and semantic type information is inferred by performing learning and inference with respect to this model. Learning is performed using a maximum-margin approach while inference is performed using a fusion moves approach. The proposed model captures features relating to individual streets, such as linearity, as well as features relating to the relationships between streets such as the co occurrence of semantic types. On a large street network containing 32,412 street segments, the proposed model achieves precision and recall values of 68% and 65% respectively. One application of this work is the automation of street network mapping.
  • Publication
    Automated Highway Tag Assessment of OpenStreetMap Road Networks
    OpenStreetMap (OSM) has been demonstrated to be a valuable source of spatial data in the context of many applications. However concerns still exist regarding the quality of such data and this has limited the proliferation of its use. Consequently much research has been invested in the development of methods for assessing and/or improving the quality of OSM data. However most of these methods require ground-truth data, which, in many cases, may not be available. In this paper we present a novel solution for OSM data quality assessment that does not require ground-truth data. We consider the semantic accuracy of OSM street network data, and in particular, the associated semantic class (road class) information. A machine learning model is proposed that learns the geometrical and topological characteristics of di erent semantic classes of streets. This model is subsequently used to accurately determine if a street has been assigned a correct/incorrect semantic class.
      929Scopus© Citations 44