Repository logo
  • Log In
    New user? Click here to register.Have you forgotten your password?
University College Dublin
    Colleges & Schools
    Statistics
    All of DSpace
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. College of Health and Agricultural Sciences
  3. School of Veterinary Medicine
  4. Veterinary Medicine Research Collection
  5. Intestinal Permeation Enhancers for Oral Delivery of Macromolecules: A Comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C10)
 
  • Details
Options

Intestinal Permeation Enhancers for Oral Delivery of Macromolecules: A Comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C10)

Author(s)
Twarog, Caroline  
Fattah, Sarinj  
Heade, Joanne  
Brayden, David James  
et al.  
Uri
http://hdl.handle.net/10197/10708
Date Issued
2019-02-13
Date Available
2019-05-29T10:25:56Z
Abstract
Salcaprozate sodium (SNAC) and sodium caprate (C10) are two of the most advanced intestinal permeation enhancers (PEs) that have been tested in clinical trials for oral delivery of macromolecules. Their effects on intestinal epithelia were studied for over 30 years, yet there is still debate over their mechanisms of action. C10 acts via openings of epithelial tight junctions and/or membrane perturbation, while for decades SNAC was thought to increase passive transcellular permeation across small intestinal epithelia based on increased lipophilicity arising from non-covalent macromolecule complexation. More recently, an additional mechanism for SNAC associated with a pH-elevating, monomer-inducing, and pepsin-inhibiting effect in the stomach for oral delivery of semaglutide was advocated. Comparing the two surfactants, we found equivocal evidence for discrete mechanisms at the level of epithelial interactions in the small intestine, especially at the high doses used in vivo. Evidence that one agent is more efficacious compared to the other is not convincing, with tablets containing these PEs inducing single-digit highly variable increases in oral bioavailability of payloads in human trials, although this may be adequate for potent macromolecules. Regarding safety, SNAC has generally regarded as safe (GRAS) status and is Food and Drug Administration (FDA)-approved as a medical food (Eligen®-Vitamin B12, Emisphere, Roseland, NJ, USA), whereas C10 has a long history of use in man, and has food additive status. Evidence for co-absorption of microorganisms in the presence of either SNAC or C10 has not emerged from clinical trials to date, and long-term effects from repeat dosing beyond six months have yet to be assessed. Since there are no obvious scientific reasons to prefer SNAC over C10 in orally delivering a poorly permeable macromolecule, then formulation, manufacturing, and commercial considerations are the key drivers in decision-making.
Sponsorship
European Commission Horizon 2020
Science Foundation Ireland
Other Sponsorship
SANOFI-AVENTIS Recherche & Development
French National Agency of Research and Technology
CÚRAM Center for Medical Devices
Type of Material
Journal Article
Publisher
MDPI
Journal
Pharmaceutics
Volume
11
Issue
2
Start Page
1
End Page
21
Copyright (Published Version)
2019 the Authors
Subjects

Oral macromolecule de...

Oral peptides

Sodium caprate

Salcaprozate sodium

Epithelial permeabili...

Epithelial transport

DOI
10.3390/pharmaceutics11020078
Language
English
Status of Item
Peer reviewed
ISSN
1999-4923
This item is made available under a Creative Commons License
https://creativecommons.org/licenses/by-nc-nd/3.0/ie/
File(s)
Loading...
Thumbnail Image
Name

pharmaceutics-11-00078-v2 (1).pdf

Size

1.58 MB

Format

Adobe PDF

Checksum (MD5)

20696179f1f487bdd2a99152c3df7370

Owning collection
Veterinary Medicine Research Collection
Mapped collections
Conway Institute Research Collection

Item descriptive metadata is released under a CC-0 (public domain) license: https://creativecommons.org/public-domain/cc0/.
All other content is subject to copyright.

For all queries please contact research.repository@ucd.ie.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement