Repository logo
  • Log In
    New user? Click here to register.Have you forgotten your password?
University College Dublin
    Colleges & Schools
    Statistics
    All of DSpace
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. College of Engineering & Architecture
  3. School of Biosystems and Food Engineering
  4. Biosystems and Food Engineering Research Collection
  5. Fuel efficiency and CO2 emissions of biomass based haulage in Ireland - A case study
 
  • Details
Options

Fuel efficiency and CO2 emissions of biomass based haulage in Ireland - A case study

Author(s)
Devlin, Ger  
Klvac, Radomir  
McDonnell, Kevin  
Uri
http://hdl.handle.net/10197/5969
Date Issued
2013-06-01
Date Available
2014-09-30T08:42:47Z
Abstract
The purpose of this study was to analyse how biomass based haulage in Ireland performed as a measure of efficiency under 4 main criteria; distance travelled, fuel consumption, fuel consumption per unit of biomass hauled and diesel CO2 emissions. The applicability of truck engine diagnostic equipment was tested to analyse the schedule of engine data that could be recorded in real-time from a 5 axle articulated biomass truck. This identified how new on board truck technology in Ireland could be used to monitor data in real-time, specifically fuel consumption, litre/km, litre/ton and distance to allow for informed analysis of how efficient new biomass trucking operations currently are in Ireland. Fleet Management System (FMS) monitoring systems are a relatively new technology in biomass and log transport in Ireland. They are more common place in the food supply chain with refrigerated units travelling across continental Europe where food temperature and truck movements are controlled data from a central dispatch. A GPS asset tracking monitoring system was also installed on the truck over the test period to record trip log data. The BT (biomass truck) was a 5 axle, 2004 DAF XF Euro III 430hp 4*2. Initial results showed that for the BT, the average daily fuel consumption varied from 0.23 L/km to 0.47 L/km. The thresholds of travelled distance were between 20.92 km and 434.91 km respectively with average fuel consumption per tonnage of woodchips of 0.16 L/ton and 5.68 L/ton. When the total daily distance is limited to 1 load within 200 km roundtrip versus 1 load at approximately 400 km trip, the % difference in logistic cost (€/T) is 56%. Delivering 2 loads per 400 km trip shows a 5.4% decrease in logistic costs versus the Trip 1 scenario confirming the increased efficiency of a more localised transport approach. A maximum percentage difference in costs of 45% that exists between a 2 load and 1 load trip occurs for Trip 22 and Trip 5 but this increases to 72% when analysing for 2 load versus 1 load for distances over 400 km. Trip 7 and 12 are both below 50 km and seem to be the exception and to compare could possibly show an element of distortion. The closest logistic cost to Trip 12 is Trip 5 with 113% higher costs confirming how a 50 km roundtrip can impact significantly on lowering biomass transport costs.
Sponsorship
Science Foundation Ireland
Other Sponsorship
Charles Parsons Energy Research Programme
Type of Material
Journal Article
Publisher
Elsevier
Journal
Energy
Volume
54
Issue
2013
Start Page
55
End Page
62
Copyright (Published Version)
2013 Elsevier
Subjects

Biomass haulage

Fuel efficiency

Litre/km

Litre/ton

CO2 emissions

DOI
10.1016/j.energy.2013.03.007
Language
English
Status of Item
Peer reviewed
This item is made available under a Creative Commons License
https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
File(s)
Loading...
Thumbnail Image
Name

G_DevlinV2_Unmarked.pdf

Size

1.01 MB

Format

Adobe PDF

Checksum (MD5)

42196dc9c44edc0d64a32e14fce27cad

Owning collection
Biosystems and Food Engineering Research Collection
Mapped collections
Climate Change Collection•
Institute of Food and Health Research Collection

Item descriptive metadata is released under a CC-0 (public domain) license: https://creativecommons.org/public-domain/cc0/.
All other content is subject to copyright.

For all queries please contact research.repository@ucd.ie.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement